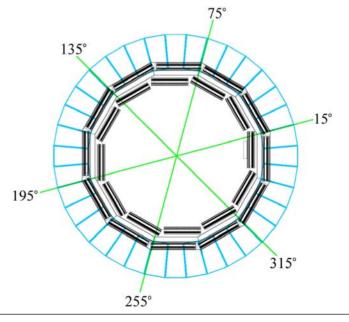

CSC Track-Finder

http://www.phys.ufl.edu/~acosta/cms/trigger.html

Darin Acosta University of Florida

CSC Muon Trigger Scheme



CSC Track-Finding

- Link local track segments into distinct <u>3D</u> tracks (FPGA logic)
 - Reconstruction in η suppresses accelerator muons
- Measure p_T, φ, and η of the muon candidates in the non-uniform fringe field in the endcap iron (SRAM LUTs)
- Send highest quality candidates to Global Muon Trigger

• Partitioned into 60° sectors that align with DT chambers

Basis of Track-Finding Logic

η Road Finder:

•Check if track segment is in allowed trigger region in $\boldsymbol{\eta}.$

•Check if $\Delta\eta$ and η bend angle are consistent with a track originating at the collision vertex.

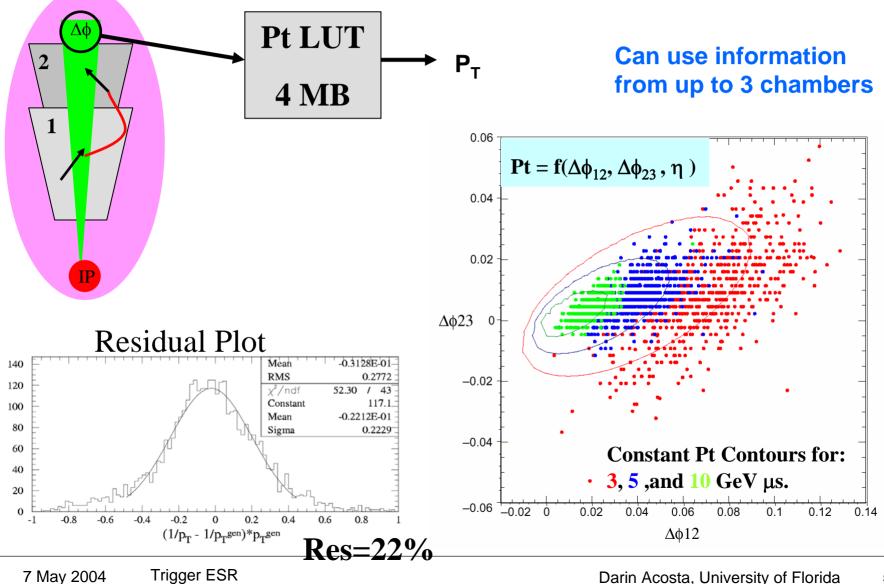
•Check if $\Delta \phi$ is consistent with ϕ bend angle $\phi_{\rm B}$ measured at each station.

•Check if $\Delta \varphi$ in allowed range for each η window.

Quality Assignment Unit:

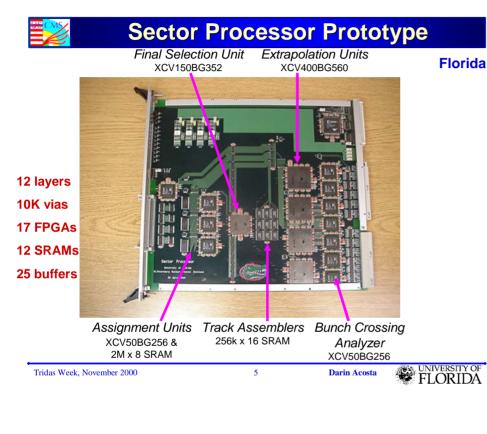
•Assigns final quality of extrapolation by looking at output from η and ϕ road finders and the track segment quality.

Extrapolation Units utilize 3-D information for trackfinding.


7 May 2004 Trigger ESR

Darin Acosta, University of Florida 4

1



P_T Measurement

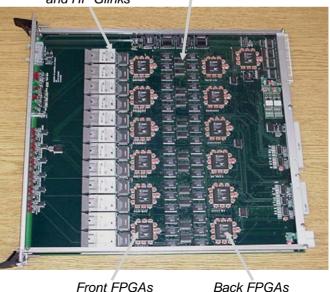
1st Track-Finder Prototypes

Tested in 2000

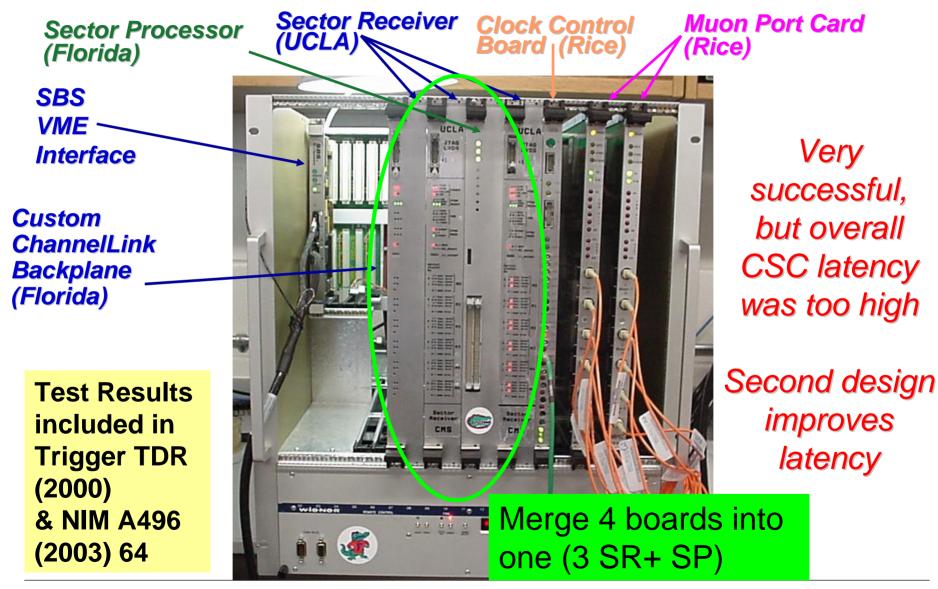
System would require 6 crates

7 May 2004 Trigger ESR

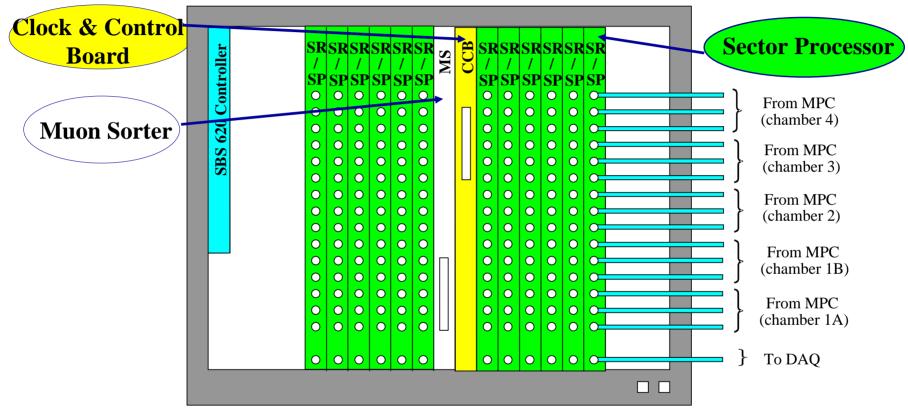
6


Darin Acosta

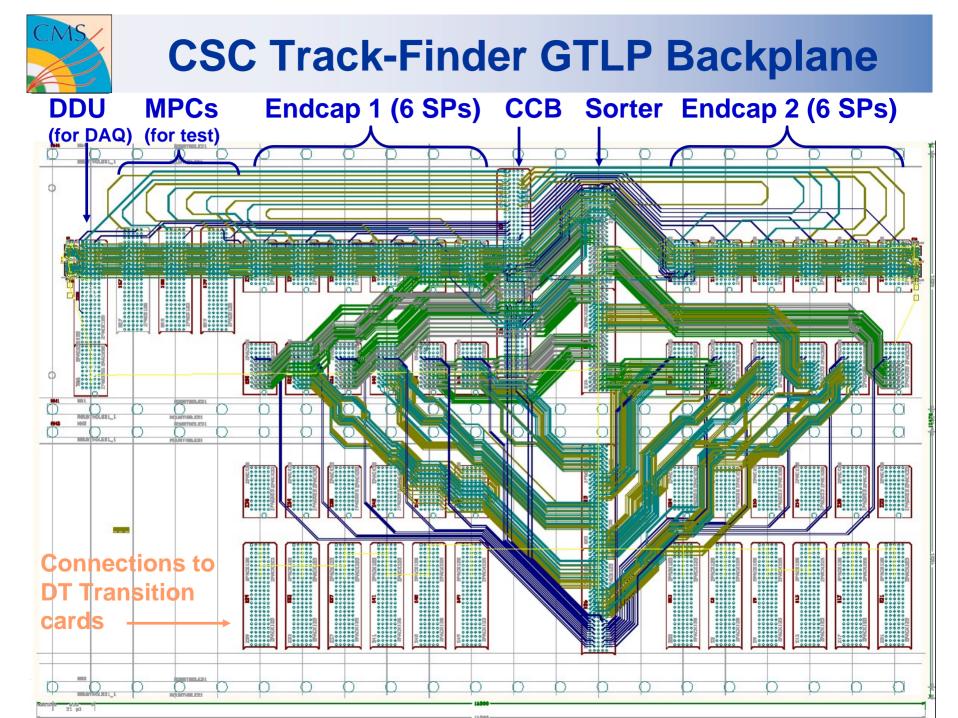
Sector Receiver Prototype


Optical Receivers SRAM LUTs and HP Glinks

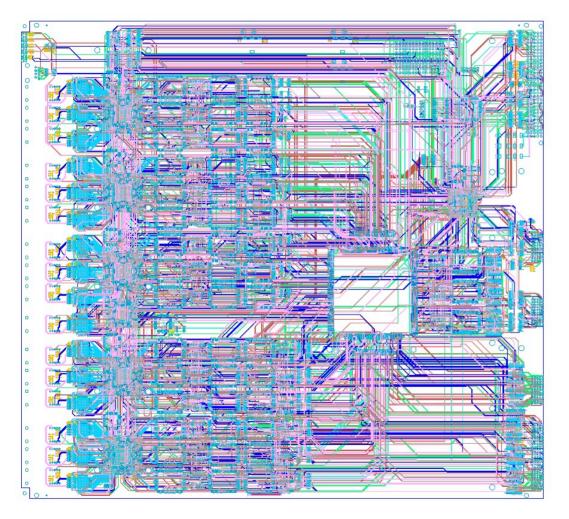
UCLA


1st Prototype Track-Finder Tests

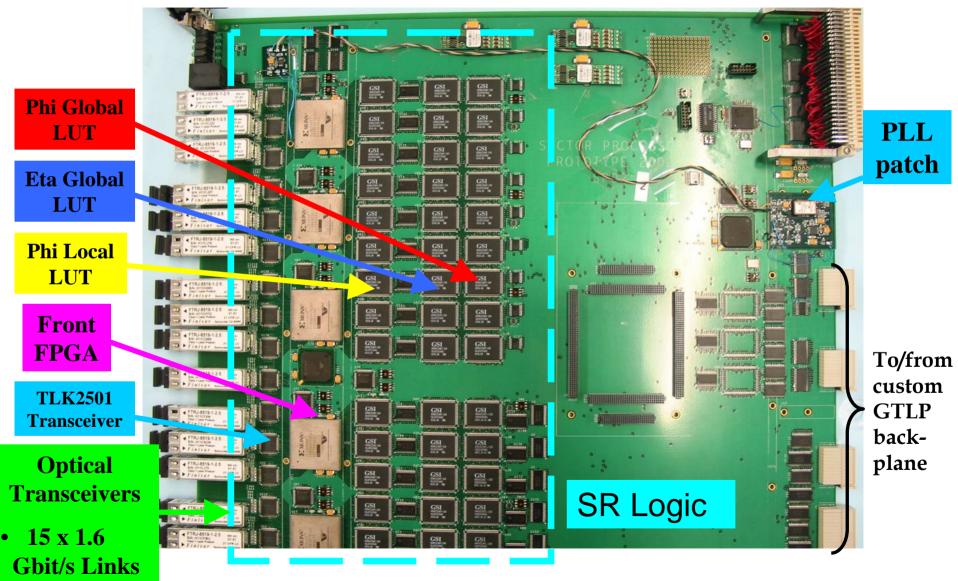
CSC Track-Finder Crate


Single crate solution, 2nd generation prototypes under test

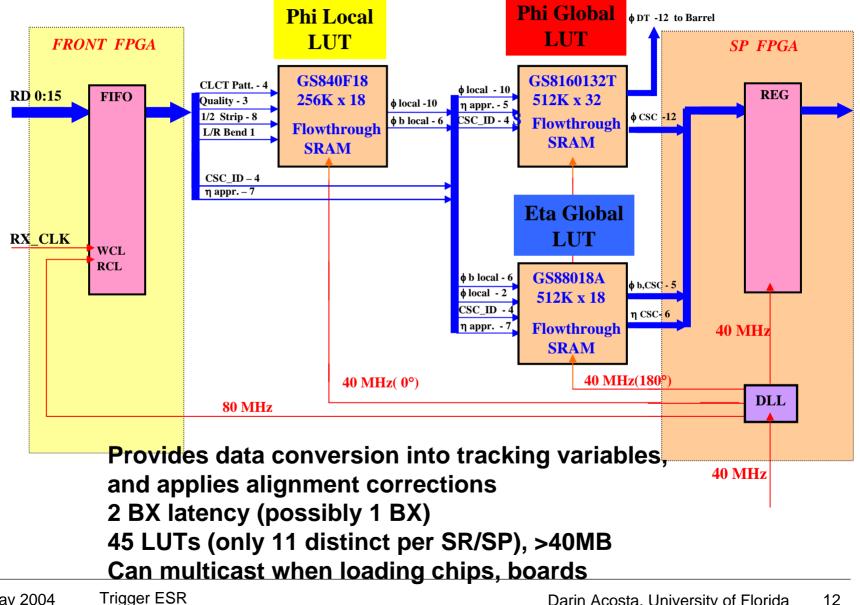
180 × 1.6 Gbit/s optical links:


Data clocked in parallel at 80 MHz in 2 frames (effective 40 MHz) Custom 6U GTLP backplane for interconnections (mostly 80 MHz) Rear transition cards with 40 MHz LVDS SCSI cables to/from DT

7 May 2004 Trigger ESR


Combined SR/SP 2002

- 4 boards in 1
- Delays with complex layout using in-house tools
- Sent to industry for completion of layout using Cadence Allegro
 - Since then acquired Allegro license at UF
- Final board takes 16 layers
- 3 boards manufactured and stuffed
- Testing began Mar. '03



SP2002 Main Board (SR Logic)

SR Memory Scheme

SP2002 Track-Finder Logic

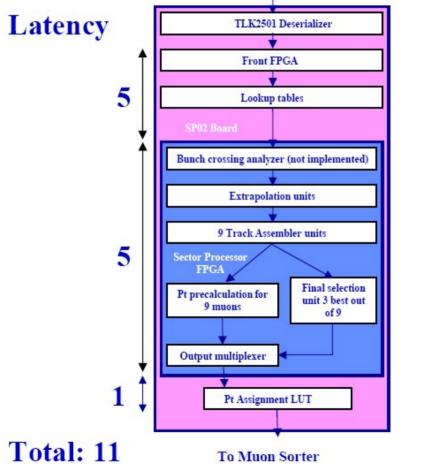
SP2002 mezzanine card

- Xilinx Virtex-2 XC2V4000
 ~800 user I/O
- Same mezzanine card is used for Muon Sorter
- Track-Finding logic operates at 40 MHz
 - Frequency of track stub data from optical links
- About 50% of chip resources (LUTs) used
- Easily upgradeable path

- FPGA firmware is synthesized from Verilog
 - Top-level schematic connects Verilog blocks
- Core track-finding logic is actually written in C++ and converted to Verilog using a special C++ class library written by our engineer, A.Madorsky
 - Two compiler options for one piece code:
 - Compiled one way, the C++ program self-generates Verilog output files which are human-readable and from which can be synthesized by the FPGA vendor tools
 - Compiled another way, the same code exactly emulates the behavior the digital logic
 - Solves main obstacle to validation of the first TF prototypes
 - Allows use of free compiler tools on commodity PC's for debugging
 - Still need vendor simulation tools for other FPGAs
 - This SP logic is implemented in the ORCA simulation and reconstruction framework and is now the default (≥7.7.0)

Recent Updates to Track-Finder Logic

Firmware improvements


- Multiple-BX input acceptance for track segments
 - Improves efficiency
- Track-Finding parameters under VME control (e.g. η windows)
- Error counters, track segment counters, track counters for monitoring
- Ghost-busting at sector boundaries
 - Increases di-muon trigger acceptance to |η|<2.4 when low quality CSC tracks included
 - Installed into ORCA
- Self-trigger capability
 - A Level-1 Accept signal can be generated based on the presence of a track for beam test use
 - Goes onto bussed backplane to CCB, then out front-panel

CSC Track-Finding Logic & Latency

SPO2 Simulated Timing

 11×25 ns, or 275 ns

Big improvement over 1st prototypes (21 bx)

CSC Trigger Latency

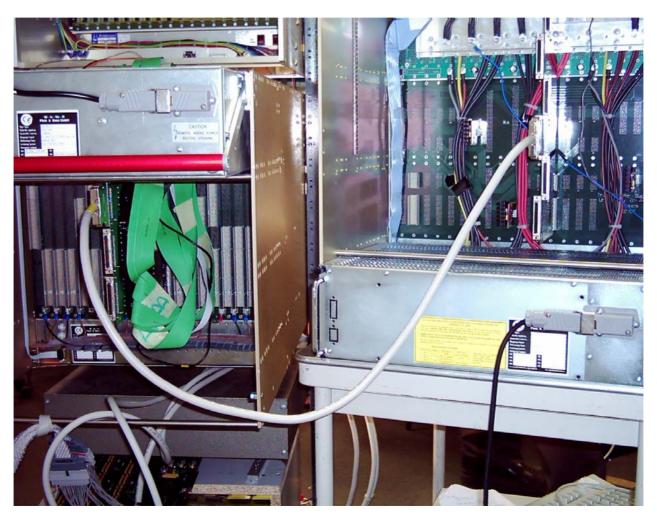
- Measured with scope during the beam tests:
 - From CSC to MPC input:
 - From the CSC to SR/SP input: (includes 90 m fiber, 18 bx delay)
- Estimated latency for output of SP:
 - Add 11 bx for SR/SP processing: 68 bx
- Estimated latency for output of Muon Sorter:
 - Add 7 bx for backplane + sorting: 75 bx
- Total compares well with 74.5 bx projected in TDR
 - (Latter includes 1 bx TOF delay)
- Expect to save additional ~7 bx with "Virtex-2" TMB
- Estimated latency to send CSC data to DT TF:
 - ◆ 1bx TOF + 57bx + 5bx for SR + 2bx cable: 65 bx <u>7 bx</u> = 58 bx
 - Nearly aligned with DT data at DT TF: 54 bx according to TDR

 $32 bx (\pm 1 bx)$

57 bx

Test Status

- Basically all functionality has been successfully tested
- Optical links:
 - Demonstrated to maintain synchronization during Sept'03 beam test with home-built PLL+VCXO and with latest QPLL (TTCRq)
- LUT Tests:
 - Validated loading and read-back of all 45 SR LUTs and 3 PT LUTs using random numbers and simulated muon LUT files
- SP Track-Finding Logic Tests:
 - Downloaded random data and simulated muon data into 512 BX input FIFO, read-back and compare output FIFO
 - No discrepancies in 1.2M random events
 - No discrepancies in 13K single muon events, or 4K triple muon events (3 single muons piled up)
 - Verilog model also "installed" into ORCA
- Complete functionality test
 - Input FIFO → Optical loopback → Front FPGA → LUTs → Track-Finding → output FIFO (all 15 links)



- MPC to Sector Processor
 - Validated with optical link tests
- SP to Muon Sorter Test
 - Data successfully sent from SP to Muon Sorter and received properly. Read-back of winner bits also correct.
 - Tested 10/12 slots on custom GTLP backplane
- Clock and Control Board (TTC interface)
 - New design based on discrete logic and with TTCRq installed still needs to be tested (beginning April)
- DT/CSC Data Exchange Test
 - Demonstrated to work during Sept'03 in both directions, with only a few minor problems with swapped bits, connectors, and dead chips

First DT/CSC Integration Tests

DT TF transition card \leftrightarrow CSC TF transition card

- Reminder: data is exchanged between the two systems for efficient coverage of the region
 0.9 < |η| < 1.2
 - Interface document: CMS IN 2002/040
 - CSC sends 3 LCT's/BX (52 bits) from ME1 to two 30° DT sectors
 - DT sends 1 segment/BX (26 bits) from each 30° sector
 - Signaling standard is LVDS at 40 MHz through SCSI cables and connectors
- Layout problem on first CSC transition card meant connectors had to be attached on opposite side of board
 - Cable connector had to be flipped 180° at one end so that signals are received on correct pins
 - Anyway, have to redesign anyway because SCSI connectors on two sides exceeds single VME slot width

New DT/CSC Transition Board Layout

- SCSI connectors on one side of card
- Ability to perform self-test with tester card
- Fabrication completed this week
- Plan another DT/CSC interface test in Oct'04

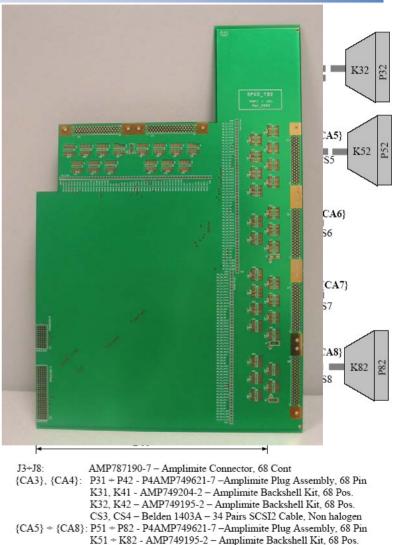
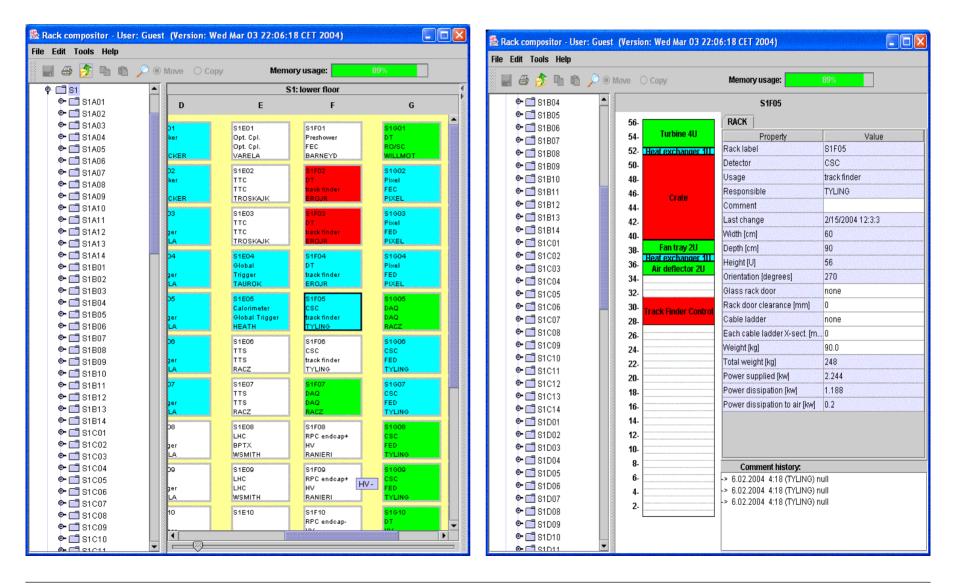
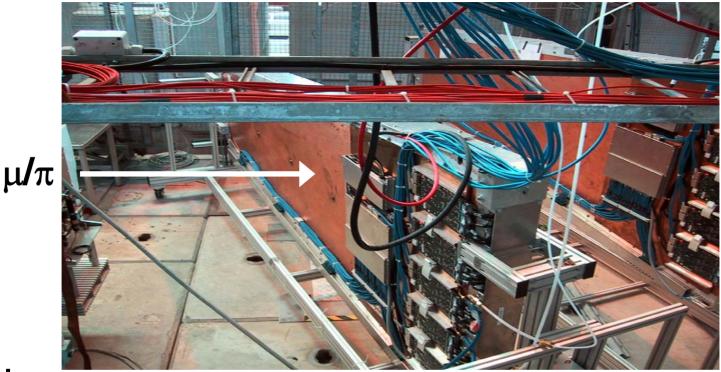



Fig.1. CSC/DT Transition Board Connections

CSC Track-Finder Rack Layout

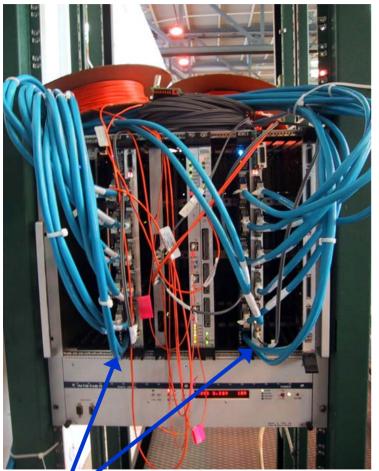


Remaining Integration Tests Required Before Production (Peripheral & Track-Finder Crate)

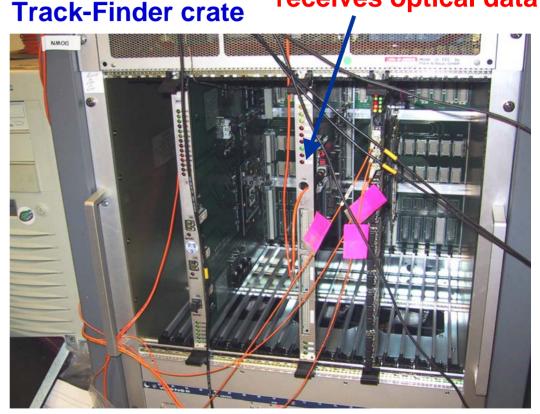
- Standalone test of MPC and nine production TMBs with CCB'2004 in the peripheral crate. Check data paths from TMB to MPC and winner paths from MPC to every TMB.
 - On-going
- Optical test (three links) from MPC to SP. Data check from SP's input buffers should be sufficient.
 - Possible during 2004 beam test with new CCB and TTCRq
- Multiple MPCs to SP Link test (check SP input buffers & SP logic)
 - Possible during 2004 beam test
- Multiple SP to MS data path test with at least two SP boards and winner feedback from the MS to those two SPs
- Desired Tests:
 - At some point we should check the MS-to-GMT data path.
 - We should check the SP-to-MS data path with 12 Muon Tester (MT) boards and all 12 winner paths from MS to MT.
 - TMB to MPC to SP to MS chain test with as many boards as we an manage
 - Possible during 2004 beam test
 - Readout of SP through SLINK64 on EMU DDU board

2003 Beam Test of 2 CSC's at X5a

Goals:


1) Verify that the peripheral crate electronics (mainly DMB/TMB) are ready for production

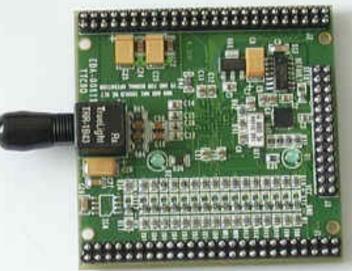
2) Complete an electronic chain test of data transmission from CSC front-end electronics to counting-room trigger electronics, all operating <u>synchronously</u> with the 40 MHz structured beam
3) Test new XDAQ-based software



CSC Peripheral Crate

Peripheral crate

Sector Processor, receives optical data



2 Trigger Motherboards (TMBs) for trigger primitive generation, and 2 DAQ Motherboards (DMBs) for chamber read out

7 May 2004 Trigger ESR

- Three made available to CSC group for testing during Sept.03 structured beam test
- Provides stable clock signals at 40, 80, and 160 MHz at correct LHC frequency
- Installed on CCB with 40 MHz clean clock sent to backplane, 80 MHz clock sent by twisted pair to SP or MPC

TTCRq (QPLL) Test Results

- 1. QPLL 80 MHz clock directly to MPC transmitters and UFL custom VCXO+PLL for SP receivers
 - No link errors for 20 minute PRBS test
- 2. QPLL 80 MHz clock directly to SP receivers MPC uses default clock multiplier
 - No link errors for 15 minute PRBS test
 - Successfully logged data for 10K events (run 5151)
- 3. QPLL 40 MHz clock on TF crate backplane SP uses DLL in FPGA for clock multiplier
 - Link errors observed in PRBS test
- 4. TTCRq on CCB in peripheral crate TTCRm on CCB in TF crate
 - Able to take data with same trigger efficiency (i.e. TTCRq works for peripheral crate as well)

Detailed TMB–SP Comparison

- Run TMB data (correlated LCT trigger primitives) through MPC simulation to compare with SP
 - MPC is not directly read out
 - MPC sorts possible 4 LCTs to 3 in beam test data
 - Use BXN reported by ALCT for each LCT
- Preliminary comparison between SP and TMB for all 5 BX read out by SP for every L1A match:
 - ♦ 99.7% agreement for ~70K events
- Mismatches between TMB and SP data are in BX assignment only, not in LCT frames
 - More detailed checks will continue at next beam test

2004 CSC Beam Test Goals

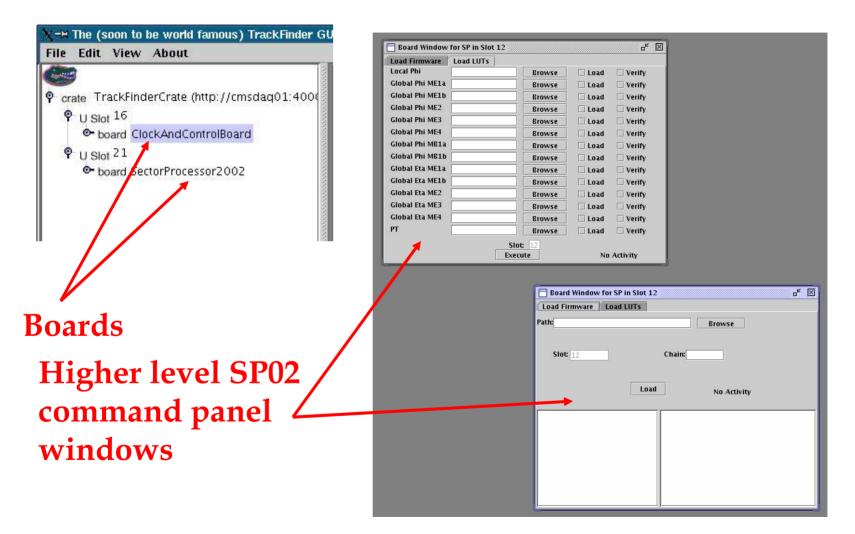
Base goal:

- Set up pre-production system and repeat prior tests using 25 ns structured beam
 - New CCB design
- Additional goals:
 - Test TMB2004 with RAT (new ALCT/RPC transition card)
 - Use fully functional XDAQ-based event builder and run control
 - Use fully functional Track-Finder system (self-triggering)
 - Use new DDU+DCC (FED) developed by OSU
 - Use new crate controller developed by OSU
 - Add an ME1/2 chamber in order to have 3-chamber test (for SP)
 - Swap/Add in ME1/1
 - Mount an endcap RPC on ME1/2, connect Link board to RAT, record RPC data in TMB
 - Add a small block of iron absorber between to validate OSCAR/ORCA simulation

Production and Test Plans

- Will assemble 1 board first as pre-production prototype and test before launching full production (12 SR/SP + 3 spare)
 - To begin September 2004
 - May conflict with Sept/.Oct. 25 ns beam test run
- Each of the prototype tests (optical link PRBS tests, LUT tests, etc.) will become standard tests for the production modules
 - Therefore, we will have a suite of tests in our XDAQ-based software (hopefully with a JAVA interface)
 - Initial testing will be performed by a technician or student
 - Encountered problems will be addressed by our engineers

Integration tests at CERN to be led by postdoc



Known Fixes for Production Version

- Fix the DIN160 (VME connector) schematic component, initially designed with mislabeling of pin rows
- Fix mapping of five signals in the DT→SP interface
- Drive the TLK2501 reference clock from the on-board VCXO-based PLL clock (QPLL or QPLL substitute), and not from the Virtex II DCM clock (small mezzanine card)
- Make provision for the on-board QPLL reference clock to be either 40 MHz or 80 MHz backplane clock
- Visualize QPLL Lock condition with a front panel LED, and also access state in VME register
- Make a three-bit hardwired chip ID for each FPGA and make a six-bit hardwired card ID for each SP
 - On the CSR_CID VME command, each FPGA returns its ID and firmware revision date
- Several other technical fixes

Track-Finder GUI

Java interface to XDAQ-based software framework

CSC Track-Finder Milestones

CSC CSC CSC CSC CSC CSC CSC CSC CSC	Bckpl CCB SR/SP MPC SR/SP-M Sort Sort Sort Bckpl CCB Sort	Proto tested Proto tested Proto tested Proto tested IPC-CCB Tested Proto done Proto Tested Final Bd done Prod. done Prod. done Final Bd Test	Sep-02 Sep-02 Mar-03 Mar-03 Jun-03 Aug-03 Nov-03 Mar-04 Mar-04 Mar-04 Jun-04	Delay: Jun-04 Done Delay: Jun-04 Delay: Jun-04 Delay: Jun-04 Delay: Jun-04 Delay: Oct-04 Delay: Oct-04 Delay: Oct-04 Delay: Jan-05	~Done, wait for Jun-04 test
CSC CSC CSC CSC CSC	SR/SP MPC Bckpl CCB SR/SP	Prod. done Prod. done Prod. tested Prod. tested Prod. tested	Jun-04 Jun-04 Aug-04 Aug-04 Nov-04	Delay: Jan-05 Delay: Oct-04 Delay: Jan-05 Delay: Jan-05 Delay: Mar-05	Delayed to Jan-05 Delayed to Mar-05

Personnel

Professors

- Darin Acosta (Florida), Robert Cousins (UCLA), Jay Hauser (UCLA), Paul Padley (Rice)
- Postdocs
 - Sang-Joon Lee (Rice), Holger Stoeck (Florida), Slava Valouev (UCLA), Martin Von der Mey (UCLA), Yangheng Zheng (UCLA)
- Students
 - Brian Mohr (UCLA), Jason Mumford (UCLA), Greg Pawloski (Rice), Bobby Scurlock (Florida)
 - Also Lindsey Gray and Nick Park (Florida undergraduates)

Engineers

- Alex Madorsky (Florida), Mike Matveev (Rice), Ted Nussbaum (Rice), Alex Tumanov (Rice - Software)
- Collaborating engineers (PNPI)
 - Victor Golovtsov, Lev Uvarov