Update on Di-Muon trigger study

Alexei Drozdetski, UF Trigger meeting, 8 January '04

Introduction: Goals

- Goals:
 - Increase the Level-1 di-muon trigger efficiency
 - Increase the η acceptance
 - Check efficiency of the track finder algorithm
 - Study possible ways to suppress ghosts from single-muon events

- From previous reports:
 - Study the difference between outputs for default .orcarc parameters and parameters that reflect
 - Reality: staged ME1/1a, descoped
 - · default for L1
 - Muon:Endcap:ORedME1A=1, should be used for HLT
 - Dreams: ME 1/1a readout, rescoped
 - for L1: CSCTrigger:twentyDegreeSubSectors=1
 - · default for HLT
 - Check consequences of the broader acceptance window in the Extrapolation Unit algorithm

Introduction: task

- Methods (efficiency and eta-coverage increase):
 - accept low quality muons
 - no hits in ME1 are required, 2 or more hits in other stations
 - CSCTrackFinder:lowQualityFlag=4
 - check the influence of other mentioned parameters
- Technical details:
 - CMSIM 133 →
 - \blacksquare ORCA 7_3_0 \rightarrow
 - hits in ROOT DB →
 - Trigger/L1CSCTrackFinder → *.hbook → *.root
- Cons:
 - L1 di-muon trigger rate increase due to ghosts for single μ-events

Motivation

- The closer the efficiency is to 100% ...
 - the smaller error in measurements, uncertainty
 - the larger statistics
- Increase η coverage → statistics increase
 - CMS Note 1998/020, "Impact of Muon Trigger coverage on physics"
 - Heavy Ions: J/Psi acceptance raise
 - Also see: Analysis Note draft, AN 2003-002
 - B-physics studies at LHC
- Recommendations to use .orcarc parameters that describe realistic detector performance

age..."

CMS Note 1998/020,	"Impact of Muon	Trigg	ger c	ove	rag
			$\eta_{\mathrm{trig}}^{\mu}$	2.1	1.6
	$H o ZZ^{(*)} o 4\mu$			100	96
		m_A	aneta		
	$A^0 \rightarrow \tau \tau \rightarrow 1\mu + \text{jet}$	140	20	94	76
	$A^0 ightarrow au au ightarrow 1 \mu + 1 arepsilon$	140	20	94	76
	$egin{aligned} gg & ightarrow A^0 ightarrow 2\mu \ gg & ightarrow A^0 b \overline{b} ightarrow 2\mu \end{aligned}$	120 120	30 30	97 100	89 97
Illustration:	$gg \rightarrow A^*wo \rightarrow 2\mu$			100	91
	$SUSY_1 \rightarrow 1\mu$	<i>m</i> ₀ 80	m _{1/2} 180	97	90
acceptance	$SUSY_2 \rightarrow 1\mu$ $SUSY_2 \rightarrow 1\mu$	500	150	98	92
$ \eta < 2.1 \rightarrow 2.4$	$SUSY_3 \rightarrow 1\mu$	200	150	99	96
	$SUSY_4 \rightarrow 2\mu$	105	181	98	94
up to 10% gain in	$SUSY_5 \rightarrow 2\mu$	150	400	99	96
acceptance	$SUSY_6 \rightarrow 2\mu$	50	125	98	90
Note (!): Applied	$SUSY_6 \rightarrow 3\mu$	50	125	98	92
thresholds on Pt in	$t ar t o 1 \mu$			93	78
most of the shown	$tar t o 1\mu + H^{\pm o au - {f j}{ m ot}}$			93	78
channels were	$Wtb ightarrow 1 \mu \ t \overline{t} ightarrow 2 \mu$			93 99	80 95
between 7 and 15 GeV	$egin{array}{c} tt ightarrow 2\mu \ Wtb ightarrow 1\mu \end{array}$			99	93
	$B o J/\psi K_s^0 o 3\mu$			100	90
	$B \to J/\psi \to 2\mu \text{ (incl.)}$			91	69
	$B \rightarrow 2\mu$			91	70
	$b\overline{b} \rightarrow 2\mu$ (incl.)			91	72
	$B o\pi\pi+1\mu$			89	73

Alexei Drozdetski, UF Trigger meeting, 8 January '04

 $B \to \pi\pi KK + 1\mu$ (oscillations)

0.8

Heavy Ions (Thanks to Olga Kodolova)

muons from J/Psi

J/Psi

- Muons from J/Psi, $|\eta| < 2.4$
- Blue high Quality muons, red low Quality muons allowed
- Difference for J/Psi acceptance is 123%
 - looks too good (?) → need to check if implementation in simulation software reflects reality...

Pros: L1 µ reconstruction efficiency for single muons

Cons: increase di-muon trigger rate due to ghosts

- Estimation mechanism:
 - 320,000 muons were generated (both signs)
 - flat pt distribution
 - pt generated = 2..150 GeV
 - 160,000 events for 2<pt<15 (80,000 of each sign)</p>
 - 160,000 events for 15<pt<150 (80,000 of each sign)</p>
 - $\sim 0.9 < \text{generated } \eta < 2.4$
 - weighting procedure was applied to simulate min-bias spectrum (falling pt spectrum)
 - formula from CMS Note 1997/096 for min-bias events from b,c hadrons for each muon, defined for:
 - high luminosity: 10³⁴ cm⁻²s⁻¹
 - $\cdot |\eta| < 2.1$
 - Rate was scaled up to equal total muon rate
 - Clear overestimation because EMU is a part of the total Muon System
 - weighting was used as an alternative to min-bias generation

The way out... Illustrations: reconstructed φ , $\Delta \varphi$, $\Delta \eta$

Alexei Drozdetski, UF

Trigger meeting, 8 January '04

Is there a way out? (logic)

- Di-muon L1 rate increase reason
 - CSC chambers overlap
 - LCTs are found in both neighbor sectors
 - Current L1 CSC trigger doesn't share information across sector boundaries

- Possible ways to kill ghosts:
 - Changing CSC Muon Sorter logic
 - Changing TMB logic
 - Changing Sector Processor logic

Changing CSC Muon Sorter logic...

Di-muon L1 trigger rate for different .orcarc parameters.

Default here coincide with reality, staged ME1/1a (Muon:Endoon:OPedME1A=1 doesn't offect I 1)

(Muon:Endcap:ORedME1A-1 doesn't affect L1).							
		rate (Hz)	cut1, rate (Hz)	cut1+cut2, rate (Hz)	cut2 only, rate (Hz)		
default		620	260	0	0		
default + low Quality		20100	3310	0	0		
default + ME1/1a resco		0					
default + ME1/1a resco	0						
Main cuts	This was in a						
Cut1: if m	Plus of this a	(trackphi[1]-					
trackphi[2				_			
Cut2: if al	Problem is th	!])<=1 →					

...but if it is successfully implemented it will be probably

- take away complicated logic into Muon Sorter firmware Doesn' • it may not fit into the chip

 - it may be to slow...

the best choice

- Total di-muon rate = 1.7 kHz
 - For 5 GeV symmetric thresholds

a box

Additional

Note: DAQ

No additi

TMB logic, Sector Processor logic...

- **TMB**
 - deleting overlaps
 - last 10 half-strips or 3 di-strips (depending on CSC type)
 - BUT
 - ghost rate is still too high
 - furtl intro **Ghost rates:**

Sector P Default: 0.9 Hz

deleting TMB, deleting overlaps: 6.0 kHz

SP, deleting low Quality muons on boundaries: 1.8 kHz the bou

- if it
- (no cuts on reconstructed muon PTs were applied)
- by choosing X1 = 120, X2=3976 more than 90% of ghosts introduced by low Quality tracks acceptance were deleted
- simple logic (checking 7 bits of tstubphi, low Quality flag)
 - will fit into Sector Processor logic
 - no additional delays

ns as well,

el if it is on

Summary and Plans

- Low Quality flag provides, cons:
 - Increased ghosts rate in di-muon L1 trigger
- ...pros:
 - About 100% efficiency for muon tracks with genpt > 5 GeV
 - η coverage up to 2.4
 - Most (all) of the additional ghost events could be killed by CSC Muon Sorter or Sector Processor
- Ghost suppression:
 - ALL ghost can be killed with cut#2 with Muon Sorter logic, but...
 - complicated logic: size, slowness
 - TMB logic: deleting overlapping strips is not a solution
 - either inefficiency or too high ghost rate
 - Sector Processor logic seems to be a possible solution

Summary and Plans

Plans

- Implementation of the new algorithm for Sector Processor into CMS software (ORCA)
 - verification/debugging
 - full checking with min-bias + pile-up samples (DC04 samples)
- Corresponding Firmware changes in Sector Processor logic
- Verify the L2/L3 offline can benefit from the low Quality muons with poor pt assignment
 - Still possible to find the right track in the tracker?
 - verified, preliminary results show some gain in efficiency

- Thanks...
 - UF HEP group
 - UCLA HEP group (Jay Hauser, Jason Mumford)