Chaotic pendulum: The complete attractor
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A commercial chaotic pendulum is modified to study nonlinear dynamics, including the
determination of Poincarsections, fractal dimensions, and Lyapunov exponents. The apparatus is
driven by a simple oscillating mechanism powered by a 200 pulse per revolution stepper motor
running at constant angular velocity. A computer interface generates the uniform pulse train needed
to run the stepper motor and, with each pulse, reads a rotary encoder attached to the pendulum axle.
Ten million readings from overnight runs of 50 000 drive cycles were smoothed and differentiated
to obtain the pendulum angkand the angular velocity at each pulse of the drive. A plot of the

50 000(6,w) phase points corresponding to one phase of the drive system produces a single Poincare
section. Thus, 200 Poincasections are experimentally available, one at each step of the drive.
Viewed separately, any one of them strikingly illustrates the fractal geometry of the underlying
chaotic attractor. Viewed sequentially in a repeating loop, they demonstrate the stretching and
folding of phase point density typical of chaotic dynamics. Results for four pendulum damping
conditions are presented and compared. 2603 American Association of Physics Teachers.

[DOI: 10.1119/1.1526465

[. INTRODUCTION three reviewed systems capable of creating Poinsae
tions. Moreover, each hardware pickup normally permits

The tremendous interest in nonlinear dynamics ha®nly a single Poincarsection to be collected at one time. In
brought with it a need for suitable introductory experiments effect, our implementation creates a software pickup at every
Although the chaotic pendulum is an obvious candidate, onlyjzngular position of the motor, thus making possible the cre-
a few implementations have been proposed for use in teacktion of Poincaresections for almost all drive phases and
ing laboratories 3 A torsional pendulurhand a mechanical Providing accurate three-dimensional phase space coordi-
Duffing oscillatof have been described, but experimentalnates of points along a trajectory. o
Poincaresections were not collected. Three commercial cha- The mechanical components and the data acquisition hard-
otic pendulums were reviewed in 1698nd components of Wware and software are described in Sec._ [I. Data fitting ex-
one of those systems were used here. Our apparatus is pgx,mples and calculatlpns qf fractal dimensions and Lyapunov
ticularly well suited for an introductory treatment because iteXPonents are described in Sec. ll.
provides quality data, and its simple design means that the
equations of motion can be readily derived and experimen
tally verified for both regular and chaotic behavior. fl. APPARATUS

Not including a desktop personal computer and an assort- A schematic of the apparatus is shown in Fig. 1. The pen-
ment of clamps and rods, the total system cost can be kepfulum, rotary encoder, and stepper motor are mounted on a 6
below $1000. The rotary encoder and pendulum componenggot, 1/2 in. diameter steel rod. Two identical springs are
are available from Pasco for less than $30Be counter/ attached on either side of the pendulum by a string wrapped
timer board, connector block, and cable are available fromwice around the pulley to prevent slipping. The end of one
National Instruments for less than $50@nd the stepper spring is driven up and down by a stepper motor running at
motor system can be put together for less than $28B00  constant angular velocity via a string passing through a guide
MHz Pentium Ill PC was available, as was the LabVIEW hole in a cross rod. The drive amplitudeis adjusted by
software development system used for all data acquisitioghanging the length of the shaft attached to the motor. The
and analysig.A data acquisition program is available on the end of the other spring is fixed with a short string to a tuning
University of Florida Physics Department web 8iged does peg also mounted on the cross rod.
not require a LabVIEW license. The acquisition and analysis The pendulum axle is part of the rotary encoder which
programs(virtual instruments are also availablg,but are  transmits logic pulse&l440/rey on separate phonojacks for
unsupported and require a LabVIEW software license. Otheclockwise and counterclockwise rotations. One of the data
nonlinear analysis and graphing packages such as TISEANacquisition counters performs up/down counting of these
and gnuplot® could also be used. pulses without any need for preprocessing. The pulse count,

The stepper motor and data acquisition system are criticalirectly proportional to the pendulum rotation angle, can be
replacements for the corresponding components currentlgaved to a counter register at any time by strobing the
supplied by Pasco. A Poincasection requires that the pen- counter’s gate.
dulum angle and angular velocity be determined each time The stepper motor requires 200 pulses per revolution and
the drive system passes a single point in its oscillatory mofuns at a frequency near one revolution per second. The near
tion, and an optical or magnetic pickup is often placed on th&00 Hz square wave sent to the controller is divided down
drive mechanism for this purpose. For example, the Daeddrom a 20 MHz clock by another data acquisition counter.
lon pendulum reviewed in Ref. 3 passes such a pickup signdlhe frequency resolutiotaround 10 pprhand stability(less
to its data acquisition interface and is the only one of thehan 50 ppm drift in a 24 hour peripgare more than ad-
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based solely on an encoder digitizing error01/2 counts

and the covariance matrix for the filters. They do not include
effects of dynamical noi$é—real fluctuations in the vari-
ables that subsequently propagate through the dynamics of
the system.

As shown in Fig. 1, the pendulum angids defined from
the vertical with§=0 for the straight up or inverted position
and clockwise angles taken to be positive. The stepper motor
phase¢ is also defined from the vertical, and thus the dis-
placement of the driven end of the spring is given dy
=Acosg.t?

The springs on either side of the pendulum are relatively
soft and stay stretched at all times. With the pendulum mass
removed andd=0, the tuning peg is adjusted to get the
equilibrium angle to the inverted=0 position. Then, with
the pendulum mass attached and at a distantefrom the
axis, the potential energy can be expressed as

V= 3k(r0)?+ 3k(r 6—d)>*+mgLcosé, Y

Luergng wherek is the force constant of each spring ands the
pulley radius.

) A two-term dissipation model provides a reasonable ap-
proximation for the energy loss in our apparatus. Eddy-
current damping, which can be adjusted by moving a magnet
near the rotating aluminum disk, is modeled by a viscosity-
like torque of the form—b w. Also present is some degree of
dry, or Coulomb, friction arising largely in the axle bearings.

stepper shaft This axle frictiorj will be assumed to bg constant in magni-

motor\\ 0\, tude, but opposite to the angular velocity, and will be mod-
eled by a torque of the form b’ sgnw, where sgrv=wl/|w|.

Static friction or other effects as the pendulum momentarily

stops each time passes through zero will not be modeled.

With the two damping torques and the conservative torque

Fig. 1. The chaotic pendulum and drive system. Not shown is the Pascg .= —dV/d 6, the equations of motion can be set in the au-
rotary motion sensor containing the axle and pulley. tonomous form

do

dat @ 23
equate for this experiment. This square wave also strobes the
gate of the angular counter with the result that 200 readings d w
are collected per drive period. The raw readings are trans- —; = —lw—T"'sgnw—« 6+ pusinf+ecosep,  (2b)
ferred to main memory by direct memory access hardware.
Thus, all data acquisition is hardware timed and the angular d ¢
readings stay synchronized to the drive phase even over long 5 =Q, (20
runs. After programming the counters for the correct operat-
ing modes and drive frequency, the stepper motor pulses amhere

initiated and the direct memory access buffer fills using al-  _p/, (3a)

most no computer resources. The buffer is written to disk '

every few seconds and with typical overnight runs of 50000 TI''=b’/I, (3b)

drive cycles, two bytes per reading, and 200 readings per 5

period, file sizes are around 20 MB. rx=2kr/l, (30
The raw counter readings, spaced 1/200th of the drive pe- p=mglI, (3d)

riod apart in time, are scaled and numerically smoothed and

differentiated using Savitsky—Golay filtering.The filters e=Akrl/l. (3¢

are equivalent to a least-squares polynomial fit for each dat
point with the fitting region symmetrically surrounding the
point. They provide the angl®, the angular velocityw
=de/dt, and the angular acceleratian=d?6/dt?. Thirty-
three point, quartic polynomial filtering was used for all fig- IIl. ANALYSIS

ures and analysis. Simulations with noisy 200 point sines chaotic attractors

waves showed good filter performance with these param-

eters. The random uncertainties in the filtergdw, and « The lower part of Fig. 2 shows the potenti(6) in Eq.
values are predicted to ke,=0.4 mrad,o,=9 mrad/s, and (1) for d=0. The upper part of the figure is constructed by
0,=0.5 rad/4. These are measurement uncertainties onlyplotting w=+ J2[E—V(6)]/I versus# and shows phase

f'is the moment of inertia of the pendulum, afdis the
angular frequency of the drive.
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Fig. 2. Lower, near scale drawing of the potentig]6) for the system
of Fig. 1. Upper, phase space trajectories at three energies.

space trajectories for undriven, undamped vibrations at threq
representative values of the enefgyThe turning points of
the vibrations are illustrated by the dashed vertical lines andg
the mechanical energy by the horizontal dotted lines. The
direction of motion along a trajectory is indicated by the
arrows.

The starting point in th&—w phase plane determines the
energy and subsequent motion on the appropriate trajectory
The two smallest loops centered around the elliptic fixed
points (= 6,,,0) represent near-harmonic oscillations about
the minima inV(#), while the outermost trajectory repre-
sents “over-the-top” oscillations about=0. Between these
oscillatory trajectories is the separatrix. Started from any
point on thisc-shaped trajectory, the pendulum ultimately
comes to a stop at the hyperbolic fixed pai@10).

Data for the driven pendulum undergoing chaotic vibra- )
tions are displayed in Fig. 3. The upper part of Fig. 3 demFig- 4. Ten Poincareectioqs at equally spaced phase intervals of the drive
onstrates the nonrepeating motion as a plai wérsust. The .Cyde_g.o.m the .t‘;]p gown in the f'rsst CO'“T” thehn tz.e lfecond' High damp-
lower part of Fig. 3 demonstrates the changing mechanical > tions with the magnet set 3 mm from fhe disic
energy as the trajectory spirals into and away from the low
energy elliptic points. On the left, a short trajectory segment , . _ . L
of seven drive periods can be followed from beginning toStrainéd by energy conservation, their average motion in
end. On the right, an untraceable trajectory of 200 period@hase space is similar to those that exee for example, top

demonstrates that although tlié,w) values are not con- of Fig. 2).' . .
gh tié,) For driven motion, the state of the pendulum is completely

specified by a triplet of value@®,w,). Any such triplet can
be represented as a point in a three-dimensional phase space
and may be considered initial conditions that evolve deter-
ministically according to the equations of motion. By provid-
ing unique values for the derivatives of each variable,(Ep.
specifies a continuous flow which predicts that even a cha-
otic trajectory will lie on a non-crossing curve in this three-
dimensional phase space. That chaotic trajectories will ulti-
mately evolve on a fractal in this phase space is not obvious.
. . . . . In phase space, chaotic trajectories for dissipative systems
0 10 2 (s) 30 10 50 are confined to complex regions known as attractors. They
are called strange attractors because geometrically they are
fractals. The experimental Poincasections of Figs. 4 and 5
are also fractals, two-dimensional slices through the full
three-dimensional attractor. In Figs. 4 and 5 these Poincare
sections are shown for high and low damping conditions,
respectively. Each Poincasection is a plot of 50 0004 w)
phase points, one per drive cycle as the drive phase passes
through a particular value op. The center of each plot is
Fig. 3. Upper, experimentd# versust data for chaotic motion. Lower, phase (0,0 with the_ﬁ-aX|s _horlzonta_l and the-axis vertical. The
space trajectories for a few drive periodeft) and many drive periods Scale of the figures is approximatety6 rad and+14 rad/s.
(right). Starting transients, which can produce phase points off the

@ (rad)

w (rad/s)

=

o
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Table I. Mechanical parameters.

Quantity Value
Pendulum massn 159
Pendulum mass offset, 4.8 cm
Disk mass 128 g
Disk diameter 9.5cm
Pulley radiusy 1.4 cm
Spring constantk 2600 dyne/cm
Moment of inertia withouim, I, 1400 g crd
Moment of inertia withm, | 1800 g crd

position and shape from one section to the next and from one
period to the next. Some features can be followed through
several drive cycles, stretching and folding until finally thin-
ning out of existence.

Simulations of Eq(2) using a fourth-order Runge—Kutta
algorithm with 40 time steps per drive period produced at-
tractors similar to those of the experiment. The Poinsae
tions also look very similar to those reported by Pétéos
I'"=0. As can be seen in Fig. 6, the simulations were remark-
ably similar to but noticeably sharper than their experimental
counterparts, whose features become washed out at resolu-
tion levels dependent on the measurement errors and dy-
namical noise present in the apparatus.

The obvious difference between the distribution of points
in Figs. 4 and 5 is a result of the different damping condi-
tions. Without axle friction(I'’=0), the fractional rate of
change of occupied volumes in phase space is predicted to be
—I" everywhere. With stronger damping, the larger contrac-
tion rate produces more highly peaked ridges in the phase
space density. Fdr=0, phase space volumes are conserved
Fig. 5. Ten Poincarsections at equally spaced phase intervals of the drive‘?’,lnd a S',mUIatlon with bOtlﬁ_:r’ =0 produced Poincarsec-
cycle, from the top down in the first column then the second. Low dampingtions with sharp boundaries and a complex flow pattern;
conditions with the magnet set 18 mm from the disk. however, the density of phase points was nearly uniform
throughout.

attractor, were eliminated from the plots and analysis byB. System parameters
skipping the first 100 drive cycles. The drive frequency for
all data sets was 0.82 Hz.

Each figure shows 10 Poincasections equally spaced in
the drive phase starting at the top left wigh=0. The drive . :
phase increases by 1/10th of a rotation going down the codiréctly from the spring. .
umns and continues from bottom left to top right. The drive | N€ parameters of E¢2) can be determined for each data
is then 180° out of phase between pairs on the same row, arfkgt from a least squares ttThe angular accelerations;
the symmetry between these pairs indicates the spring eqdpbtalned via the Sawtsky—GoIgy f|Ite_3rs are fit to the function
librium angle was well matched to the inverted penduluma(6;,;,¢;) provided by the right side of Eq2b). The 6,
position. If we connect the bottom right section back to theandw; in the fitting function are also obtained via the filters,
top left, we can then follow a particular feature as it changesvhile ¢; is determined from the data point indexmodulo

The mechanical parameters are listed in Table I. The
spring constank was determined in separate measurements
of the oscillation period as a function of the mass hanging

Fig. 6. Comparison between experiméleft) and simulation(right) for the D =18 mm damping distance. The simulation parameters were taken from Table
Il.
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Table II. Fitted system parametef&q. (3)], capacity dimensiond,,
Lyapunov exponents\;, and Lyapunov dimensiom, for four magnet
damping distanceB. The estimated standard deviation of the fitted system
parameters is represented by the notation s.d.

D r I K o € N1 N,

(mm s! s?2 2 s?2 g2 d, st s' d

So (rad/s’)

18 0.05 122 581 3752 997 173 0.620.81 1.77
7 012 110 595 38.09 10.07 1.68 0.570.83 1.69
5 031 090 6583 3808 1205 1.63 0.506-0.87 1.57
3 053 118 581 37.61 1198 1.49 0.42-1.06 1.40

sd. 0.02 007 001 0.03 0.02

200 multiplied by the motor step sizen2200. The fit is a
linear regression ofr to the termsw, sghw, 6, sing, and
cos¢. The terms cog sing, and a constant are added to the
regression to account for possible offset errorg,inp, and
the spring equilibrium angle. The fitted coefficients for these
eight terms determinE, I'’, «, u, ande, as well as the three
offset angles.

Results for four overnight runs at different damping mag-
net distance® are given in Table Il. Each row is an average 3 ) : D
from three separate fits to trajectories of 5000 drive cycles a 15 10 5 o 5 10 15
10 points per cycle. Points witkh near zero—more specifi- ® (rad/s)
cally, about 1/3 of the points having|<3 rad/s—were ex-
cluded from the fits. As demonstrated shortly, this restriction
is needed to prevent systematic errors in the two dissipatior -,
coefficients. The data for the three fits were from the begin-3
ning, middle, and end of each run. Parameter variations <
within each set were used to estimate the standard deviation
given in the last row of Table Il. Variations in the fitted )
spring equilibrium angle and in the offset anglesgiand ¢ * * oguay 0" MY R
were Iess. than 4 mra-d and indicate no significant problemI$—ig. 7. (a) Fit residuals versus. Points between the dotted vertical lines
due to string-pulley slippage, pulses |ost from the rotary en, ere not included in the fit(b) Deviations in(a), but without the axle
coder, or pulses lost to the stepper motor during these 1 iction contribution subtracted. Solid line, the axle friction contribution
hour runs. from the fit. Dashed line, best fit when all points are included in the fit,

The drive amplitude was 5 cm for the two lower damping resulting in the fit residuals shown {g). Dotted line, best fit using viscous
settings and had to be increased to 6 cm to obtain chaotidamping only and resulting in the fit residuals showr(dn
motion at the two higher damping settings. In good agree-
ment with the fits, these amplitudes and the mechanical pa-
rameters in Table | give the following parameter values:

k=5.7s2 u=39s2 ande=11 s 2 (13 s ?) for the first S '
(lash two rows. demonstrated in Fig. 7. Plgd) shows the residuals for one

The increasing” values in Table Il are expected as the of the three fits for th® =7 mm data set. The deviations are

magnet is brought closer to the aluminum disk, and the varial/om @ ralnge Off{ @, ﬁnddqs VZILI'_eS’ but ihey glre_plclnted
tions in the other parameters from run to run are not unreal€rsusw alone. Thus, the dotted lines at==3 rad/s isolate
sonable. The four data sets were taken over a week or t\/\r/}j]e discontinuous *kink” of deviations not considered in the
and some control variables may not have been kept consta ﬁ Placing a finger over the excluded data helps show that
For example, a spring may have been changedanother the deviations that are considered in the fit are evenly dis-
of the same kingand the pendulum rotation axis may have tr|buhted aboutﬁ?v:ho fl?.r E". . q bvious in i

been off the horizontal with a degree or so of variability. The hT ﬁ chause cr’] the kink is made more 'Oh vious in Fifn)7 H
axle friction coefficient varied considerably over time, at one?V'¢N S ows the same (_JIeV|_at|ons, but it out subt_rac;mg_t €
point decreasing from 1.7 to 0.9 3 after the bearings were fitted axle friction contribution. Instead, this contribution is
oiled ' ' shown separately by the solid line. By construction, the re-

The goodness of fit can be assessed by the fit residua@duals of Fig. Ta) are the differences between the deviations

which are defined asai= a;— a(6; .o, .4;). They are the and the solid line fit in Fig. (). Despite the experimental

deviati £ th 4 f he fi | noise of comparable size, the data clearly agree with the
eviations of the measureay; from the fit values fiaq axle friction term, although its discontinuous change at
a(6;,wi,¢;). Root mean squarems) deviations were inthe  ,— occurs gradually—over &3 rad/s range—in the ex-

range 0.6-0.8 radls-comparable to the acceleration error perimental deviations. This gradual change is an expected
o,=0.5 rad/$ expected from the Savitsky—Golay filter and smoothing effect of the Savitsky—Golay filters when applied
less than 3% of the rms angular acceleration, which waso data with discontinuities. Although the exact smoothing
approximately 30 radfsfor all data sets. range is difficult to predict, a rough estimate can be obtained

So (rad/s2 )

(d

0

Sa

The reason for excluding data points with|<3 rad/s is
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Fig. 9. A small area of a Poincasection showing how an initial set &t
Fig. 8. A log-log plot of the number of grid boxes needed to cover the(at the cursormove and change shape when propagated one period. The
Poincaresection versus the inverse size of the boxes for the four dampinghew set is the bright, elongated patch slightly above and left of center.
magnet settings. The slope is the capacity dimendjpgiven in Table II.

C. Capacity dimension and Lyapunov exponents

The capacity dimensiod, was determined for the)=0

from the total time intervalbt~0.2 s for collecting the 33 Poincare sections using the standard box-counting algo-
raw encoder readings used for eagh w;, ande;. In that rithm.*® The 6—w plane is divided into a rectangular grid and
interval, a pendulum moving with a given angular accelerathe number of rectanglell containing at least one phase
tion @ changes its angular velocity over a range~adt.  Point is determined. Values dfl are redetermined as the
The rms valuen~30 rad/2 gives so~6 rad/s, which is ac- linear sizes of the rectangle_s is decreasgd. T_he slo_pe of the
ceptably close to the 3rad/s value determined empiricallyl09N versus logls graph is the capacity dimension and
The smoothing is responsible for the kink and would causdvould have a slope of 0, 1, or 2 for a set of points covering
systematic errors il and I’ were the fits not restricted to @ finite number of phase space points, lines, or areas.
data points withw|>3 rad/s. Figure 8 shows the results for the four data sets and dem-

The systematic errors can be demonstrated in unrestricte?istrates a small decrease in slope as the damping increases.
fits, that is, those including all 50 000 points in the trajectory.Starting with a 1620 grid and just under 100 grid boxes
In all such fits,I" increases anfl’ decreases, with no signifi- 0ccupied, the predicted straight lifeacta) behavior can be
cant changes to the other parameters. For the data set und&en to continue for more than an order of magnitude in the
consideration, the unrestrictddand T’ were 0.18 st and  lInéar dimension. Two effects limit the range of fractal be-
0.75 s 2 compared to their restricted counterparts 0.13 s haylor as the grid slze decreases. First, the f|n!te number_of
and 1.13 s2. The slopingz shape of the dashed line in Fig points in the data set imply that the s_mallest grid boxes will
7(b) shows these alternate fit contributions—an axle frictionumm""te'y become empty of phase points because of the pau-

o, 2 1 city of data and not because the underlying Poinsaetion
term withI"=0.75 s* and & 0.05 s* viscous term(Keep  paq g density in those boxes. The graph will then flatten out

in mind that a 0.13 s* viscous term is already subtracted. agN approaches the number of data points. The last 2 to 4
The final residuals for the unrestricted fit are given inpgints in the plots of Fig. 8 showed this effect and were not
Fig. 7(c) and show a systematic error—a small downtumjnciyded in the determination af, given in the seventh col-

in the negativew direction and an upturn in the positive  mn of Table II. The second limiting effect arises from ex-
direction—indicative of the overestimaté These alternate yerimental noise which washes out fractal features at scales
residuals are significantly smaller in the restricted region, b“Eommensurate with the noise. If the data set has enough
this is where the discontinuity in the model and the SmOOth'points, the graph slope changes to that of the dimension of

ing effects of the Savitsky—Golay filters are expected O grid at grid scales much smaller than the noise. Larger
cause systematic deviations. Thus, although their rms valugaia sets would be needed to see this effect.

of 0.67 rad/$ is worse than the 0.61 rad/for the restricted A5 shown in Fig. 9, a small group of neighboring phase
fit, because it is better than the 0.71 rdditsr the restricted points in one area of a Poinéasection map to a new neigh-
fit over all points, the fit must be restricted to avoid obtainingborhood one period later. Evidence of chaotic motion’s ex-
the flawed coefficients. treme sensitivity to initial conditions can be seen by follow-
Fits without the axle friction term were also performed. ing such a group of phase points in time. Within a few drive
The fits compensated by increasing the viscous coefficiengeriods they become dispersed throughout the Poirsmre
with no significant changes to the other parameters. For thigon. Lyapunov spectra characterize the long term exponen-
data set] increased to 0.287s. The sloping dotted line in tial growth (and decayin the separation of very close phase
Fig. 7(b) represents the additional 0.15%viscous term. The  points. For our four data sets, they are given in columns eight
residuals for this fit are shown in Fig(dj and have an rms and nine of Table Il. The calculation, based on the algorithm
value of 0.78 rad’ The distinct sawtooth pattern in this plot of Eckmann and Ruell& is briefly described next.
is a result of greatly overestimatifigto take into accountthe  Aflow mapF(u) relates any phasg=(6;,w;) to its value
effects of axle friction. Ui+ 1=F(u;) one time step later. Althougk(u) cannot be
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expressed in closed form, it can be determined from th&The startingQ, is taken as the identity matrixThe product

equations of motio! It provides an alternate description of the Jacobian matrices then becomes

of the pendulum dynamics and is well suited for experimen-

tal determination of the Lyapunov exponents. A time step f

=T/10, that is, 1/10th of the drive period was acceptable for  Ju

our data sets, and thus the computation begins by construct-

ing and storing in computer memory 10 equally spaced PoinThe single remainin@y can be neglected when determining

caresections like those of Figs. 4 and 5. the eigenvalues of the product on the right-hand side. Be-
Starting from two slightly different phases on the samecayse all theR matrices are upper diagonal, the eigenvalues

Poincaresectionu; and u;=u;+éu;, the evolution of the  of their product are the product of their diagonal elements.

deviationdu; to its valuesu; 1 =u;j;1— U1 One time step  Equating this eigenvalue to the prediction, exdr), and

later—called a tangent mapping—can be modeled by a Taytaking natural logarithms then gives

lor expansion about the poing .

JF

ou
Un

JF

. 70 =QnRn"R2R;. (7)

up

N
1
JF A= lim = > InR*. 8
5Uj+1:%5Uj+“', (4) K N— oo NTi:l : ( )
where the X2 Jacobian matri¥F/du is evaluated ati; . The All reported exponents are from at least 1000 drive peri-
ellipsis represents terms containing higher order derivativegds following 100 periods used to let ti@ matrices stabi-
which become negligible in the limit of infinitesimal; . lize. For both experimental and simulated data sets, the indi-

The main calculation is to determine the Jacobian matrice¥idual exponents varied by0.03 s'* as the starting point of
at sequential points along a trajectory. The computation firsthe trajectory changed, which may be taken as a rough esti-
finds all phasesi; on a single Poincarsection within some mate of their uncertainty. ) )
fixed ellipse centered an . It then determines the deviations . N€ Lyapunov program was also applied to the simula-
éu; and the corresponding valués; , ; one time step later. tions. \.Nlthoué.axlg ftrlctgon, the Isumrqu tge Lyap_unolv EXpo-
The program then performs two linear regressions—one fopents Is predicted to be equal tol. or a simulation

660 and one fordw. If we let 6x represent eithef6 or dw, the created with a viscous damping coefficie_l‘lltlbf=0.10 s,
regressions can be expressed as the Lyapunov exponents wef@.61-0.71) s *. ForI'=0.30

s~ they were(0.63-0.93 s~ 1. Both results are in excellent
8Xj+ 1= ax+ Dy 80, + by, 0w+ Cypp( 56;)? agreement with this prediction. However, for the experimen-
2 tal results of Table II, the sum of the Lyapunov exponents is

T Cxwal 80) "+ Cxpol 90;) (90y). ®) systematically below-I" from the fit byytr?e amounpts 0.13,
The constant terma, are included to take into account pos- 0.14, 0.06, and 0.11°$ for the four data sets. The direction
sible offset errors iru; and u;,. The quadratic terms,  and rough size of this shift indicated it is likely due to the
account for second-order terms in the Taylor series expargffects of axle friction(Recall that” increases by about 0.15
sion and decrease the errors in the linear terms that arisg * if axle friction is modeled entirely by additional viscous
from the finite size of thesu used in the fit® The four = damping) The effect was also observed in the simulations.
coefficients of the linear termby,, by, , b,s, andb,,,,, are ~ When an axle friction contribution df’=0.8 s 2 was added
taken as estimates of the Jacobian matrix elements at tHe the two simulations above, both exponent sums decreased
point u; . by 0.09 s *.

A fixed neighborhood ellipse was used when finding the An additional check on the consistency of the Lyapunov
initial deviationsadu; ; radii were chosen at 0.15 rad éhand ~ €xponents and the fractal dimension is provided by the
0.30 rad/s inw. The number of deviations in each fit typi- Kaplan—Yorke conjectur& For a two-dimensional mapping,
cally varied between 30 and 80, although a point was occathe Lyapunov dimension is defined as
sionally eliminated(<1%) from the analysis when there N
were less than 10 deviations available. The rms deviations of ¢ —1.4+ 9
the fits described by E@5) were typically around 2 mrad for INo|
the 66 fit and 20 mrad/s for théw fit.

The product ofN sequential Jacobian matrices gives the
evolution of the smallesbu through N time periods. For
large enougtN, this product is predicted to have eigenvalues®. X . .
exp(\;N7) and expk,N7), where \; and \, are the dlme?smn g'VTnd'.n corI]L_Jmn Seven. H bointi H
Lyapunov exponents. The eigenvalues of this product are Before concluding this section, it is worth pointing out the

experimentally determined via—R decompositions of each value of multiple Poincarsections for our Lyapunov expo-
P y P nent calculations, which were initially attempted using only a

Jacobian matrices along the trajectory, sayUs, ... ,Un-  single Poincaresection. Monitoring intermediate computa-
The decomposition expresses a given matrix as a produglons and graphical displays showed that 10—20% of the tra-
QR of an orthonormal matriQ and an upper diagonal ma- ooy points hadu; . ; that were widely dispersed over the
trix R. For the Lyapunov algorithm, each Jacobian matriX iSpgincaresection. The local fits to determine the Jacobian
first multiplied on the right by the prio@ before performing matrix were noticeably poor in such cases with large devia-

the decomposition, tions between the measured and fittéd, , ;. Several at-

and is predicted to be equal to the capacity dimension. The
Lyapunov dimension is given in the last column of Table II
and is seen to be in reasonable agreement with the capacity

JF tempts were made to deal with the issue algorithmically, for
2l Qi-1=QiRi. (6)  example, by using smaller neighborhoods and/or including
Ui cubic and quartic terms in the fit, but the fits and resulting
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Lyapunov exponents remained problematic. It was only after”Electronic mail: deserio@phys.ufl.edu . o
using 10 Poincareections ¢=T/10) that poor Jacobian fits Randall D. 'ZEterJS’ ;ﬁh?s“clfzegd‘i'l”g&fg‘gssd on torsion and gravity in
S opposition,” Am. J. Phys63, - .
Werg eliminated and trustworthy 'Lyapunov exponents WEI’Ez‘]. E. Berger, Jr. and G. Nunes, “A mechanical duffing oscillator for the
obtained. Although further study is needed, it is at least ap- yndergraduate laboratory,” Am. J. PhygS, 841—846(1997).
parent that having multiple Poincasections simplifies the  3james A. Blackburn and Gregory L. Baker, “A comparison of commercial
algorithm. chaotic pendulums,” Am. J. Phy§6, 821—-830(1998.
“The Chaotic Pendulum and the Rotary Motion Sensor, Pasco Scientific,
10101  Foothills  Blvd., Roseville, CA  95747-7100, and

<WWw.pasco.com> .
IV. CONCLUSIONS 5The PCI-6601 timer/counter board, CB-68LP connector block, and R6868

. ) . i le, National | 11500 N. M Expwy., Austin, TX
This paper demonstrates the benefits of using a steppegg?gg_gggfani“ona n?ig;rze”tsr 500 opac Expwy., Austin,

motor running at constant angular velocity to drive a chaoticegyr stepper motor system uses a MO61-FD301 Slo-Syn stepper motor
pendulum. In particular, we have shown how to use COmmon (servo Systems, Co., 115 Main Rd., Montville, NJ 07045-0097 and
data acquisition hardware and software to synchronize angu<www.servosystems.com> ) and an Allegro 5804 BiMOS Il Unipolar
lar readings of the pendulum with the phase of the drive Stepper-Motor Translator/Driver, Allegro MicroSystems, Inc., 115 North-
system. The apparatus produces phase-space data suitable ;%St Eug%zworcesm“ MA °1|606 a”‘“*"W"il"-‘i‘_”egrloT'im-com; 11500 N
quantitative studies of nonlinear dynamics. Poincaretions \ve programming 'anguage, vational nstruments, :
be displaved and analvzed. and phase space mixin . Mopac Expvyy.,Austm,_TX 38759-3504 am_i/vww.nl.com> . o
can play y ' p p 9 Hhe University of Florida Advanced Physics Laboratory web site is at

strikingly demonstrated by viewing sequential Poincsee- <www.phys.ufl.edu/courses/phy4803L>
tions as a video loop. °The TISEAN nonlinear time series analysis package can be found at
Linear regression analysis was used to determine the pa=<www.mpipks-dresden.mpg.de/  ~tisean>

rameters of the model equations of motion and verify the The gnuplot plotting software web site is aww.gnuplot.info>

- 11 : “ . . -
two-term dissipation model. Poindasections from simula- Abraham Savitsky and Marcel J. E. Golay, “Smoothing and differentiation
. . : f data by simplified least dures,” Anal. Chaén.1627—
tions based on the fit parameters show remarkable agreement 33(?96@5“‘“ ted least squares procedures,” Anal. Chatn
With thqse from experimental data. The calculation of f':aCtallzJ. P. M. Heald and J. Stark, “Estimation of noise levels for models of
dimensions and Lyapunov spectra were performed using al-chaotic dynamical systems,” Phys. Rev. L&, 2366-23692000.
gorithms implemented in the LabVIEW programming lan- **There are small corrections tb=A cos¢ that depend on the drive ampli-
guage. Their dependence on the strength of the viscougudeA and the distance from the motor shaft to the guide fi@tecm for

damping coefficient was observed and found to be in reason-our setup. For the largest drive amplitude used£6 cm), there will be
able agreement with theoretical predictions a 0.15 cm downward shift in the midpoint of the oscillatidrom its value

for A=0) and an additional cos®2term of amplitude 0.15 cm.

Much more can be done with the apparatus. Studies Olf“G. L. Baker, J. P. Gollub, and J. A. Blackburn, “Inverting chaos: extracting

dynamma' noise In conjunction W'th noise reduction system parameters from experimental data,” Ch&0528—533(1996.
technique&" hold the promise of bringing the fractal nature ®Henry D. I. Abarbanel, Reggie Brown, John J. Sidorowich, and Lev Sh.
of the attractor to finer scales. In this regard, it would be Tsimring, “The analysis of observed chaotic data in physical systems,”
interesting to try to reach finer fractal scales by improve- Rev. Mod. Phys65, 1331-13921993. N o
ments in the apparatus, for example, better vibration isola-2--P- Eckmann, S. fo“ﬁsc.’” Kampho,,rSt'hD' Ruelle, and S. Ciliberto, *Li-
tion, smoother axle bearings, and higher rotary encoder resqrﬁpunov exponents from time series,” Phys. Re@44971-49791986.

. . . . (u) would also depend on the drive phage and for small enough
lution. Adding com_puter—controlled electromagnetic damping .o .d be given byE(u) = u+ 7G(u) where the¢ andw components o6
would make possible the study of the control of ch&S.  gre the right-hand sides of Eq@a) and (2b), respectively.

Analysis using time delay embeddiig* could also be per- %Reggie Brown, Paul Bryant, and Henry D. I. Abarbanel, “Computing the
formed and comparisons between the two representation&yapunov spectrum of a dynamical system from an observed time series,”
should help students gain a better understanding of both,Phys. Rev. A3, 278728061991 , _

Other potential functions could also be investigated by G. L. nger and J. P. GoI.Iulﬁ;haouc Dynamics: An Introductigorznd ed.
changing the springs, the pendulum mass, or the spring eqwcr(camb”dge U.P., Cambridge, 199€hap. 5.

o . ’ ! J. L. Kaplan and J. A. Yorke, “Chaotic behavior in multidimensional dif-
librium position. One could study hoyv the attractor'changes ference equations,” Lect. Notes Matfi30, 204-227(1979.

for a shallower double-well potential or for a triple- or 2gric J. Kostelich and Thomas Schreiber, “Noise reduction in chaotic time-
qguadruple-well potential. series data: A survey of common methods,” Phys. Re¥8F1752—1763

As an introductory experiment in nonlinear dynamics, this_(1993. ) _ )
version of the chaotic pendulum provides an excellent entryzgé'1 Glrlegbeoghgé( ?gégnd J. A. Yorke, "Controliing chaos,” Phys. Rev. Let.
point into the field. Additionally, modifications and enhan_ce-ZSGregory L. Baker, “Control of the chaotic driven pendulum.”Am. J. Phys.
ments to the hardware and software should make possible &3, 832-838(1995.
wide array of experiments and studies suitable at the unders. |. Baker and J. P. Gollulhaotic Dynamics: An Introductiornd ed.
graduate and graduate level. (Cambridge U.P., Cambridge, 199&hap. 6.
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