September CSC Beam Test Report

General report, TMB/SP comparisons, DT/CSC integration tests

Darin Acosta

7 October 2003

Darin Acosta

1

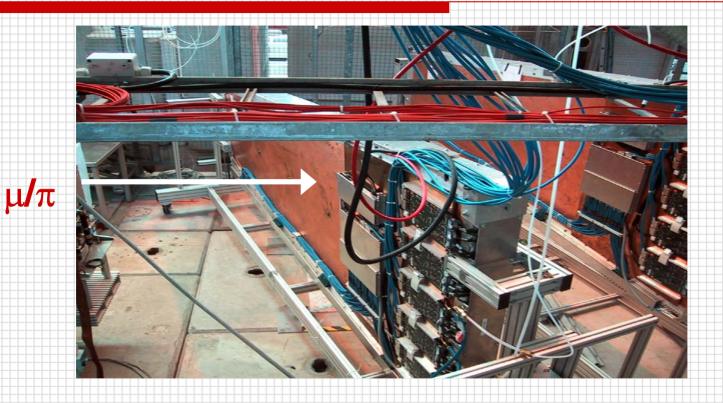
Where to find information

Documentation:

http://www.phys.ufl.edu/~acosta/cms/trigger.html

Includes scanned pages from log books and links to online log and other web sites

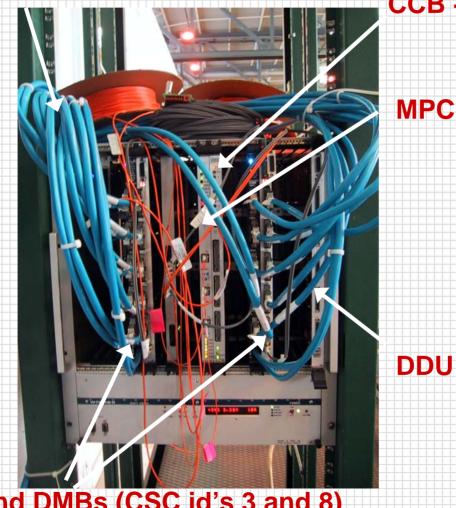
Data:


- /castor/cern.ch/user/t/tbx5ccdr/
- "rfdir" for listing "rfcp" for copying

(may need to wait a long time as data is staged from tape)

- Runs 5018 5164
- Correlated SP data starts with run 5108

Beam Test of 2 CSC's at X5a


Goal: complete electronic chain test of data transmission from CSC front-end electronics to the Track-Finder trigger, all operating <u>synchronously</u> with the 40 MHz structured beam

MPC and SP included in tests, various clocking solutions tried

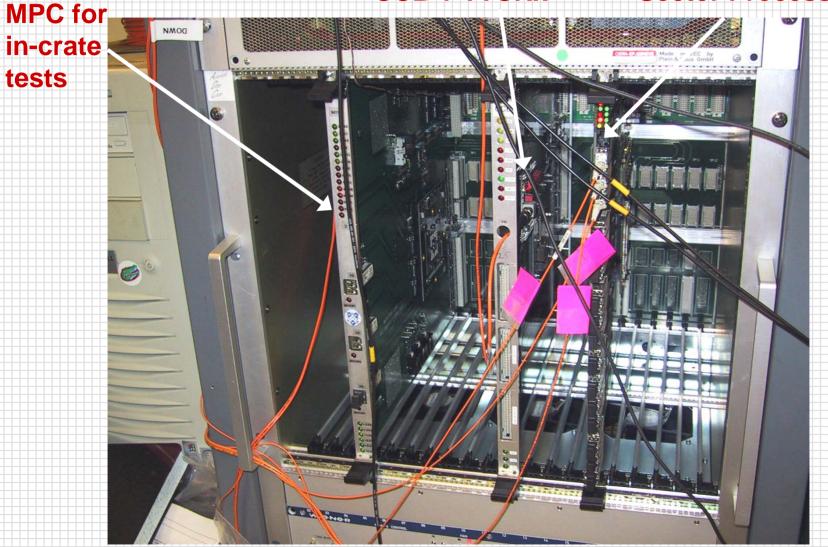
CSC Peripheral Crate

From front-end cards

CCB + TTCRx

DDU

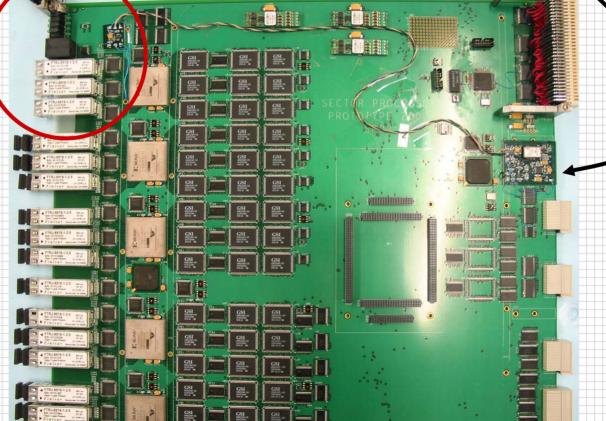
2 TMBs and DMBs (CSC id's 3 and 8)


7 October 2003

CSC Track-Finder Crate

CCB + TTCRx

Sector Processor



CSC Track-Finder Trigger

Test 3 x 1.6 Gb/s optical link connections from **CSC** electronics **Uses TLK2501** chipset **Requires very** stable reference clock for errorfree operation

Home-built VCXO & PLL clock patch added to clean incoming TTC clock for links, but TTC QPLL also tested

Darin Acosta

Test Results

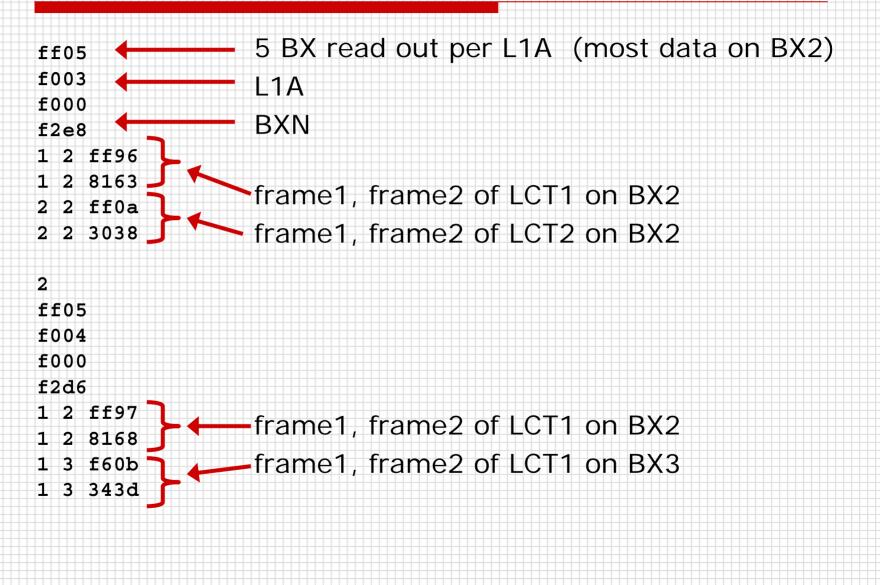
- Using home-built VCXO+PLL solution for 80 MHz reference clock to TLK2501 receivers:
 - PLL locks to incoming machine clock (Once Bruce Taylor helped us set up the TTCmi crate correctly)
 - Measured frequency: 40.078893(1) MHz
 - No errors on optical links reported over many hours of PRBS and data tests
 - Continuous data transmission or framed mode (idle frames sent)
- Data successfully logged by both CSC DAQ and CSC Track-Finder readout
 - SP data FIFO synchronized to L1A

TTC QPLL Mezzanine card (TTCRq)

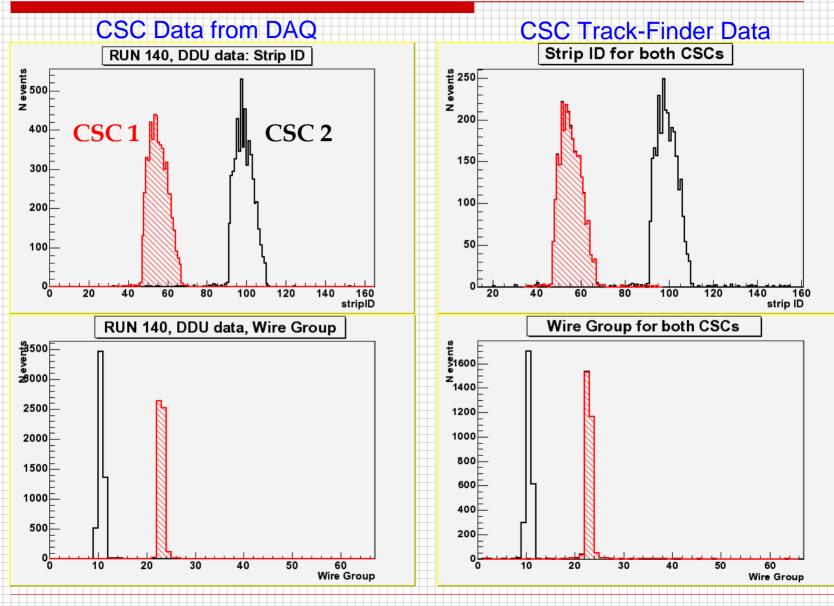
- Three made available to CSC group for testing during Sept.03 structured beam test
- Provides stable clock signals at 40, 80, and 160 MHz at correct LHC frequency
- Installed on CCB with 40 MHz clean clock sent to backplane, 80 MHz clock sent by twisted pair to SP or MPC
 - Noticed that CCB commands have 1 BX extra latency with TTCRq

TTCRq (QPLL) Test Results

- QPLL 80 MHz clock directly to MPC transmitters Lev's VCXO+PLL for SP receivers
 - No link errors for 20 minute PRBS test
- 2. QPLL 80 MHz clock directly to SP receivers MPC uses default clock multiplier
 - No link errors for 15 minute PRBS test
 - Successfully logged data for 10K events (run 5151)
- 3. QPLL 40 MHz clock on TF crate backplane SP uses DLL in FPGA for clock multiplier
 - Link errors observed in PRBS test
- 4. TTCRq on CCB in peripheral crate TTCRm on CCB in TF crate
 - Able to take data with same trigger efficiency (i.e. TTCRq works for peripheral crate as well)


Data-taking Mode

- Most data logged using two independent DAQ systems:
 - **CFEB** Control for DDU data \Rightarrow run00nnnn.dat
 - SP DAQ for Track-Finder data \Rightarrow SPDAQ*.dat
- Maximum data rate limited to ~400 L1A/spill
 - Main DAQ PC not as optimized as OSU's dual-CPU with SCSI disks
 - Maximum rate is coincidentally the same for both DAQs
- XDAQ version by Wilkinson, Tumanov, et al. also apparently logs data correctly
 - Underlying SP code the same as for standalone DAQ since it was written using XDAQ
 - All analysis of SP and DDU data done using the "DataFormat" packages


SP Data Format

Comparison of TF Data with DAQ

7 October 2003

Darin Acosta

12

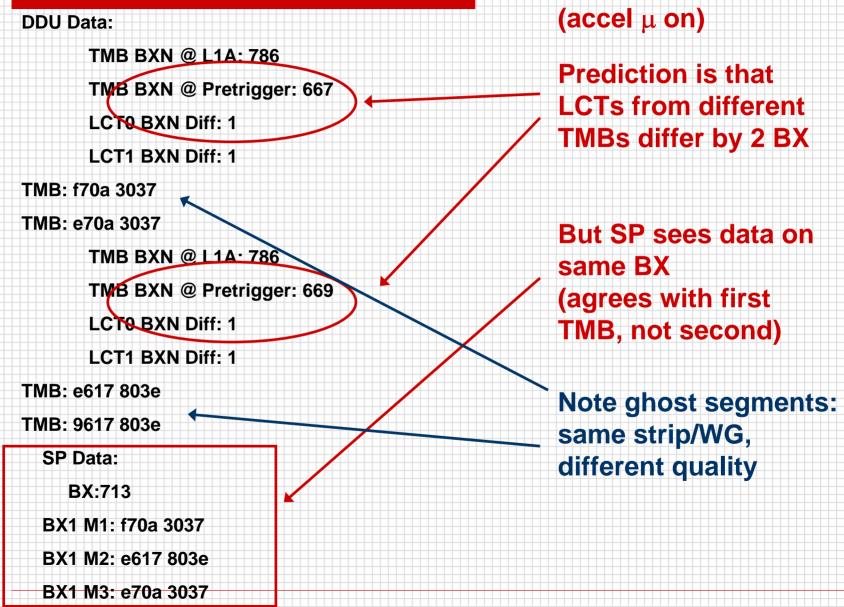
LCT BX Information from TMB

DMB FIFO Data Format: Full-Readout Mode

Frame #	/wr	first	last	15 ddu	14 d14	13 d13	12 d12	11 d11	10 d10	9 d9	8 d8	7 d7	6 d6	5 d5	4 d4	3 d3	2 d2	1 d1	0 d0	
	FIFO Control			DDU		TMB Data														
No Write	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
0	0	1	0	0	1 1 0 B0C ₁₆															
1	0	0	0	0	FIFO Mode C					FEBs	EBs in Readout					Tbins per CFEB				
2	0	0	0	0	lla_ty	la_type Board I						CSC ID				L1A Rx Counter				
3	0	0	0	0	Res	Res r_type BXN Counter at L1A arrival														
4	0	0	0	0	Res # Tbins before pre-trig but #								CFE	Bs	# Header frames					
5	0 0 0			0		Reserve	d		Trigger Source Vector							L1A Tx Counter				
6	0	0	0	0	Res Run ID					CFEBs Instantiated						Active CFEBs				
7	0	0	0	0	Reserved Sync BXN Counter at Pre-trigger															
8	0	0	0	0	Cathode LCT0[14:0] (lsb)															
9	0	0	0	0	Cathode LCT1[14:0] (lsb)															
10	0	0	0	0	Res	Reserved Invalid Cathode LCT1[20:15] Cathode LCT0[20]									20:15	5]				
11	0	0	0	0	Reserved				А	ALCT Match Tine LCTI BXN LCT0 BXN CLCT ALCT Difference Difference Couly Only									TMB Match	
12	0	0	0	0		MPC Muon0 Frame0[14:0] (lsb)														
	1.000	1000		Sec. Concerne																

- From TMB Header information, use BXN at Pretrigger and the LCT BXN offsets to compute BXN for each LCT
 - Run data through MPC simulation to compare with SP

TMB – SP Data Comparison



- SP BXN TMB BXN @ Pre-trigger = 44 typically
 - Is this difference affected by CCB command delays?
- Empirically find:
 - If LCT BX Difference = $0x1 \Rightarrow Add + 1$ to TMB BXN
 - If LCT BX Difference = $0x2 \Rightarrow Add + 2$ to TMB BXN
 - If LCT BX Difference = $0x3 \Rightarrow Add 1$ to TMB BXN
- Comparison between SP and TMB for all 5 BX read out by SP for every L1A match:
 - Muon runs, 60K events: 98.3% agreement
 - Pion runs with TTCRq, 10K events: 97.6% agreement
- Mismatches between TMB and SP data are in BX assignment only, not in LCT frames

SP – TMB Mismatches

Run5126, evt 25

SP – TMB Mismatches, Cont'd

- Nearly all of the mismatches involve differing BX assignment for LCTs from the TMB for csc#8
 - Data frames are in agreement, however
- □ Excluding csc#8 in these cases and comparing TMB and SP for csc#3 ⇒ near perfect agreement
 - Just 32 discrepancies from an analysis of 60K events, where BX assignment of TMB for csc#3 differs
- For these mismatches, the SP usually has the LCTs on the central BX in the SP read-out
 - So trigger data appears to be good!
- Conclusion for DAQ readout of TMB data:
 - TMB #8 has BX error 2% of time
 - TMB #3 has BX error 5×10⁻⁴ of time

- Could be 2 or more BX off from SP
- This increased to 5×10⁻³ for runs with TTCRq in Peripheral crate (which changed the timing)

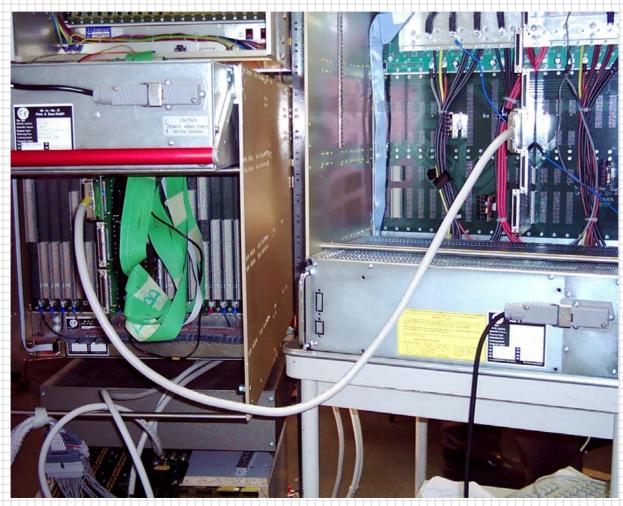
MPC Sorting Problem?

- 2 mismatched events had LCTs in different order in SP readout vs emulation:
 - SP read out:
 - M1: a180 3140 M2: a200 3438

(frame1 frame2 of muon1)

M1: fd09 3038
M2: fd0a 3038

Emulation from Greg P. had the order swapped


Other effects

- TMB/SP mismatch rate seems independent of ALCT delay setting (timing scan runs)
- When DDU errors occur in DAQ, lots of TMB/SP mismatches result
- SP DAQ FIFO sometimes fills up if L1A rate is too high
 - Affected pion runs mostly
 - BX counter still increments, but data is frozen at last event
 - Need to add FULL flag to event header

DT TF transition card \leftrightarrow CSC TF transition card

DT/CSC interface

- Reminder: data is exchanged between the two systems for efficient coverage of the region 0.9 < |η| < 1.2</p>
 - CSC sends 3 LCT's/BX (52 bits) from ME1 to two 30° DT sectors
 - DT sends 1 segment/BX (26 bits) from each 30° sector
 - Signaling standard is LVDS at 40 MHz through SCSI cables and connectors
- Layout problem on CSC transition card meant connectors had to be attached on opposite side of board
 - Cable connector had to be flipped 180° at one end so that signals are received on correct pins
 - Only had time to make & test custom 1m cables
 - Signals inverted in firmware to handle polarity change

$DT \rightarrow CSC$ transmission test

- □ DT Data Source Card → DT TF → DT transition card → CSC transition card → CSC TF
 - Data was received in a FIFO in the main FPGA of the SP mezzanine card
 - BCO marker sent on first data word
 - Tested walking 1's, walking 0's, & simulated muon data
- All bits and clock were received, but some bits were swapped at DT output before being sent to CSC

$CSC \rightarrow DT$ transmission test

- $\Box \quad CSC \ TF \rightarrow CSC \ transition \ card \rightarrow DT \ transition \ card \rightarrow DT \ TE$
 - DT transition card \rightarrow DT TF
 - Data is sent from Front FPGAs, bypassing LUTs, and delivered to CSC transition card
 - Tested walking 1's and walking 0's
 - DT TF has no FIFO to store received data
- □ Two dead TTL→LVDS buffer chips on CSC transition card leads to 7 missing signals
 - But signals are OK and in correct order on SP backplane connector
 - Remaining signals are seen by DT TF, albeit with limited storage capability

DT/CSC Conclusions

- Initial tests show that DT and CSC Track-Finders can exchange data
 - First integration test between UF and Vienna (good check on documentation!)
 - A few minor problems on both ends with swapped bits, connectors, and dead chips
- Tests should be repeated with longer cables representing situation in counting room
 - Modified cables arrived too late at CERN for testing
- More sophisticated tests of synchronization procedure and Track-Finding with both CSC and DT data should be performed in future
- DT Track-Finder currently has only limited means of data storage