

D.Acosta, A.Madorsky, B.Scurlock **University of Florida**

V.Golovtsov, L.Uvarov

St. Petersburg Nuclear Physics Institute

SR/SP Conceptual Layout

→ Currently specifying all interfaces

CSC TF Schedule

- → Dec. 2001: Specify backplane connections
- → Mar. 2002: Specify MPC, SR, SP designs
- → Sep. 2002: Finish construction of pre-production prototypes
- → Mar. 2003: Finish crate tests of CSC TF

- → Note: We hope to have a structured beam test of the CSC chambers and CSC Track-Finder in 2003
 - □ Chain test of entire system with 25 ns beam

DT / CSC Interface – Bits

From CSC to DT TF:

40 MHz LVDS both ways

Signal	Bits / stub	Bits / 2 stubs (ME1: 20°)	Bits / 6 stubs (ME1: 60°)	Description	
f	12	24	72	Azimuth coordinate	DT format
h	1	2	6	DT/CSC region flag	
Quality	3	6	18	Computed by TMB	
BXN	_	2	6	2 LSB of BXN	2 sets of 3
Total:	16	34	102		muons in 60°each BX

From DT to CSC TF:

Signal	Bits / stub	Bits / 2 stubs (MB1: 60°)	Description	
f	12	24	Azimuth coordinate	CSC format
f _b	5	10	φ bend angle	
Quality	3	6	Computed by TMB	
BXN	2	4	2 LSB of BXN	
Synch/Calib	1	2	DT Special Mode	2 sets of 2
Muon Flag	1	2	2 nd muon of previous BX	muons in 60° serialized in
Total:	24	48		2 BX

DT / CSC Interface - Cables

- → Need to decide cable map between DT and CSC TF
- → Perturbed because ME 1/1a staging implies CSC trigger goes back to 3 muons per 30° rather than 2 per 20° (but still a total of 6)
- → Can send 3 muons to each DT SP
- Old design sent 4 to each, and the center 2 were duplicated
- → Can we accommodate either scheme?
- → Number of cables?

SP ® CSC Muon Sorter Interface

80 MHz GTLP

Signal	Bits / m	Bits / 3 m (1 SP)	Bits / 36 m (12 SP)	Description
f	5	15	180	Azimuth coordinate
h	5	15	180	Pseudorapidity
Rank *	7	21	252	5 bits $p_{\rm T}$ + 2 bits quality
Special * Trigger	1	3	12	Extra quality bit (Halo muon trigger)
Sign *	1	3	36	
BXN *	_	2	24	2 LSB of BXN
Error *	_	1	12	
Total:	19	60	720	(360 bits at 80 MHz)

Send on 1st frame

GMT & GT Interface

We will implement special logic mode to trigger on accelerator muons during normal running

- → Could also include a loose single station trigger
- → These trigger presumably can/will be prescaled

Question: Do we include these special triggers with normal muons in the same BX?

- → Mixed list of muons from CSC Sorter, or just one or the other?
- → Also, what if we get several accelerator muons in one BX?

CSC Track Finder Backplane

Custom Backplane Connections

CSC Muon Sorter Connector

370 signals on AMP 100145-1 connector

Similar specification written for SP connection, but only 31 signals

Ghost-Busting in CSC Muon Sorter

CSC TF does not share information across sector boundaries

- → Efficiency loss is negligible
- Ghost tracks are created and pose a problem for the di-muon trigger

Most ghosts stem from duplicate LCTs from overlapping chambers

- → This can be solved in principle by suppressing the LCT trigger for one of the chambers in the 5-strip overlap
- → But not done currently in ORCA simulation, PRS rate studies

However, ghosts also can be cancelled in the CSC Muon Sorter, which receives all CSC information

- → Less challenging technically than trying to share information between Sector Processors
- → "Small" additional logic to Sorter chip, and hopefully minimal impact on latency
- → Compare h, j between muons from neighboring sectors and cancel lower quality candidate
 - □ Current resolution is 2.5° in f and 0.05 in h

Ghost Cancellation

B.Scurlock Study of 25K single muons generate flat in ϕ , 3<p_T<100, and 0.9< η <2.4 ghosts Nent = 104Mean = 64.11RMS = 38.88**Sector boundaries** 10 Can cancel 92 ⇒ 10X reduction 8 Still need to assess 6 impact on di-muon efficiency from real physics (J/Psi) 20 40 60 80 100 120 140 Integer φ [0,143]

Darin Acosta