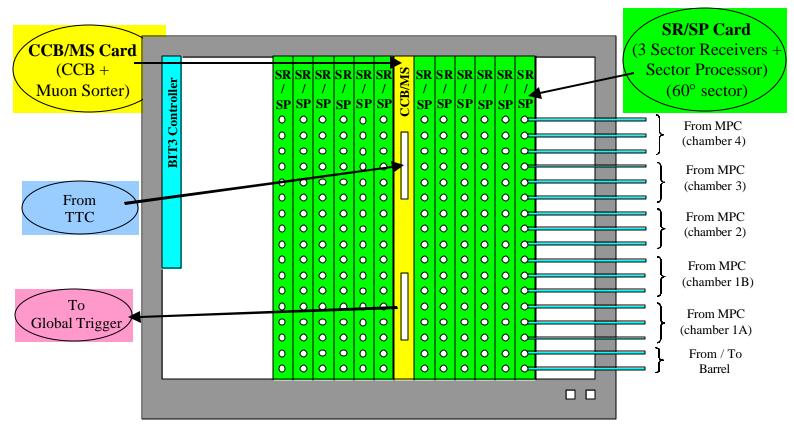


Conceptual Design for SR/SP

Topics:

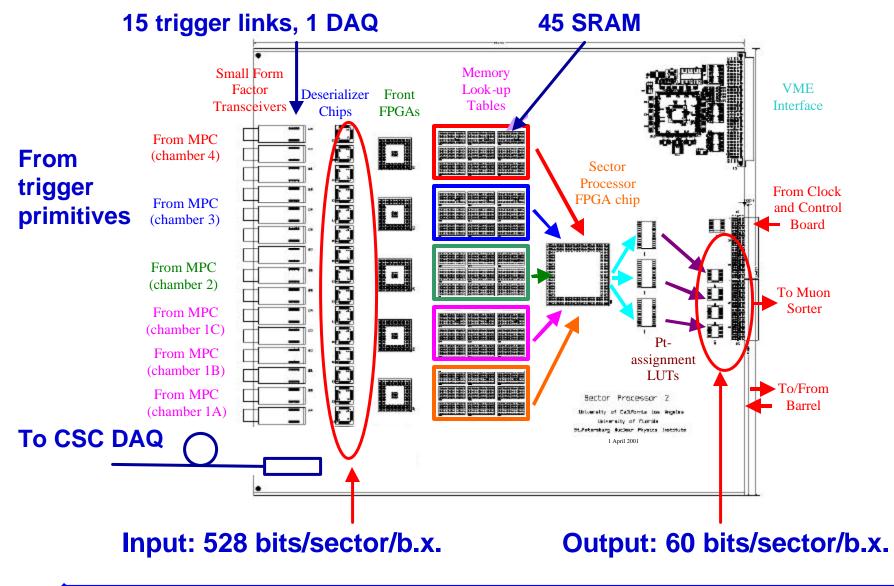
- Board Layout
- Bit counts and data serialization
- Memory architecture (PNPI)
- → SP to Verilog Translation (Madorsky)
- DDU plans



1

Possible Single Crate Solution

Track-Finder crate (1.6 Gbits/s optical links)



- Total latency: ~ 20Bx (from input of SR/SP card to output of CCB/MS card)
- Power consumption: ~ 500W per crate
- 15 ptical connections per SR/SP card
- Custom backplane for SR/SPs <> CCB/MS connection

Merged SR/SP

3

USCMS Trigger Meeting, August 2001

Salient Features

Bi-Directional Optical Links

- →Since we have both transmitters and receivers in the optical connection, this allows the option to send data as well as receive
- Makes testing much easier
 - One board sends data to other, or even itself through links

SR memory set for each muon stub

- No muon multiplexing means shortest latency
- SP chip on a mezzanine board
 - Decouples board development from FPGA technology
 - → Makes upgrades easier
- **DT fan-out on transition board**
 - Deliver all possibly needed signals to backplane connector
 - Settle transmission technology, connector type, connector count on transition board at a later date

USCMS Trigger Meeting, August 2001

SR/SP Inputs

Sent on first frame

Signal	Bits / stub	Bits / 3 stubs (1 MPC)	Bits / 15 stubs (ME1–ME4)	Description	
¹ / ₂ Strip *	8	24	120	¹ / ₂ strip label	Deduced
CLCT	4	12	75	Pattern number without	Reduced
pattern *				4/6, 5/6, 6/6	from 5
L/R bend *	1	3	15	Sign bit for pattern	
Quality *	3	9	45	Computed by TMB	
Wire group	7	21	105	Wire group label	
Accelerator m	1	3	15	Straight wire pattern	
CSC i.d.	4	12	60	Chamber label in subsector	
BXN	2	6	30	2 LSB of BXN	
Valid pattern	1	3	15	Must be set for above to apply	Needed
Spare	1	3	15		for frame
Total:	32	96	480	(240 bits at 80 MHz)	info

→DT Track-Finder delivers 2 track stubs each BX via LVDS

Signal	Bits / stub	Bits / 2 stubs	Description
		(MB1: 60°)	
f	12	24	Azimuth coordinate
\mathbf{f}_{b}	5	10	<pre>\$ bend angle</pre>
Quality	3	6	Computed by TMB
BXN	2	4	2 LSB of BXN
Synch/Calib	1	2	DT Special Mode
Muon Flag	1	2	2 nd muon of previous BX
Total:	24	48	

5

USCMS Trigger Meeting, August 2001

Darin Acosta

SR/SP Outputs

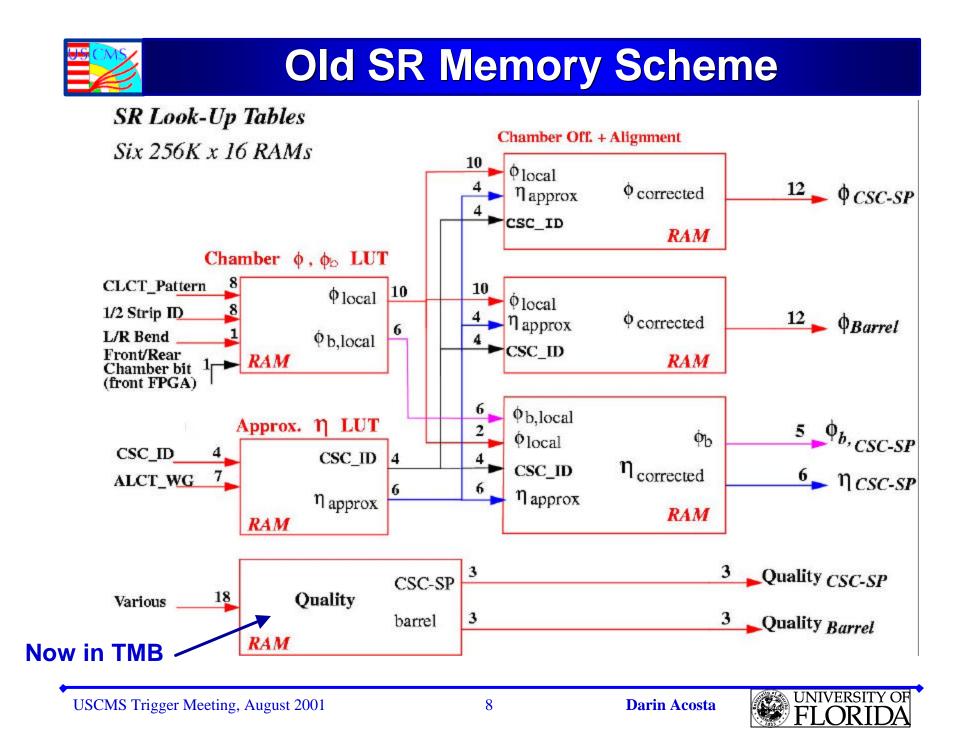
→ 6 track stubs are delivered to DT Track-Finder each BX (delivered at 40 MHz to transition board)

Signal	Bits / stub	Bits / 2 stubs (ME1: 20°)	Bits / 6 stubs (ME1: 60°)	Bits / 6 stubs @ 80 MHz	Description
f	12	24	72	36	Azimuth coordinate
h	1	2	6	3	DT/CSC region flag
Quality	3	6	18	9	Computed by TMB
BXN	_	2	6	3	2 LSB of BXN
	16	34	(102)	51	Total

→ 3 muons per SP are delivered to Muon Sorter via GTLP backplane

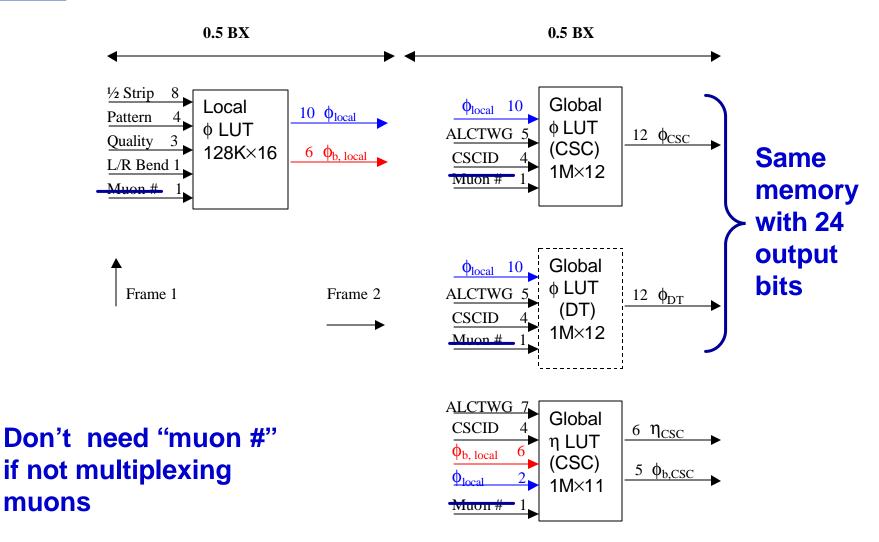
		Signal	Bits / m	Bits / 3 m (1 SP)	Bits / 36 m (12 SP)	Description
		f	5	15	180	Azimuth coordinate
		h	5	15	180	Pseudorapidity
Sent on	ſ	Rank *	7	21	252	5 bits $p_{\rm T}$ + 2 bits quality
	J	Sign *	1	3	36	
first	<u>)</u>	BXN *	—	2	24	2 LSB of BXN
frame		Error *	—	1	12	
iramo	L.	Spare *	1	3	12	
		Total:	19	60	720	(360 bits at 80 MHz)

Darin Acosta



SR/SP Internal Dataflow

→ Data delivered from SR to SP


	Signal	Bits / stub	Bits / 6 stubs (ME1)	Bits / 15 stubs (ME1–ME4)	Description
	f	12	72	180	Azimuth coordinate
	f _b	5	30	75	ϕ bend angle
ME1 {	h	6	36	90	Pseudorapidity
	Accelerator m	1	6	15	η bend angle
	Front/Rear *	1	6	6	ME1 chamber stagger
	CSC ghost *	_	4	4	2 stubs in same ME1 CSC
	Quality	3	18	45	Computed by TMB
	Total:	28	172	415	(sent at 80 MHz)

New SR Memory Scheme

USCMS Trigger Meeting, August 2001

Darin Acosta

9

Discussion of SR Memory (1)

Data Frames:

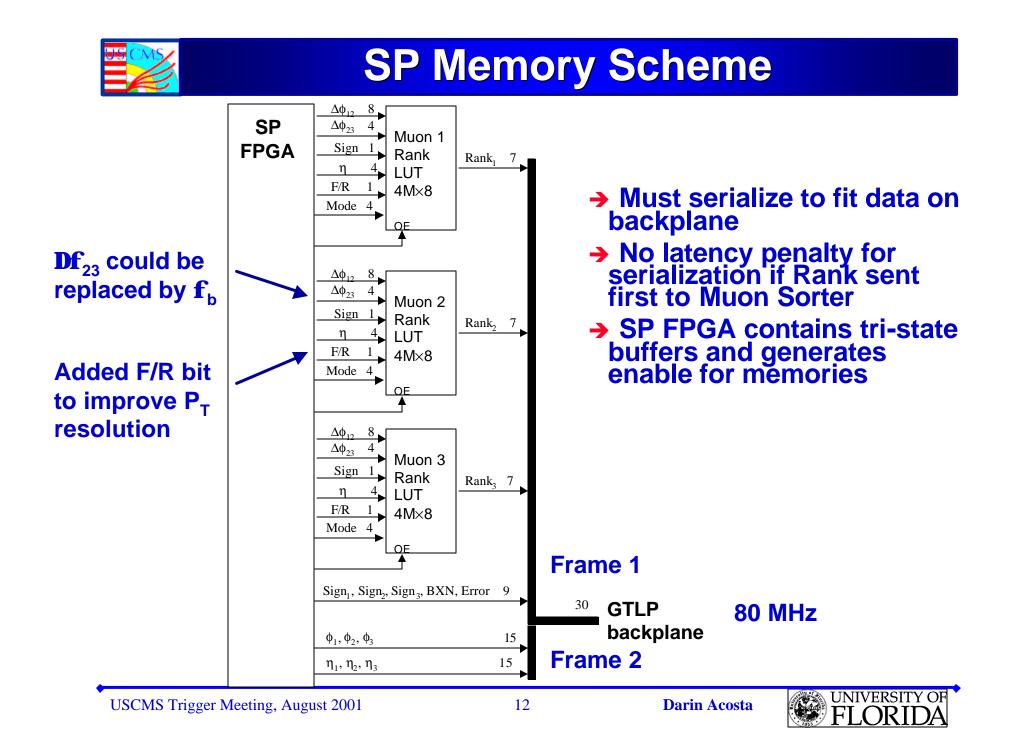
- → Data arrives off links @ 80 MHz
- The proposed framing scheme implies no latency loss
 - First LUT operates on first frame only (but must reduce CLCT pattern label by 1 bit)
- This frame definition must be applied in the TMB where the data is generated and first serialized (i.e. before MPC) to avoid latency penalty

Memories:

- → LUT for DT only applies to ME1
- → Chip count is 3 per stub, down from 6 originally
- → Increased memory size to 0.5M (okay for synch. SRAM)
- "Muon #" only applies if more than one stub in a BX is sent through same memory

Discussion of SR Memory (2)

One memory set per stub:


- → 15⁻3 = 45 chips
- → 1 BX latency
- → 415 signals to SP

First SR had 36 chips and 1 BX latency

Memory choices:

- synch SRAM clocked at 160 MHz (tested to this frequency)
- → Flow Through SRAM clocked at 80 MHz (see PNPI)

SP to Verilog translation

What we said last time:

Will overhaul some of the SP software/firmware to facilitate changes to both

- → Have SW algorithms match Verilog/Schematics better
- → Have SW read same HW LUTs (it already generates them)

Plan to test next SP design even before construction!

- Add utilities to write ORCA data into Xilinx simulator format and to compare simulator output to ORCA
- → Gives us a head start on validating logic design
- Will allow us to focus on HW debugging rather than SW debugging when testing the next prototype

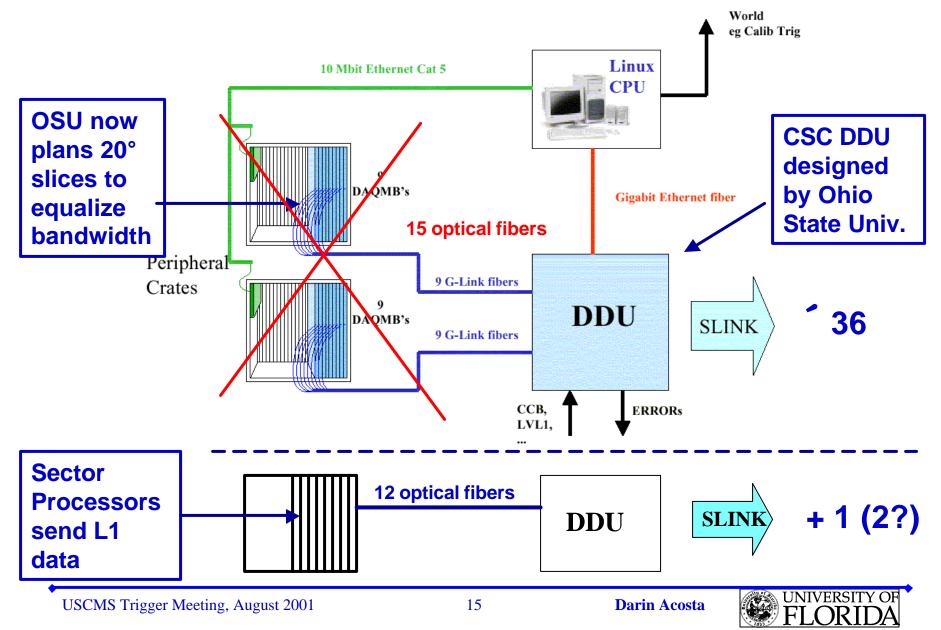
This is now done! Latency: 12 ® 5 BX (See Madorsky)

USCMS Trigger Meeting, August 2001

Send input of SR and output of SP to DAQ stream for diagnostics

Track-Finder DAQ acts as additional DDU for EMU system

- Plan to use existing DDU design by OSU
 - **OSU** has decided to use T.I. Chip for serialization
 - **12 SP fiber connections fits well into 15 planned for DDU**
 - Image: Constant of the second seco


Next step is to have Lev work with OSU (Jason Gilmore) to learn their design

- Check bandwidth and buffer limitations
- Understand how to format our data
- Design buffers and readout on SR/SP

Mirror CSC DAQ Path

