Savitsky-Golay Filters

Robert DeSerio

June 19, 2007

References

- 1. Abraham Savitsky and Marcel J. E. Golay, "Smoothing and differentiation of data by simplified least squares procedures," Anal. Chem. **36**, 1627–1639 (1964).
- 2. Manfred U.A. Bromba and Horst Ziegler, "Application hint for Savitsky-Golay digital smoothing filters," Anal. Chem. **53**, 1583–1586 (1981).
- 3. Horst Ziegler, "Properties of digital smoothing Polynomial (DISPO) filters," Appl. Spec. **35**, 88–92 (1981).

Consider a dynamical variable as a set of readings \mathbf{y}_i , i=1...N measured at fixed time interval $t, t+\tau, t+2\tau, ...$ Any point (not too near the beginning or end) can be taken as the origin of time t=0 and its measurement relabelled y_0 . This measurement, together with M additional measured y-values to each side will be used to determine best estimates of the y, dy/dt, and d^2y/dt^2 at t=0. The set will be labeled by indices m=-M, -M+1, ..., -1, 0, 1, ..., M-1, M for a total 2M+1 data points.

A polynomial fitting model is used $y(t) = \mathbf{a}_0 + \mathbf{a}_1 t + \mathbf{a}_2 t^2 + \dots$ up to order R. That is,

$$y(t) = \sum_{r=0}^{R} \mathbf{a}_r t^r \tag{1}$$

The χ^2 is given by

$$\chi^2 = \frac{1}{\sigma_y^2} \sum_{m=-M}^{M} (y(t_m) - \mathbf{y}_m)^2$$
 (2)

where

$$t_m = -M\tau, \dots -3\tau, -2\tau, -\tau, 0, \tau, 2\tau, 3\tau, \dots, M\tau$$
(3)

i.e., $t_m = m\tau$ and σ_y is the standard deviation of the measured \mathbf{y}_m , assumed to be constant. The best estimates of \mathbf{a}_r are then determined by a least squares fit, and the sought-after nth derivatives at t = 0 are then given by

$$y^{[n]} = n! \mathbf{a}_n \tag{4}$$

The least squares equations $d\chi^2/d\mathbf{a}_n = 0$ can be rewritten in the vector-matrix form

$$\mathbf{Y} = [\mathbf{X}]\mathbf{a} \tag{5}$$

where the elements of the column vector \mathbf{a} are the R+1 fitting coefficients \mathbf{a}_r , \mathbf{Y} is another column vector of R+1 elements given by

$$\mathbf{Y}_r = \sum_{m=-M}^{M} \mathbf{y}_m t_m^r \tag{6}$$

and [X] is an R+1 by R+1 square matrix with elements

$$[\mathbf{X}]_{nr} = \sum_{m=-M}^{M} t_m^{n+r} \tag{7}$$

The vector \mathbf{a} is then determined by finding $[\mathbf{X}]^{-1}$, the inverse of the matrix $[\mathbf{X}]$ so that

$$\mathbf{a} = [\mathbf{X}]^{-1}\mathbf{Y} \tag{8}$$

Moreover, the covariance matrix for the parameter estimates, $[\sigma_a^2]$ is given in terms of this inverse matrix

$$[\boldsymbol{\sigma}_a^2] = \sigma_y^2 [\mathbf{X}]^{-1} \tag{9}$$

Expressing all elements of Eq. 8 explicitly gives

$$\mathbf{a}_r = \sum_{n=0}^R [[\mathbf{X}]^{-1}]_{rn} \mathbf{Y}_n \tag{10}$$

and substituting Eq. 6 for \mathbf{Y}_n

$$\mathbf{a}_r = \sum_{n=0}^R \sum_{m=-M}^M [[\mathbf{X}]^{-1}]_{rn} \mathbf{y}_m t_m^n$$
(11)

Rearrange to get

$$\mathbf{a}_r = \sum_{m=-M}^{M} \left(\sum_{n=0}^{R} [[\mathbf{X}]^{-1}]_{nr} t_m^n \right) \mathbf{y}_m \tag{12}$$

Consider the \mathbf{y}_m -values as a column-vector \mathbf{y} of 2M+1 elements. The Savitsky-Golay filters can then be represented as a matrix $[\mathbf{c}]$ having R+1 rows and 2M+1 columns with elements given by the term in enclosed in parentheses above

$$[\mathbf{c}]_{rm} = \sum_{n=0}^{R} [[\mathbf{X}]^{-1}]_{rn} t_m^n$$
 (13)

so that Eq. 12 for the column vector **a** now becomes

$$\mathbf{a} = [\mathbf{c}]\mathbf{y} \tag{14}$$

The t_m are known ahead of time so the matrix [c] can be predetermined. To do so, first define [m] as a matrix of R+1 rows by 2M+1 columns having elements

$$[\mathbf{m}]_{rm} = m^r \tag{15}$$

i.e., the explicit form

$$[\mathbf{m}] = \begin{bmatrix} 1 & 1 & \dots & 1 & 1 & 1 & \dots & 1 & 1 \\ -M & -M+1 & \dots & -1 & 0 & 1 & \dots & M-1 & M \\ \vdots & \vdots & \dots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -M^R & -(M+1)^R & \dots & -1 & 0 & 1 & \dots & (M-1)^R & M^R \end{bmatrix}$$
(16)

With this matrix, it is then easy to show that the term t_m^n can be represented as the following matrix element

$$t_m^r = [[\mathbf{U}][\mathbf{m}]]_{rm} \tag{17}$$

where [U] is a square diagonal matrix representing the time units, i.e., having only nonzero elements for $[U]_{nn} = \tau^n$, for n = 0...R.

Then Eq. 13 becomes

$$[\mathbf{c}] = [\mathbf{X}]^{-1}[\mathbf{U}][\mathbf{m}] \tag{18}$$

Furthermore, the square matrix [X] given by Eq. 7 can also be represented for computational purposes in terms of [m] and [U]

$$[\mathbf{X}] = [\mathbf{U}][\mathbf{m}][\mathbf{m}]^T [\mathbf{U}]^T \tag{19}$$

where the superscript T indicates the transpose of the matrix. (Thus, $[\mathbf{m}]^T$ has 2M + 1 rows and R + 1 columns with elements given by $[[\mathbf{m}]^T]_{mn} = [\mathbf{m}]_{nm}$, and $[\mathbf{U}]^T = [\mathbf{U}]$ because it is square diagonal.)

The inverse matrix $[\mathbf{X}]^{-1}$ can then be represented

$$[\mathbf{X}]^{-1} = [\mathbf{U}]^{-1}[[\mathbf{m}][\mathbf{m}]^T]^{-1}[\mathbf{U}]^{-1}$$
 (20)

where the only nonzero elements of the inverse units matrix $[\mathbf{U}]^{-1}$ are on the diagonal and given by $[\mathbf{U}]_{nn}^{-1} = 1/\tau^n$.

Using this in Eqs. 18 and 9 gives the finished form for the filter coefficients

$$[\mathbf{c}] = [\mathbf{U}]^{-1}[[\mathbf{m}][\mathbf{m}]^T]^{-1}[\mathbf{m}]$$
(21)

and the covariance matrix

$$[\boldsymbol{\sigma}_a^2] = \sigma_u^2 [\mathbf{U}]^{-1} [[\mathbf{m}][\mathbf{m}]^T]^{-1} [\mathbf{U}]^{-1}$$
(22)

For our rotary encoder, each y-count represents an angle of $\delta_y = 2\pi/1440$ rad. For determining y, dy/dt, and d^2y/dt^2 , the filter coefficients can be made more efficient by applying the factor δ_y to all Savitsky-Golay coefficients, which can then be directly applied to the rotary

encoder count. Also remember to apply a factor of 2 to the row of coefficients for \mathbf{a}_2 to take into account $d^2y/dt^2 = 2\mathbf{a}_2$.

If the measurement probability distribution for the rotary count is assumed uniform with a width of $\pm 1/2$ a count, the standard deviation is $\sqrt{1/12}$ counts or $\sigma_y = \delta_y/\sqrt{12}$. This is needed to determine the covariance matrix.

The LabVIEW programs for the Savitsky-Golay filtering are SavGolRaw.vi, which gives $[[\mathbf{m}][\mathbf{m}]^T]^{-1}[\mathbf{m}]$ and SavGolCoef.vi, which gives the zeroth, first, and second derivative coefficients, i.e., the first, second, and third row of $\delta_y[\mathbf{U}]^{-1}[[\mathbf{m}][\mathbf{m}]^T]^{-1}[\mathbf{m}]$, with the third row multiplied by 2. The Excel spreadsheet SG.xls shows graphs of the 33-point quartic polynomial filters. It also gives the covariance matrix for the filter coefficients and the uncertainties in the filtered y, dy/dt, and d^2y/dt^2 .