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Consider a dynamical variable as a set of readings yi, i = 1...N measured at fixed time
interval t, t + τ, t + 2τ, ... Any point (not too near the beginning or end) can be taken as
the origin of time t = 0 and its measurement relabelled y0. This measurement, together
with M additional measured y-values to each side will be used to determine best estimates
of the y, dy/dt, and d2y/dt2 at t = 0. The set will be labeled by indices m = −M,−M +
1, ...,−1, 0, 1, ..., M − 1,M for a total 2M + 1 data points.

A polynomial fitting model is used y(t) = a0 + a1t + a2t
2 + ... up to order R. That is,

y(t) =
R∑

r=0

art
r (1)

The χ2 is given by

χ2 =
1

σ2
y

M∑

m=−M

(y(tm)− ym)2 (2)

where
tm = −Mτ, ...− 3τ,−2τ,−τ, 0, τ, 2τ, 3τ..., Mτ (3)

i.e., tm = mτ and σy is the standard deviation of the measured ym, assumed to be constant.
The best estimates of ar are then determined by a least squares fit, and the sought-after nth
derivatives at t = 0 are then given by

y[n] = n!an (4)
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The least squares equations dχ2/dan = 0 can be rewritten in the vector-matrix form

Y = [X]a (5)

where the elements of the column vector a are the R + 1 fitting coefficients ar, Y is another
column vector of R + 1 elements given by

Yr =
M∑

m=−M

ymtrm (6)

and [X] is an R + 1 by R + 1 square matrix with elements

[X]nr =
M∑

m=−M

tn+r
m (7)

The vector a is then determined by finding [X]−1, the inverse of the matrix [X] so that

a = [X]−1Y (8)

Moreover, the covariance matrix for the parameter estimates, [σ2
a] is given in terms of this

inverse matrix
[σ2

a] = σ2
y[X]−1 (9)

Expressing all elements of Eq. 8 explicitly gives

ar =
R∑

n=0

[[X]−1]rnYn (10)

and substituting Eq. 6 for Yn

ar =
R∑

n=0

M∑

m=−M

[[X]−1]rnymtnm (11)

Rearrange to get

ar =
M∑

m=−M

(
R∑

n=0

[[X]−1]nrt
n
m

)
ym (12)

Consider the ym-values as a column-vector y of 2M + 1 elements. The Savitsky-Golay
filters can then be represented as a matrix [c] having R + 1 rows and 2M + 1 columns with
elements given by the term in enclosed in parentheses above

[c]rm =
R∑

n=0

[[X]−1]rnt
n
m (13)

so that Eq. 12 for the column vector a now becomes

a = [c]y (14)
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The tm are known ahead of time so the matrix [c] can be predetermined. To do so, first
define [m] as a matrix of R + 1 rows by 2M + 1 columns having elements

[m]rm = mr (15)

i.e., the explicit form

[m] =




1 1 ... 1 1 1 ... 1 1
−M −M + 1 ... −1 0 1 ... M − 1 M

...
... ...

...
...

... ...
...

...
−MR −(M + 1)R ... −1 0 1 ... (M − 1)R MR




(16)

With this matrix, it is then easy to show that the term tnm can be represented as the following
matrix element

trm = [[U][m]]rm (17)

where [U] is a square diagonal matrix representing the time units, i.e., having only nonzero
elements for [U]nn = τn, for n = 0...R.

Then Eq. 13 becomes
[c] = [X]−1[U][m] (18)

Furthermore, the square matrix [X] given by Eq. 7 can also be represented for computa-
tional purposes in terms of [m] and [U]

[X] = [U][m][m]T [U]T (19)

where the superscript T indicates the transpose of the matrix. (Thus, [m]T has 2M + 1 rows
and R + 1 columns with elements given by [[m]T ]mn = [m]nm, and [U]T = [U] because it is
square diagonal.)

The inverse matrix [X]−1 can then be represented

[X]−1 = [U]−1[[m][m]T ]−1[U]−1 (20)

where the only nonzero elements of the inverse units matrix [U]−1 are on the diagonal and
given by [U]−1

nn = 1/τn.
Using this in Eqs. 18 and 9 gives the finished form for the filter coefficients

[c] = [U]−1[[m][m]T ]−1[m] (21)

and the covariance matrix

[σ2
a] = σ2

y[U]−1[[m][m]T ]−1[U]−1 (22)

For our rotary encoder, each y-count represents an angle of δy = 2π/1440 rad. For deter-
mining y, dy/dt, and d2y/dt2, the filter coefficients can be made more efficient by applying the
factor δy to all Savitsky-Golay coefficients, which can then be directly applied to the rotary



Savitsky-Golay Filters SG 4

encoder count. Also remember to apply a factor of 2 to the row of coefficients for a2 to take
into account d2y/dt2 = 2a2.

If the measurement probability distribution for the rotary count is assumed uniform with

a width of ±1/2 a count, the standard deviation is
√

1/12 counts or σy = δy/
√

12. This is
needed to determine the covariance matrix.

The LabVIEW programs for the Savitsky-Golay filtering are SavGolRaw.vi, which gives
[[m][m]T ]−1[m] and SavGolCoef.vi, which gives the zeroth, first, and second derivative coef-
ficients, i.e., the first, second, and third row of δy[U]−1[[m][m]T ]−1[m], with the third row
multiplied by 2. The Excel spreadsheet SG.xls shows graphs of the 33-point quartic polyno-
mial filters. It also gives the covariance matrix for the filter coefficients and the uncertainties
in the filtered y, dy/dt, and d2y/dt2.


