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A commercial chaotic pendulum is modified to study nonlinear dynamics, including the
determination of Poincare´ sections, fractal dimensions, and Lyapunov exponents. The apparatus is
driven by a simple oscillating mechanism powered by a 200 pulse per revolution stepper motor
running at constant angular velocity. A computer interface generates the uniform pulse train needed
to run the stepper motor and, with each pulse, reads a rotary encoder attached to the pendulum axle.
Ten million readings from overnight runs of 50 000 drive cycles were smoothed and differentiated
to obtain the pendulum angleu and the angular velocityv at each pulse of the drive. A plot of the
50 000~u,v! phase points corresponding to one phase of the drive system produces a single Poincare´
section. Thus, 200 Poincare´ sections are experimentally available, one at each step of the drive.
Viewed separately, any one of them strikingly illustrates the fractal geometry of the underlying
chaotic attractor. Viewed sequentially in a repeating loop, they demonstrate the stretching and
folding of phase point density typical of chaotic dynamics. Results for four pendulum damping
conditions are presented and compared. ©2003 American Association of Physics Teachers.
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I. INTRODUCTION

The tremendous interest in nonlinear dynamics
brought with it a need for suitable introductory experimen
Although the chaotic pendulum is an obvious candidate, o
a few implementations have been proposed for use in te
ing laboratories.1–3 A torsional pendulum1 and a mechanica
Duffing oscillator2 have been described, but experimen
Poincare´ sections were not collected. Three commercial c
otic pendulums were reviewed in 19983 and components o
one of those systems were used here. Our apparatus is
ticularly well suited for an introductory treatment because
provides quality data, and its simple design means that
equations of motion can be readily derived and experim
tally verified for both regular and chaotic behavior.

Not including a desktop personal computer and an ass
ment of clamps and rods, the total system cost can be
below $1000. The rotary encoder and pendulum compon
are available from Pasco for less than $300;4 the counter/
timer board, connector block, and cable are available fr
National Instruments for less than $500;5 and the steppe
motor system can be put together for less than $200.6 A 500
MHz Pentium III PC was available, as was the LabVIE
software development system used for all data acquisi
and analysis.7 A data acquisition program is available on th
University of Florida Physics Department web site8 and does
not require a LabVIEW license. The acquisition and analy
programs~virtual instruments! are also available,8 but are
unsupported and require a LabVIEW software license. Ot
nonlinear analysis and graphing packages such as TISE9

and gnuplot10 could also be used.
The stepper motor and data acquisition system are cri

replacements for the corresponding components curre
supplied by Pasco. A Poincare´ section requires that the pen
dulum angle and angular velocity be determined each t
the drive system passes a single point in its oscillatory m
tion, and an optical or magnetic pickup is often placed on
drive mechanism for this purpose. For example, the Dae
lon pendulum reviewed in Ref. 3 passes such a pickup sig
to its data acquisition interface and is the only one of
250 Am. J. Phys.71 ~3!, March 2003 http://ojps.aip.org/a
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three reviewed systems capable of creating Poincare´ sec-
tions. Moreover, each hardware pickup normally perm
only a single Poincare´ section to be collected at one time. I
effect, our implementation creates a software pickup at ev
angular position of the motor, thus making possible the c
ation of Poincare´ sections for almost all drive phases an
providing accurate three-dimensional phase space coo
nates of points along a trajectory.

The mechanical components and the data acquisition h
ware and software are described in Sec. II. Data fitting
amples and calculations of fractal dimensions and Lyapu
exponents are described in Sec. III.

II. APPARATUS

A schematic of the apparatus is shown in Fig. 1. The p
dulum, rotary encoder, and stepper motor are mounted on
foot, 1/2 in. diameter steel rod. Two identical springs a
attached on either side of the pendulum by a string wrap
twice around the pulley to prevent slipping. The end of o
spring is driven up and down by a stepper motor running
constant angular velocity via a string passing through a gu
hole in a cross rod. The drive amplitudeA is adjusted by
changing the length of the shaft attached to the motor. T
end of the other spring is fixed with a short string to a tuni
peg also mounted on the cross rod.

The pendulum axle is part of the rotary encoder wh
transmits logic pulses~1440/rev! on separate phonojacks fo
clockwise and counterclockwise rotations. One of the d
acquisition counters performs up/down counting of the
pulses without any need for preprocessing. The pulse co
directly proportional to the pendulum rotation angle, can
saved to a counter register at any time by strobing
counter’s gate.

The stepper motor requires 200 pulses per revolution
runs at a frequency near one revolution per second. The
200 Hz square wave sent to the controller is divided do
from a 20 MHz clock by another data acquisition count
The frequency resolution~around 10 ppm! and stability~less
than 50 ppm drift in a 24 hour period! are more than ad-
250jp/ © 2003 American Association of Physics Teachers
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equate for this experiment. This square wave also strobes
gate of the angular counter with the result that 200 readi
are collected per drive period. The raw readings are tra
ferred to main memory by direct memory access hardw
Thus, all data acquisition is hardware timed and the ang
readings stay synchronized to the drive phase even over
runs. After programming the counters for the correct ope
ing modes and drive frequency, the stepper motor pulses
initiated and the direct memory access buffer fills using
most no computer resources. The buffer is written to d
every few seconds and with typical overnight runs of 50 0
drive cycles, two bytes per reading, and 200 readings
period, file sizes are around 20 MB.

The raw counter readings, spaced 1/200th of the drive
riod apart in time, are scaled and numerically smoothed
differentiated using Savitsky–Golay filtering.11 The filters
are equivalent to a least-squares polynomial fit for each d
point with the fitting region symmetrically surrounding th
point. They provide the angleu, the angular velocityv
5du/dt, and the angular accelerationa5d2u/dt2. Thirty-
three point, quartic polynomial filtering was used for all fi
ures and analysis. Simulations with noisy 200 point s
waves showed good filter performance with these par
eters. The random uncertainties in the filteredu, v, and a
values are predicted to besu50.4 mrad,sv59 mrad/s, and
sa50.5 rad/s2. These are measurement uncertainties o

Fig. 1. The chaotic pendulum and drive system. Not shown is the P
rotary motion sensor containing the axle and pulley.
251 Am. J. Phys., Vol. 71, No. 3, March 2003
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based solely on an encoder digitizing error of61/2 counts
and the covariance matrix for the filters. They do not inclu
effects of dynamical noise12—real fluctuations in the vari-
ables that subsequently propagate through the dynamic
the system.

As shown in Fig. 1, the pendulum angleu is defined from
the vertical withu50 for the straight up or inverted positio
and clockwise angles taken to be positive. The stepper m
phasef is also defined from the vertical, and thus the d
placement of the driven end of the spring is given byd
5A cosf.13

The springs on either side of the pendulum are relativ
soft and stay stretched at all times. With the pendulum m
removed andd50, the tuning peg is adjusted to get th
equilibrium angle to the invertedu50 position. Then, with
the pendulum massm attached and at a distanceL from the
axis, the potential energy can be expressed as

V5 1
2 k~ru!21 1

2 k~ru2d!21mgLcosu, ~1!

where k is the force constant of each spring andr is the
pulley radius.

A two-term dissipation model provides a reasonable
proximation for the energy loss in our apparatus. Edd
current damping, which can be adjusted by moving a mag
near the rotating aluminum disk, is modeled by a viscos
like torque of the form2b v. Also present is some degree o
dry, or Coulomb, friction arising largely in the axle bearing
This axle friction will be assumed to be constant in mag
tude, but opposite to the angular velocity, and will be mo
eled by a torque of the form2b8 sgnv, where sgnv5v/uvu.
Static friction or other effects as the pendulum momenta
stops each timev passes through zero will not be modele

With the two damping torques and the conservative torq
tc52dV/du, the equations of motion can be set in the a
tonomous form

d u

dt
5v, ~2a!

d v

dt
52Gv2G8 sgnv2k u1m sinu1e cosf, ~2b!

d f

dt
5V, ~2c!

where

G5b/I , ~3a!

G85b8/I , ~3b!

k52kr2/I , ~3c!

m5mgL/I , ~3d!

e5Akr/I . ~3e!

I is the moment of inertia of the pendulum, andV is the
angular frequency of the drive.

III. ANALYSIS

A. Chaotic attractors

The lower part of Fig. 2 shows the potentialV(u) in Eq.
~1! for d50. The upper part of the figure is constructed
plotting v56A2@E2V(u)#/I versusu and shows phase

co
251Robert DeSerio
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space trajectories for undriven, undamped vibrations at th
representative values of the energyE. The turning points of
the vibrations are illustrated by the dashed vertical lines
the mechanical energy by the horizontal dotted lines. T
direction of motion along a trajectory is indicated by t
arrows.

The starting point in theu–v phase plane determines th
energy and subsequent motion on the appropriate trajec
The two smallest loops centered around the elliptic fix
points (6um,0) represent near-harmonic oscillations abo
the minima inV(u), while the outermost trajectory repre
sents ‘‘over-the-top’’ oscillations aboutu50. Between these
oscillatory trajectories is the separatrix. Started from a
point on this`-shaped trajectory, the pendulum ultimate
comes to a stop at the hyperbolic fixed point~0,0!.

Data for the driven pendulum undergoing chaotic vib
tions are displayed in Fig. 3. The upper part of Fig. 3 de
onstrates the nonrepeating motion as a plot ofu versust. The
lower part of Fig. 3 demonstrates the changing mechan
energy as the trajectory spirals into and away from the
energy elliptic points. On the left, a short trajectory segm
of seven drive periods can be followed from beginning
end. On the right, an untraceable trajectory of 200 peri
demonstrates that although the~u,v! values are not con

Fig. 2. Lower, near scale drawing of the potentialV(u) for the system
of Fig. 1. Upper, phase space trajectories at three energies.

Fig. 3. Upper, experimentalu versust data for chaotic motion. Lower, phas
space trajectories for a few drive periods~left! and many drive periods
~right!.
252 Am. J. Phys., Vol. 71, No. 3, March 2003
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strained by energy conservation, their average motion
phase space is similar to those that are~see for example, top
of Fig. 2!.

For driven motion, the state of the pendulum is complet
specified by a triplet of values~u,v,f!. Any such triplet can
be represented as a point in a three-dimensional phase s
and may be considered initial conditions that evolve de
ministically according to the equations of motion. By provi
ing unique values for the derivatives of each variable, Eq.~2!
specifies a continuous flow which predicts that even a c
otic trajectory will lie on a non-crossing curve in this thre
dimensional phase space. That chaotic trajectories will u
mately evolve on a fractal in this phase space is not obvio

In phase space, chaotic trajectories for dissipative syst
are confined to complex regions known as attractors. T
are called strange attractors because geometrically they
fractals. The experimental Poincare´ sections of Figs. 4 and 5
are also fractals, two-dimensional slices through the
three-dimensional attractor. In Figs. 4 and 5 these Poinc´
sections are shown for high and low damping conditio
respectively. Each Poincare´ section is a plot of 50 000 (u,v)
phase points, one per drive cycle as the drive phase pa
through a particular value off. The center of each plot is
~0,0! with the u-axis horizontal and thev-axis vertical. The
scale of the figures is approximately66 rad and614 rad/s.
Starting transients, which can produce phase points off

Fig. 4. Ten Poincare´ sections at equally spaced phase intervals of the dr
cycle—from the top down in the first column then the second. High dam
ing conditions with the magnet set 3 mm from the disk.
252Robert DeSerio
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attractor, were eliminated from the plots and analysis
skipping the first 100 drive cycles. The drive frequency
all data sets was 0.82 Hz.

Each figure shows 10 Poincare´ sections equally spaced i
the drive phase starting at the top left withf50. The drive
phase increases by 1/10th of a rotation going down the
umns and continues from bottom left to top right. The dri
is then 180° out of phase between pairs on the same row,
the symmetry between these pairs indicates the spring e
librium angle was well matched to the inverted pendulu
position. If we connect the bottom right section back to t
top left, we can then follow a particular feature as it chang

Fig. 5. Ten Poincare´ sections at equally spaced phase intervals of the d
cycle, from the top down in the first column then the second. Low damp
conditions with the magnet set 18 mm from the disk.
253 Am. J. Phys., Vol. 71, No. 3, March 2003
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position and shape from one section to the next and from
period to the next. Some features can be followed throu
several drive cycles, stretching and folding until finally thi
ning out of existence.

Simulations of Eq.~2! using a fourth-order Runge–Kutt
algorithm with 40 time steps per drive period produced
tractors similar to those of the experiment. The Poincare´ sec-
tions also look very similar to those reported by Peters1 for
G850. As can be seen in Fig. 6, the simulations were rema
ably similar to but noticeably sharper than their experimen
counterparts, whose features become washed out at re
tion levels dependent on the measurement errors and
namical noise present in the apparatus.

The obvious difference between the distribution of poin
in Figs. 4 and 5 is a result of the different damping con
tions. Without axle friction~G850!, the fractional rate of
change of occupied volumes in phase space is predicted t
2G everywhere. With stronger damping, the larger contr
tion rate produces more highly peaked ridges in the ph
space density. ForG50, phase space volumes are conserv
and a simulation with bothG5G850 produced Poincare´ sec-
tions with sharp boundaries and a complex flow patte
however, the density of phase points was nearly unifo
throughout.

B. System parameters

The mechanical parameters are listed in Table I. T
spring constantk was determined in separate measureme
of the oscillation period as a function of the mass hang
directly from the spring.

The parameters of Eq.~2! can be determined for each da
set from a least squares fit.14 The angular accelerationsa i
obtained via the Savitsky–Golay filters are fit to the functi
a(u i ,v i ,f i) provided by the right side of Eq.~2b!. The u i

andv i in the fitting function are also obtained via the filter
while f i is determined from the data point indexi ~modulo

e
g

Table I. Mechanical parameters.

Quantity Value

Pendulum mass,m 15 g
Pendulum mass offset,L 4.8 cm
Disk mass 128 g
Disk diameter 9.5 cm
Pulley radius,r 1.4 cm
Spring constant,k 2600 dyne/cm
Moment of inertia withoutm, I 0 1400 g cm2

Moment of inertia withm, I 1800 g cm2
able
Fig. 6. Comparison between experiment~left! and simulation~right! for theD518 mm damping distance. The simulation parameters were taken from T
II.
253Robert DeSerio
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fit,
200! multiplied by the motor step size 2p/200. The fit is a
linear regression ofa to the termsv, sgnv, u, sinu, and
cosf. The terms cosu, sinf, and a constant are added to t
regression to account for possible offset errors inu, f, and
the spring equilibrium angle. The fitted coefficients for the
eight terms determineG, G8, k, m, ande, as well as the three
offset angles.

Results for four overnight runs at different damping ma
net distancesD are given in Table II. Each row is an averag
from three separate fits to trajectories of 5000 drive cycle
10 points per cycle. Points withv near zero—more specifi
cally, about 1/3 of the points havinguvu,3 rad/s—were ex-
cluded from the fits. As demonstrated shortly, this restrict
is needed to prevent systematic errors in the two dissipa
coefficients. The data for the three fits were from the beg
ning, middle, and end of each run. Parameter variati
within each set were used to estimate the standard devia
given in the last row of Table II. Variations in the fitte
spring equilibrium angle and in the offset angles inu andf
were less than 4 mrad and indicate no significant proble
due to string-pulley slippage, pulses lost from the rotary
coder, or pulses lost to the stepper motor during these
hour runs.

The drive amplitude was 5 cm for the two lower dampi
settings and had to be increased to 6 cm to obtain cha
motion at the two higher damping settings. In good agr
ment with the fits, these amplitudes and the mechanical
rameters in Table I give the following parameter valu
k55.7 s22, m539 s22, ande511 s22 ~13 s22) for the first
~last! two rows.

The increasingG values in Table II are expected as th
magnet is brought closer to the aluminum disk, and the va
tions in the other parameters from run to run are not unr
sonable. The four data sets were taken over a week or
and some control variables may not have been kept cons
For example, a spring may have been changed~for another
of the same kind! and the pendulum rotation axis may ha
been off the horizontal with a degree or so of variability. T
axle friction coefficient varied considerably over time, at o
point decreasing from 1.7 to 0.9 s22 after the bearings were
oiled.

The goodness of fit can be assessed by the fit resid
which are defined asda i5a i2a(u i ,v i ,f i). They are the
deviations of the measureda i from the fit values
a(u i ,v i ,f i). Root mean square~rms! deviations were in the
range 0.6–0.8 rad/s2—comparable to the acceleration err
sa50.5 rad/s2 expected from the Savitsky–Golay filter an
less than 3% of the rms angular acceleration, which w
approximately 30 rad/s2 for all data sets.

Table II. Fitted system parameters@Eq. ~3!#, capacity dimensiond0 ,
Lyapunov exponentsl i , and Lyapunov dimensiondL for four magnet
damping distancesD. The estimated standard deviation of the fitted syst
parameters is represented by the notation s.d.

D G G8 k m e l1 l2

~mm! s21 s22 s22 s22 s22 d0 s21 s21 dL

18 0.05 1.22 5.81 37.52 9.97 1.73 0.6220.81 1.77
7 0.12 1.10 5.95 38.09 10.07 1.68 0.5720.83 1.69
5 0.31 0.90 5.83 38.08 12.05 1.63 0.5020.87 1.57
3 0.53 1.18 5.81 37.61 11.98 1.49 0.4221.06 1.40

s.d. 0.02 0.07 0.01 0.03 0.02
254 Am. J. Phys., Vol. 71, No. 3, March 2003
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The reason for excluding data points withuvu,3 rad/s is
demonstrated in Fig. 7. Plot~a! shows the residuals for on
of the three fits for theD57 mm data set. The deviations a
from a range ofu, v, and f values, but they are plotted
versusv alone. Thus, the dotted lines atv563 rad/s isolate
the discontinuous ‘‘kink’’ of deviations not considered in th
fit. Placing a finger over the excluded data helps show t
the deviations that are considered in the fit are evenly
tributed aboutda50 for all v.

The cause of the kink is made more obvious in Fig. 7~b!
which shows the same deviations, but without subtracting
fitted axle friction contribution. Instead, this contribution
shown separately by the solid line. By construction, the
siduals of Fig. 7~a! are the differences between the deviatio
and the solid line fit in Fig. 7~b!. Despite the experimenta
noise of comparable size, the data clearly agree with
fitted axle friction term, although its discontinuous change
v50 occurs gradually—over a63 rad/s range—in the ex
perimental deviations. This gradual change is an expec
smoothing effect of the Savitsky–Golay filters when appli
to data with discontinuities. Although the exact smoothi
range is difficult to predict, a rough estimate can be obtain

Fig. 7. ~a! Fit residuals versusv. Points between the dotted vertical line
were not included in the fit.~b! Deviations in ~a!, but without the axle
friction contribution subtracted. Solid line, the axle friction contributio
from the fit. Dashed line, best fit when all points are included in the
resulting in the fit residuals shown in~c!. Dotted line, best fit using viscous
damping only and resulting in the fit residuals shown in~d!.
254Robert DeSerio
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from the total time intervaldt'0.2 s for collecting the 33
raw encoder readings used for eachu i , v i , anda i . In that
interval, a pendulum moving with a given angular accele
tion a changes its angular velocity over a rangedv'adt.
The rms valuea'30 rad/s2 givesdv'6 rad/s, which is ac-
ceptably close to the 3 rad/s value determined empirica
The smoothing is responsible for the kink and would ca
systematic errors inG and G8 were the fits not restricted to
data points withuvu.3 rad/s.

The systematic errors can be demonstrated in unrestri
fits, that is, those including all 50 000 points in the trajecto
In all such fits,G increases andG8 decreases, with no signifi
cant changes to the other parameters. For the data set u
consideration, the unrestrictedG and G8 were 0.18 s21 and
0.75 s22 compared to their restricted counterparts 0.13 s21

and 1.13 s22. The slopingz shape of the dashed line in Fig
7~b! shows these alternate fit contributions—an axle frict
term with G850.75 s22 and a 0.05 s21 viscous term.~Keep
in mind that a 0.13 s21 viscous term is already subtracted!
The final residuals for the unrestricted fit are given
Fig. 7~c! and show a systematic error—a small downtu
in the negativev direction and an upturn in the positivev
direction—indicative of the overestimatedG. These alternate
residuals are significantly smaller in the restricted region,
this is where the discontinuity in the model and the smoo
ing effects of the Savitsky–Golay filters are expected
cause systematic deviations. Thus, although their rms v
of 0.67 rad/s2 is worse than the 0.61 rad/s2 for the restricted
fit, because it is better than the 0.71 rad/s2 for the restricted
fit over all points, the fit must be restricted to avoid obtaini
the flawed coefficients.

Fits without the axle friction term were also performe
The fits compensated by increasing the viscous coeffic
with no significant changes to the other parameters. For
data set,G increased to 0.28 s21. The sloping dotted line in
Fig. 7~b! represents the additional 0.15 s21 viscous term. The
residuals for this fit are shown in Fig. 7~d! and have an rms
value of 0.78 rad/s2. The distinct sawtooth pattern in this plo
is a result of greatly overestimatingG to take into account the
effects of axle friction.

Fig. 8. A log–log plot of the number of grid boxes needed to cover
Poincare´ section versus the inverse size of the boxes for the four dam
magnet settings. The slope is the capacity dimensiond0 given in Table II.
255 Am. J. Phys., Vol. 71, No. 3, March 2003
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C. Capacity dimension and Lyapunov exponents

The capacity dimensiond0 was determined for thef50
Poincare´ sections using the standard box-counting alg
rithm.15 Theu–v plane is divided into a rectangular grid an
the number of rectanglesN containing at least one phas
point is determined. Values ofN are redetermined as th
linear sizes of the rectangles is decreased. The slope of
logN versus log1/s graph is the capacity dimension an
would have a slope of 0, 1, or 2 for a set of points cover
a finite number of phase space points, lines, or areas.

Figure 8 shows the results for the four data sets and d
onstrates a small decrease in slope as the damping incre
Starting with a 10320 grid and just under 100 grid boxe
occupied, the predicted straight line~fractal! behavior can be
seen to continue for more than an order of magnitude in
linear dimension. Two effects limit the range of fractal b
havior as the grid size decreases. First, the finite numbe
points in the data set imply that the smallest grid boxes w
ultimately become empty of phase points because of the p
city of data and not because the underlying Poincare´ section
has no density in those boxes. The graph will then flatten
as N approaches the number of data points. The last 2 t
points in the plots of Fig. 8 showed this effect and were n
included in the determination ofd0 given in the seventh col-
umn of Table II. The second limiting effect arises from e
perimental noise which washes out fractal features at sc
commensurate with the noise. If the data set has eno
points, the graph slope changes to that of the dimensio
the grid at grid scales much smaller than the noise. Lar
data sets would be needed to see this effect.

As shown in Fig. 9, a small group of neighboring pha
points in one area of a Poincare´ section map to a new neigh
borhood one period later. Evidence of chaotic motion’s e
treme sensitivity to initial conditions can be seen by follo
ing such a group of phase points in time. Within a few dri
periods they become dispersed throughout the Poincare´ sec-
tion. Lyapunov spectra characterize the long term expon
tial growth ~and decay! in the separation of very close phas
points. For our four data sets, they are given in columns e
and nine of Table II. The calculation, based on the algorit
of Eckmann and Ruelle,16 is briefly described next.

A flow mapF~u! relates any phaseui5(u i ,v i) to its value
ui 115F(ui) one time step later. AlthoughF~u! cannot be

e
g

Fig. 9. A small area of a Poincare´ section showing how an initial set ofdu
~at the cursor! move and change shape when propagated one period.
new set is the bright, elongated patch slightly above and left of center.
255Robert DeSerio
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expressed in closed form, it can be determined from
equations of motion.17 It provides an alternate descriptio
of the pendulum dynamics and is well suited for experim
tal determination of the Lyapunov exponents. A time stet
5T/10, that is, 1/10th of the drive period was acceptable
our data sets, and thus the computation begins by const
ing and storing in computer memory 10 equally spaced P
carésections like those of Figs. 4 and 5.

Starting from two slightly different phases on the sam
Poincare´ sectionui and uj5ui1duj , the evolution of the
deviationduj to its valueduj 115uj 112ui 11 one time step
later—called a tangent mapping—can be modeled by a T
lor expansion about the pointui .

duj 115
]F

]u
duj1••• , ~4!

where the 232 Jacobian matrix]F/]u is evaluated atui . The
ellipsis represents terms containing higher order derivat
which become negligible in the limit of infinitesimalduj .

The main calculation is to determine the Jacobian matr
at sequential points along a trajectory. The computation
finds all phasesuj on a single Poincare´ section within some
fixed ellipse centered onui . It then determines the deviation
duj and the corresponding valuesduj 11 one time step later
The program then performs two linear regressions—one
du and one fordv. If we let dx represent eitherdu or dv, the
regressions can be expressed as

dxj 115ax1bxudu j1bxvdv j1cxuu~du j !
2

1cxvv~dv j !
21cxuv~du j !~dv j !. ~5!

The constant termsax are included to take into account po
sible offset errors inui and ui 11 . The quadratic termscx
account for second-order terms in the Taylor series exp
sion and decrease the errors in the linear terms that a
from the finite size of thedu used in the fit.18 The four
coefficients of the linear terms,buu , buv , bvu , andbvv , are
taken as estimates of the Jacobian matrix elements at
point ui .

A fixed neighborhood ellipse was used when finding
initial deviationsduj ; radii were chosen at 0.15 rad inu and
0.30 rad/s inv. The number of deviations in each fit typ
cally varied between 30 and 80, although a point was oc
sionally eliminated~,1%! from the analysis when ther
were less than 10 deviations available. The rms deviation
the fits described by Eq.~5! were typically around 2 mrad fo
the du fit and 20 mrad/s for thedv fit.

The product ofN sequential Jacobian matrices gives t
evolution of the smallestdu through N time periods. For
large enoughN, this product is predicted to have eigenvalu
exp(l1Nt) and exp(l2Nt), where l1 and l2 are the
Lyapunov exponents. The eigenvalues of this product
experimentally determined viaQ–R decompositions of each
Jacobian matrices along the trajectory, sayu1 , u2 , . . . , uN .
The decomposition expresses a given matrix as a pro
QR of an orthonormal matrixQ and an upper diagonal ma
trix R. For the Lyapunov algorithm, each Jacobian matrix
first multiplied on the right by the priorQ before performing
the decomposition,

]F

]u U
ui

Qi 215QiRi . ~6!
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~The startingQ0 is taken as the identity matrix.! The product
of the Jacobian matrices then becomes

]F

]u U
uN

•••
]F

]u U
u2

]F

]uU
u1

5QNRN•••R2R1 . ~7!

The single remainingQN can be neglected when determinin
the eigenvalues of the product on the right-hand side.
cause all theR matrices are upper diagonal, the eigenvalu
of their product are the product of their diagonal elemen
Equating this eigenvalue to the prediction, exp(lkNt), and
taking natural logarithms then gives

lk5 lim
N→`

1

Nt (
i 51

N

ln Ri
kk . ~8!

All reported exponents are from at least 1000 drive pe
ods following 100 periods used to let theQ matrices stabi-
lize. For both experimental and simulated data sets, the i
vidual exponents varied by60.03 s21 as the starting point of
the trajectory changed, which may be taken as a rough e
mate of their uncertainty.

The Lyapunov program was also applied to the simu
tions. Without axle friction, the sum of the Lyapunov exp
nents is predicted to be equal to2G.19 For a simulation
created with a viscous damping coefficient ofG50.10 s21,
the Lyapunov exponents were~0.61,20.71! s21. ForG50.30
s21 they were~0.63,20.93! s21. Both results are in excellen
agreement with this prediction. However, for the experime
tal results of Table II, the sum of the Lyapunov exponents
systematically below2G from the fit by the amounts 0.13
0.14, 0.06, and 0.11 s21 for the four data sets. The directio
and rough size of this shift indicated it is likely due to th
effects of axle friction.~Recall thatG increases by about 0.1
s21 if axle friction is modeled entirely by additional viscou
damping.! The effect was also observed in the simulation
When an axle friction contribution ofG850.8 s22 was added
to the two simulations above, both exponent sums decrea
by 0.09 s21.

An additional check on the consistency of the Lyapun
exponents and the fractal dimension is provided by
Kaplan–Yorke conjecture.20 For a two-dimensional mapping
the Lyapunov dimension is defined as

dL511
l1

ul2u
, ~9!

and is predicted to be equal to the capacity dimension.
Lyapunov dimension is given in the last column of Table
and is seen to be in reasonable agreement with the cap
dimension given in column seven.

Before concluding this section, it is worth pointing out th
value of multiple Poincare´ sections for our Lyapunov expo
nent calculations, which were initially attempted using only
single Poincare´ section. Monitoring intermediate computa
tions and graphical displays showed that 10–20% of the
jectory points hadduj 11 that were widely dispersed over th
Poincare´ section. The local fits to determine the Jacobi
matrix were noticeably poor in such cases with large dev
tions between the measured and fittedduj 11 . Several at-
tempts were made to deal with the issue algorithmically,
example, by using smaller neighborhoods and/or includ
cubic and quartic terms in the fit, but the fits and resulti
256Robert DeSerio
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Lyapunov exponents remained problematic. It was only a
using 10 Poincare´ sections (t5T/10) that poor Jacobian fit
were eliminated and trustworthy Lyapunov exponents w
obtained. Although further study is needed, it is at least
parent that having multiple Poincare´ sections simplifies the
algorithm.

IV. CONCLUSIONS

This paper demonstrates the benefits of using a ste
motor running at constant angular velocity to drive a chao
pendulum. In particular, we have shown how to use comm
data acquisition hardware and software to synchronize an
lar readings of the pendulum with the phase of the dr
system. The apparatus produces phase-space data suitab
quantitative studies of nonlinear dynamics. Poincare´ sections
can be displayed and analyzed, and phase space mixin
strikingly demonstrated by viewing sequential Poincare´ sec-
tions as a video loop.

Linear regression analysis was used to determine the
rameters of the model equations of motion and verify
two-term dissipation model. Poincare´ sections from simula-
tions based on the fit parameters show remarkable agree
with those from experimental data. The calculation of frac
dimensions and Lyapunov spectra were performed using
gorithms implemented in the LabVIEW programming la
guage. Their dependence on the strength of the visc
damping coefficient was observed and found to be in reas
able agreement with theoretical predictions.

Much more can be done with the apparatus. Studies
dynamical noise in conjunction with noise reductio
techniques21 hold the promise of bringing the fractal natu
of the attractor to finer scales. In this regard, it would
interesting to try to reach finer fractal scales by improv
ments in the apparatus, for example, better vibration is
tion, smoother axle bearings, and higher rotary encoder r
lution. Adding computer-controlled electromagnetic damp
would make possible the study of the control of chaos.22,23

Analysis using time delay embedding15,24 could also be per-
formed and comparisons between the two representat
should help students gain a better understanding of b
Other potential functions could also be investigated
changing the springs, the pendulum mass, or the spring e
librium position. One could study how the attractor chang
for a shallower double-well potential or for a triple- o
quadruple-well potential.

As an introductory experiment in nonlinear dynamics, t
version of the chaotic pendulum provides an excellent en
point into the field. Additionally, modifications and enhanc
ments to the hardware and software should make possib
wide array of experiments and studies suitable at the un
graduate and graduate level.
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