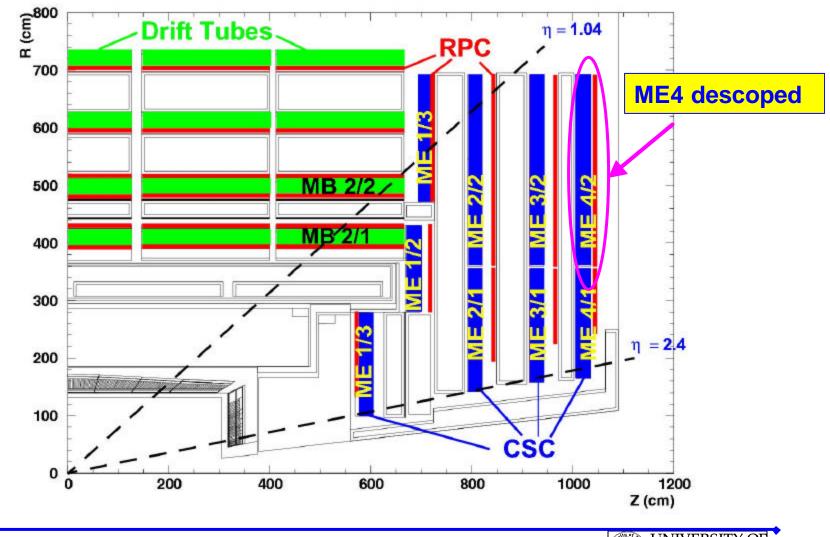
The Track-Finding Processor for the Level-1 Trigger of the CMS Endcap Muon System


D. Acosta, A. Madorsky, B. Scurlock, S.M. Wang University of Florida

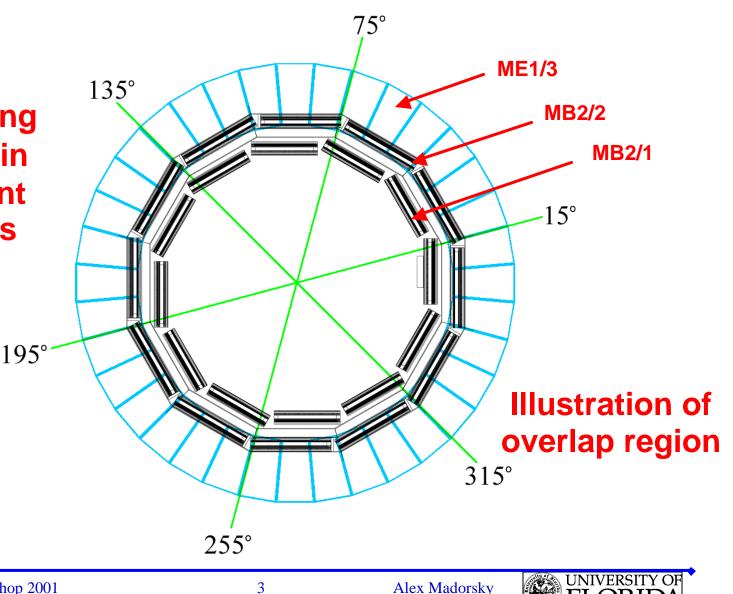
A. Atamanchuk, V. Golovtsov, B. Razmyslovich, L. Uvarov

St. Petersburg Nuclear Physics Institute

Geometric Coverage

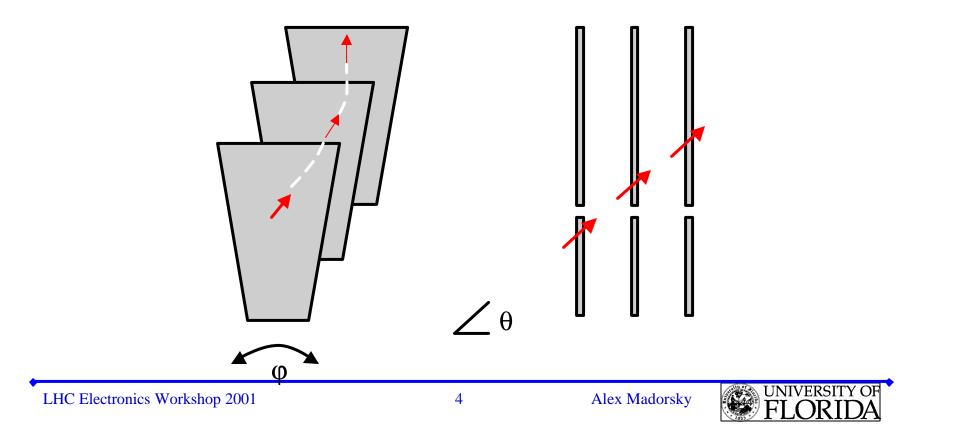
2

LHC Electronics Workshop 2001


Alex Madorsky

Trigger Regions in j

Track-Finding performed in independent **60° sectors**

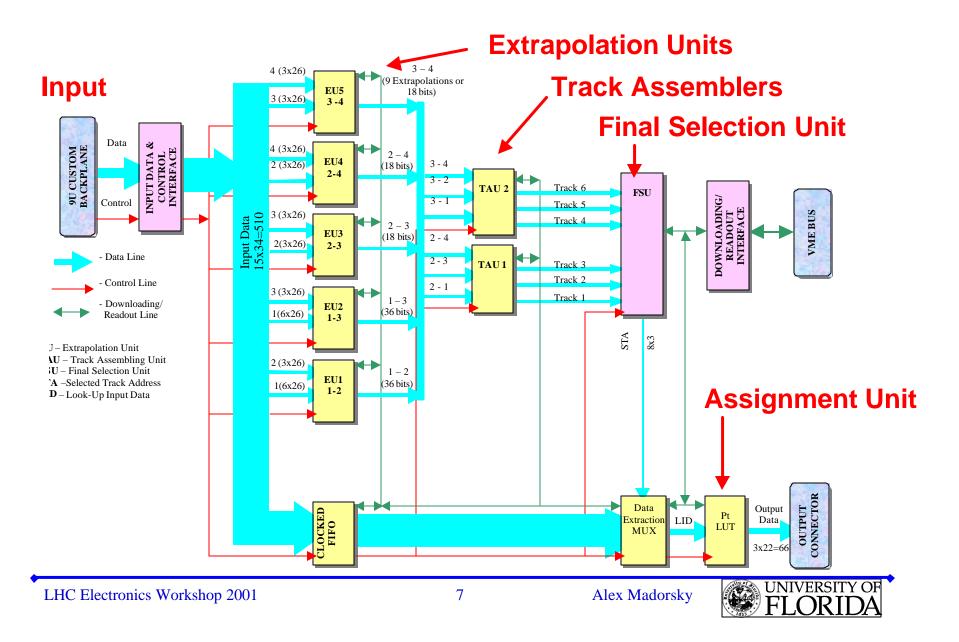


Muon Track-Finding

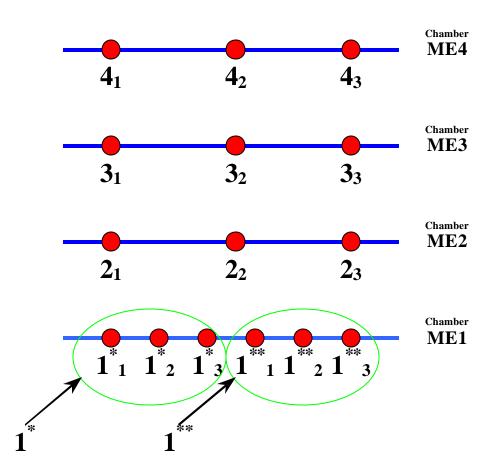
Perform 3D track-finding from trigger primitives Measure P_T , **j**, and **h** Transmit highest P_T candidates to Global L1

Sector Partitioning

5


Sector Processor Functionality

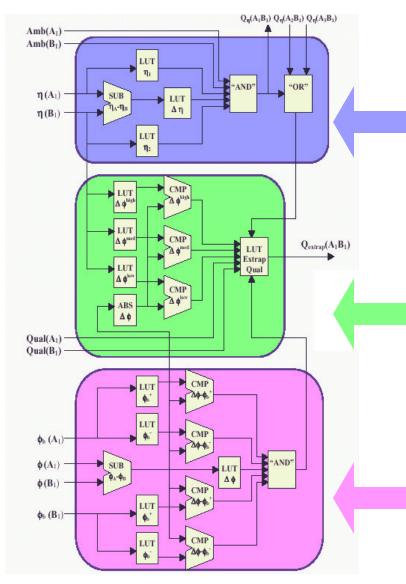
- Identify and measure muons from ~ 600 bits every 25ns (3 GB/s)
- Perform all possible station-to-station extrapolations in parallel
 - **Gimultaneously search roads in j and h**
- Assemble 3- and 4-station tracks from 2-station extrapolations
- Cancel redundant short tracks if track is 3 or 4 stations in length
- → Select the three best candidates
- \rightarrow Calculate P_T, **j**, **h** and send to CSC muon sorter


Sector Processor Block Diagram

Sector Processor Logic

F

Perform all combinations of extrapolations in parallel:


$$\begin{array}{l}
 1_{i} \ll 2_{k}, 1_{i} \ll 3_{k}, 2_{i} \ll 3_{k} & 2_{i} \ll 4_{k} \\
 4_{k}, 3_{i} \ll 4_{k} \\
 But not 1_{i} \ll 4_{k}
 \end{array}$$

Track Assembler takes best 2 or 3 extrapolations per reference segment

Extrapolation Unit

h Road Finder:

-Check if track segment is in allowed trigger region in $\boldsymbol{\eta}.$

•Check if $\Delta\eta$ and η bend angle are consistent with a track originating at the collision vertex.

Quality Assignment Unit:

•Assigns final quality of extrapolation by looking at output from η and ϕ road finders and the track segment quality.

f Road Finder:

- •Check if $\Delta \phi$ is consistent with ϕ bend angle ϕ_b measured at each station.
- •Check if $\Delta \phi$ in allowed range for each η window.

LHC Electronics Workshop 2001

9

Track Assembler Unit

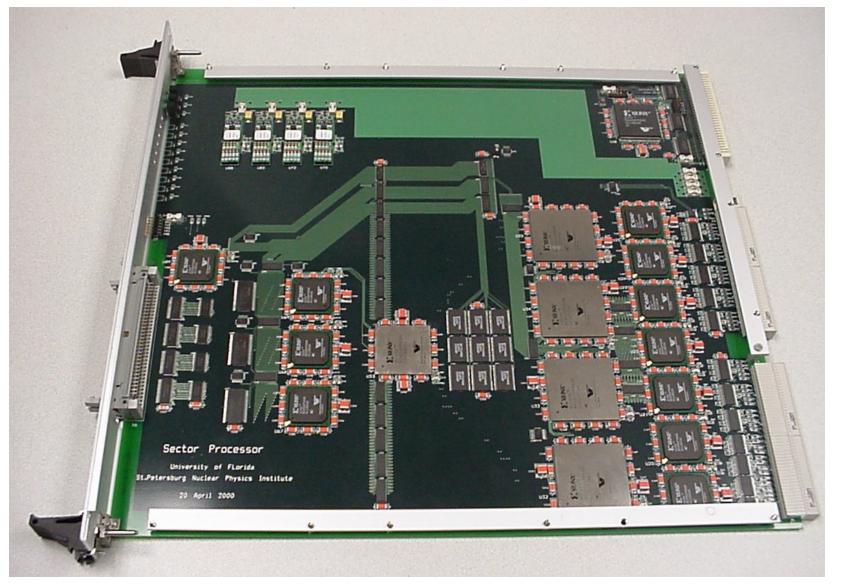
Functions:

- Determines if any track segment pairs belong to the same muon
- Combines those segments and assigns a code to denote which muon stations are involved
- Outputs a quality word for the best track for each hit in the key stations (2 and 3)

Final Selection Unit

Functions:

- Select three best out of nine tracks presented by Track Assemblers
- Cancel redundant tracks (parts of the longer track)

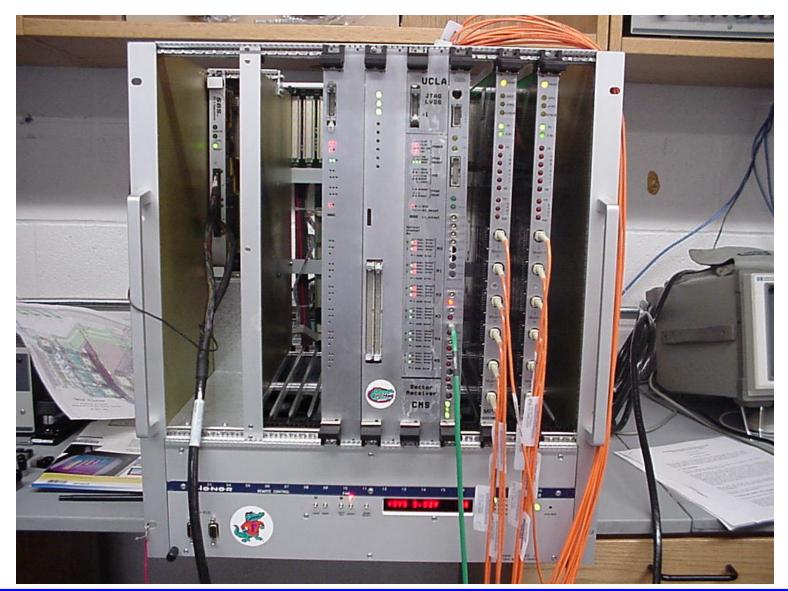

Pt Assignment Unit

→Calculates P_T, j, h of the three best muons selected by Final Selection Unit.

First Prototype


LHC Electronics Workshop 2001

13


Custom LVDS Backplane

Test crate

15

First Prototype Results

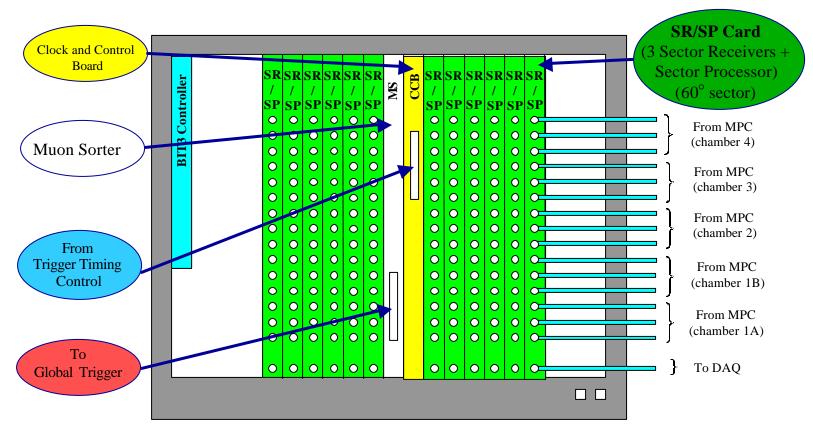
- Track-Finder algorithm implemented in 15 Xilinx Virtex FPGAs, ranging from XCV50 to XCV400
- →One XCV50 for VME interface
- →One XCV50 for output FIFO
- →Latency 15 clocks
- Output compared with C++ model, using simulated input data as well as random numbers, transmitted via custom backplane
- →100% matching demonstrated

Test software

Written:

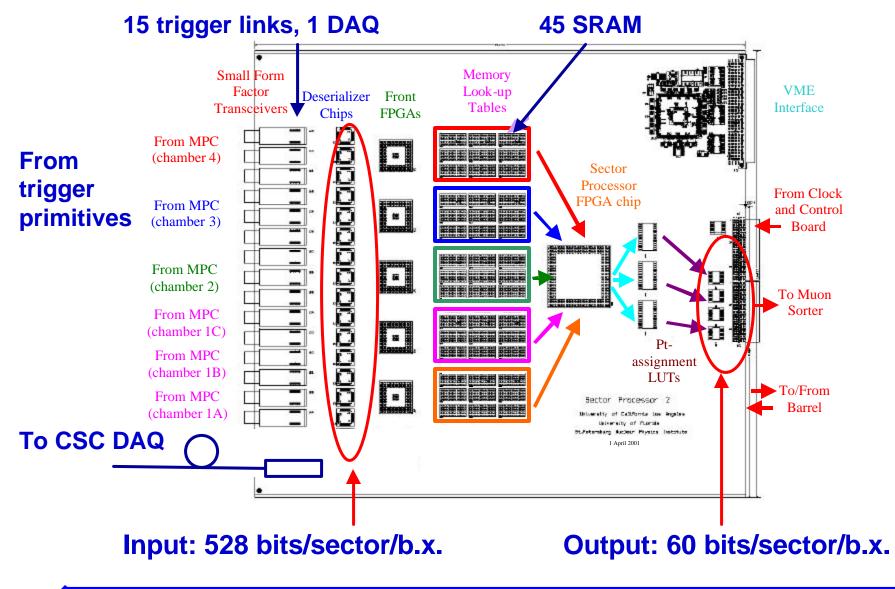
- Standalone version of the C++ model for Windows
- Module for the comparison of the C++ model with the board's output
- JTAG configuration routine, controlling the fast VME-to-JTAG module of the board
- Lookup configuration routine, used to write and check the on-board lookup memory
- → Board Configuration Database with a Graphical User Interface (GUI), that keeps track of many configuration variants and provides a one-click selection of any one of them. Each variant contains the complete information for FPGA and lookup memory configuration. Can be used for multiple boards.
- To simplify possible porting:
 - →All software is written in portable C or C++
 - →GUI is written in JAVA

Test Software Screenshot


	add Chip	Choose file	e remove chip	Compile file	Load chip				
chip name	chip type	Pos N	Node	file name		X			
tau_mb_2a	SP_memory	11 c:	sd x_bin/tau_mb_2a_	Jul291555.bin		~			
tau_mb_2b	SP_memory	11 c:	sd x_bin/tau_mb_2b_	Jul291556.bin		~			
au_mb_2c	SP_memory	11 c:	sd x_bin/tau_mb_2c_	Jul291556.bin		~			
au_me_2a	SP_memory	11 c:	sd x_bin/tau_me_2a_	Jul291557.bin		~			
au_me_2b	SP_memory		sd x_bin/tau_me_2b_			~	1993		
au_me_2c	SP_memory		sd x_bin/tau_me_2c_			~			
au_me_3a	SP_memory		sd x_bin/tau_me_3a_			~			
tau_me_3b	SP_memory		sd x_bin/tau_me_3b_			~			
tau_me_3c	SP_memory		sd x_bin/tau_me_3c_	Jul291558.bin		~	-		
/LoadLookU /tau_me_3b uccessful sponce =0 esponse =	_Jul291558. check Ø, time = 1	LoadLookU bin 050msec	ps.exe -b10485760	-s0x0t -s0x0t tau_ tau_ tau_ tau_ tau_ tau_ tau_	mb_2c_Jul291556 me_2a_Jul291556 me_2b_Jul291556 me_2c_Jul291556 me_3a_Jul291556 me_3b_Jul291556	7.bin 7.bin 7.bin 8.bin 8.bin			
/LoadLookU /tau_me_3c	ps/Release/ _Jul291558.	LoadLookU bin	ps.exe -b10485760	File na	me 20 Jul201650	2a_Jul291	1557 bin		Open
uccessful sponce =0	check			=					
esponse =	0, time = 9	90msec		Files o	f type: All Files	(*.*)		•	Cancel
⁷ ull time =	20650msec								

Single Crate Solution

Track-Finder crate (1.6 Gbits/s optical links)



- Power consumption: ~ 500W per crate
- 15 optical connections per SR/SP card
- Custom backplane for SR/SPs < > CCB/MS connection

Merged SR/SP

Salient Features

Bi-Directional Optical Links

- Since we have both transmitters and receivers in the optical connection, this allows the option to send data as well as receive
- Makes testing much easier
 - One board sends data to other, or even itself through links

SP chip on a mezzanine board

- Decouples board development from FPGA technology
- Makes upgrades easier

DT fan-out on transition board

- Deliver all possibly needed signals to backplane connector
- Settle transmission technology, connector type, connector count on transition board at a later date

SR/SP Inputs

Sent on first frame

Signal	Bits / stub	Bits / 3 stubs (1 MPC)	Bits / 15 stubs (ME1–ME4)	Description	
¹ / ₂ Strip *	8	24	120	¹ / ₂ strip label	Reduced
CLCT	4	12	75	Pattern number without	Reduced
pattern *				4/6, 5/6, 6/6	from 5
L/R bend *	1	3	15	Sign bit for pattern	
Quality *	3	9	45	Computed by TMB	
Wire group	7	21	105	Wire group label	
Accelerator m	1	3	15	Straight wire pattern	
CSC i.d.	4	12	60	Chamber label in	
				subsector	
BXN	2	6	30	2 LSB of BXN	
Valid pattern	1	3	15	Must be set for above	Needed
				to apply	for frame
Spare	1	3	15		
Total:	32	96	480	(240 bits at 80 MHz)	info

→DT Track-Finder delivers 2 track stubs each BX via LVDS

Signal	Bits / stub	Bits / 2 stubs (MB1: 60°)	Description
f	12	24	Azimuth coordinate
\mathbf{f}_{b}	5	10	<pre>\$ bend angle</pre>
Quality	3	6	Computed by TMB
BXN	2	4	2 LSB of BXN
Synch/Calib	1	2	DT Special Mode
Muon Flag	1	2	2 nd muon of previous BX
Total:	24	48	

22

LHC Electronics Workshop 2001

Alex Madorsky

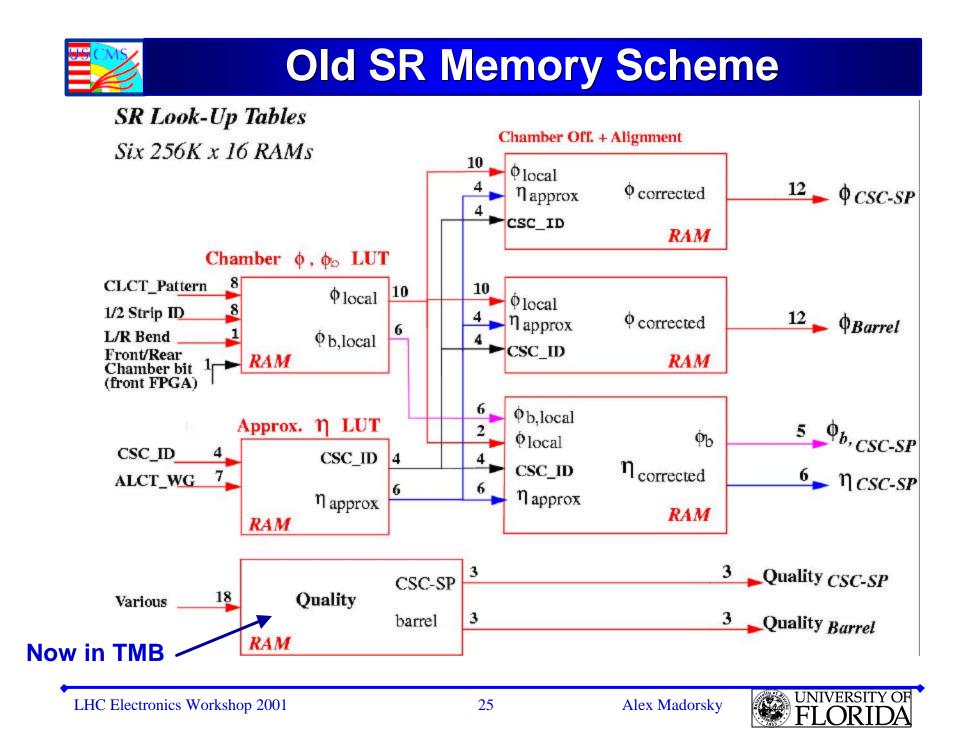
SR/SP Outputs

6 track stubs are delivered to DT Track-Finder each BX (delivered at 40 MHz to transition board)

Signal	Bits / stub	Bits / 2 stubs (ME1: 20°)	Bits / 6 stubs (ME1: 60°)	Bits / 6 stubs @ 80 MHz	Description
f	12	24	72	36	Azimuth coordinate
h	1	2	6	3	DT/CSC region flag
Quality	3	6	18	9	Computed by TMB
BXN	_	2	6	3	2 LSB of BXN
	16	34	(102)	51	Total

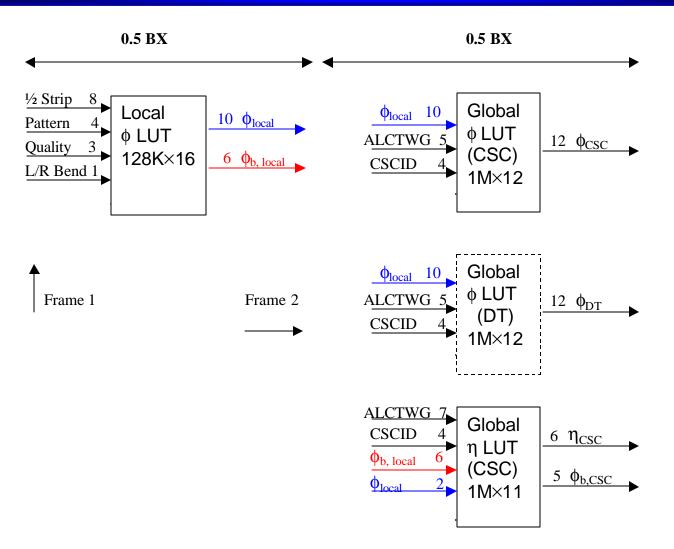
→ 3 muons per SP are delivered to Muon Sorter via GTLP backplane

		Signal	Bits / m	Bits / 3 m (1 SP)	Bits / 36 m (12 SP)	Description
		f	5	15	180	Azimuth coordinate
		h	5	15	180	Pseudorapidity
Sent on	ſ	Rank *	7	21	252	5 bits $p_{\rm T}$ + 2 bits quality
	J	Sign *	1	3	36	
first	<u>)</u>	BXN *	—	2	24	2 LSB of BXN
frame		Error *	_	1	12	
nunio	U	Spare *	1	3	12	
		Total:	19	60	720	(360 bits at 80 MHz)



SR/SP Internal Dataflow

→ Data delivered from SR to SP


	Signal	Bits / stub	Bits / 6 stubs (ME1)	Bits / 15 stubs (ME1–ME4)	Description
	f	12	72	180	Azimuth coordinate
	f _b	5	30	75	ϕ bend angle
	h	6	36	90	Pseudorapidity
	Accelerator m	1	6	15	η bend angle
ME1	Front/Rear *	1	6	6	ME1 chamber stagger
only	CSC ghost *	_	4	4	2 stubs in same ME1 CSC
	Quality	3	18	45	Computed by TMB
	Total:	28	172	415	(sent at 80 MHz)

New SR Memory Scheme

Discussion of SR Memory (1)

Data Frames:

- → Data arrives off links @ 80 MHz
- The proposed framing scheme implies no latency loss
 - First LUT operates on first frame only (but must reduce CLCT pattern label by 1 bit)
- This frame definition must be applied in the TMB where the data is generated and first serialized (i.e. before MPC) to avoid latency penalty

Memories:

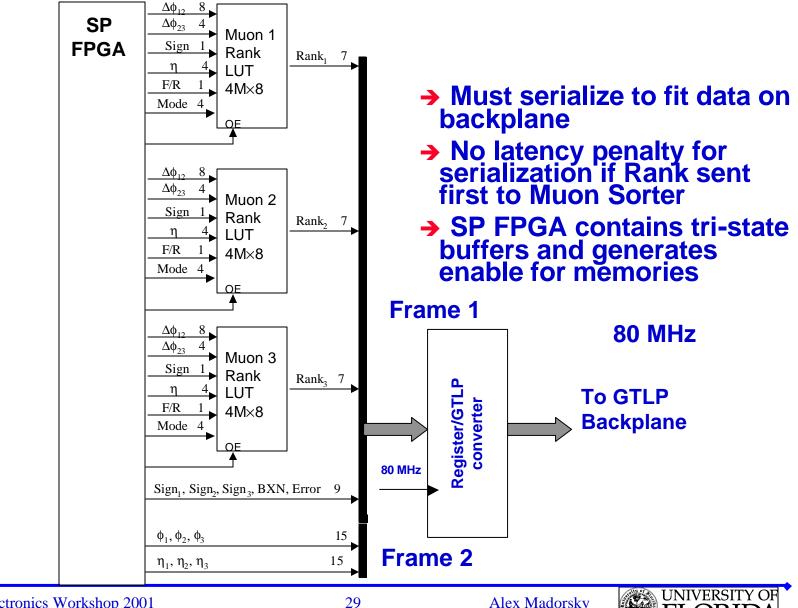
- → LUT for DT only applies to ME1
- → Chip count is 3 per stub, down from 6 originally
- → Increased memory size to 0.5M (okay for synch. SRAM)

Discussion of SR Memory (2)

One memory set per stub:

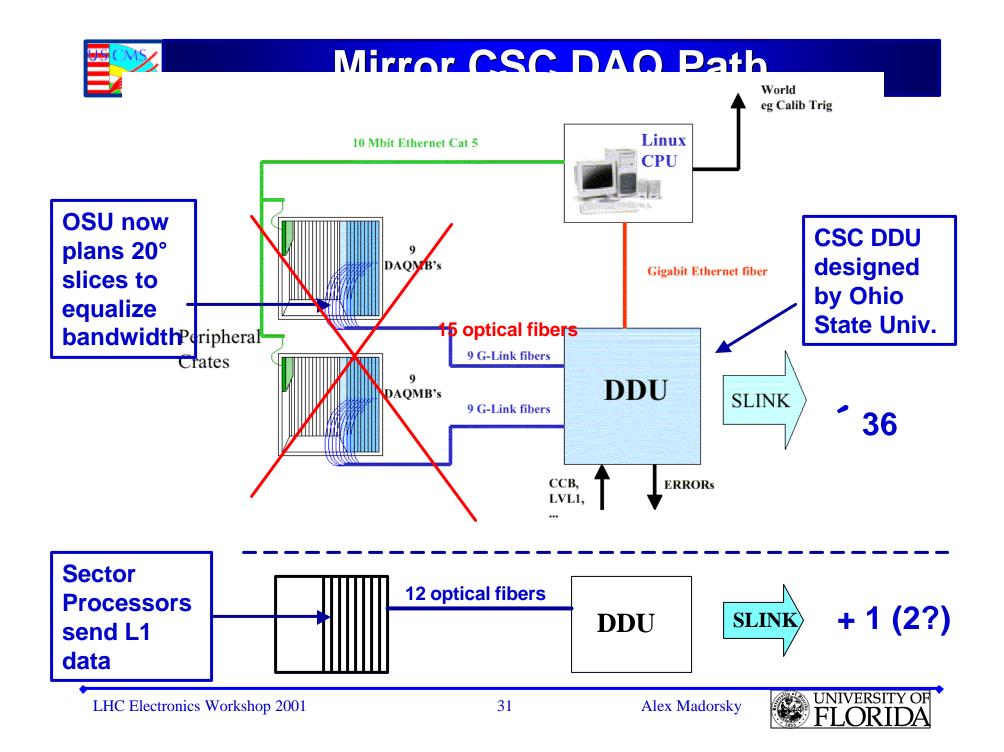
- → 15⁻3 = 45 chips
- → 1 BX latency
- → 415 signals to SP

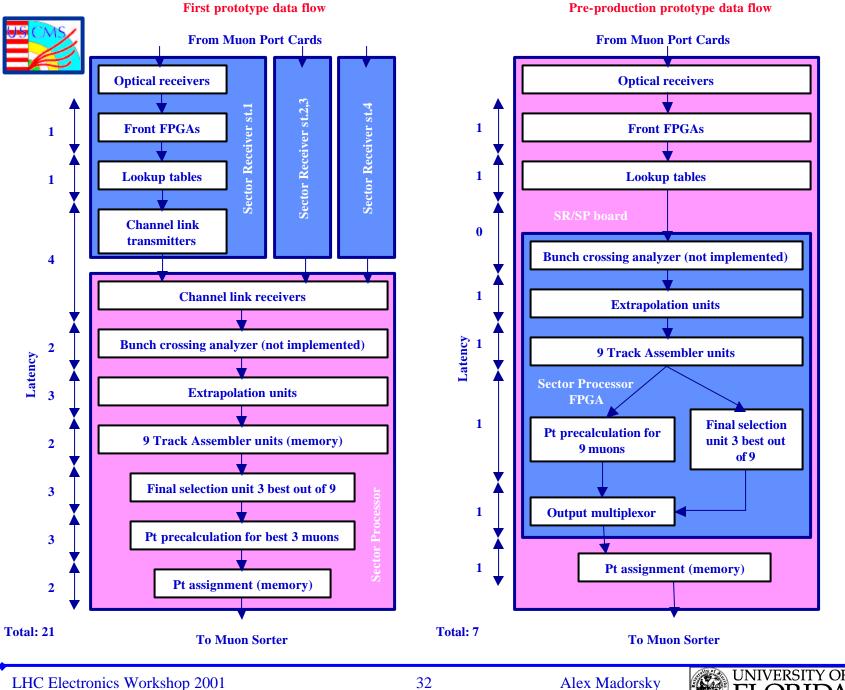
First SR had 36 chips and 1 BX latency


Memory choices:

- synch SRAM clocked at 160 MHz (tested to this frequency)
- → Flow Through SRAM clocked at 80 MHz

Pt Assignment Memory Scheme


CSC TF DAQ Plans


Send input of SR and output of SP to DAQ stream for diagnostics

Track-Finder DAQ acts as additional DDU for EMU system

- Plan to use existing DDU design by OSU
 - **OSU** has decided to use T.I. Chip for serialization
 - **12 SP fiber connections fits well into 15 planned for DDU**

LHC Electronics Workshop 2001

UNIVERSITY OF

Pre-Production Prototype

Done:

- →SP algorithm is rewritten in Verilog HDL
- →New C++ model line-by-line corresponds to Verilog HDL code
- If Verilog HDL code is written properly, C++ conversion is very simple and straightforward
- →New C++ model matches the functionality of the original C++ model
- →SP-Verilog has been extensively simulated and is working in exact correspondence to functionality of the first prototype and both C++ models
- Simulated latency for Sector Processor Algorithm: 5 clocks (15 in the first prototype)
- →Board development underway

Plans:

- →Replacing the original C++ model with the new one in ORCA
- Adding new features into the SP-Verilog code and C++ model simultaneously, keeping them in strict line-by-line correspondence

SP Algorithm Modifications

- Extrapolation and Final Selection units are reworked, and now each of them is completed in only one clock.
- → The Track Assembler Units in the first prototype were implemented as external lookup tables (static memory). For the second prototype, they are implemented as FPGA logic. This saved I/O pins on the FPGA and one clock of the latency.
- The preliminary calculations for the PT assignment are done in parallel with final selection for all 9 muons, so when three best out of nine muons are selected, the pre-calculated values are immediately sent to the external PT assignment lookup tables.

Acknowledgements

This work was supported by grants from the US Department of Energy.

We also would like to acknowledge the efforts of R. Cousins, J. Hauser, J. Mumford, V. Sedov, B. Tannenbaum, who developed the first Sector Receiver prototype, and the efforts of M. Matveev and P. Padley, who developed the Muon Port Card and Clock and Control Board, which were used in the tests.

35

