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Objective

Both regular and chaotic motion for a spring-
pendulum system will be measured and an-
alyzed. You will learn in your investigations
how to recognize systems for which chaotic be-
havior can be expected, how to display data
arising from these systems, how to quantify
features of the dynamical variables involved,
and how to perform computer simulations and
comparisons with experimental data.
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Introduction

The harmonic oscillator is a paradigm of pre-
dictability. The resonance response of a har-
monic oscillator can be exploited to make

clocks accurate to 1 part in 1014. Har-
monic oscillations are normally observed in
systems operating near equilibrium and gov-
erned by linear or “Hooke’s law” restoring
forces. Nonetheless, for small enough excur-
sions from equilibrium, systems governed by
nonlinear restoring forces can also display har-
monic oscillations. A good example is the
pendulum. When its motion stays near equi-
librium (at θ = 0), the nonlinear restoring
torque (proportional to sin θ) behaves like a
linear restoring torque (proportional to θ) and
the pendulum executes simple harmonic mo-
tion. However, when driven strongly, the ex-
cursions from equilibrium can grow into re-
gions where the nonlinearity becomes impor-
tant. The predictable pattern of repeating
oscillations might give way to chaos—non-
repeating motion characterized by a particular
kind of unpredictability.

Chaotic systems are completely determin-
istic. For example, our apparatus is governed
by equations easily derived from F = ma. The
unpredictability arises not from any inherent
randomness but rather from an extreme sen-
sitivity to initial conditions. Harmonic oscil-
lators ultimately settle on some well defined
state of motion. Momentarily perturbed from
this “steady state” motion, they will return
to it according to a predictable “transient”
time constant. In contrast, perturb a nonlin-
ear oscillator and the difference between the
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perturbed and unperturbed states of motion
can grow exponentially.

You will investigate just such a nonlinear
oscillator. Illustrated in Fig. 1, this spring-
pendulum apparatus can be configured to dis-
play both chaotic and non-chaotic behavior.
The non-chaotic data sets will be graphed and
analyzed using traditional techniques. The
chaotic data sets will be graphed in Poincaré
sections and quantified by fractal dimensions
and Lyapunov exponents.

Exercise 1 The applicability of the superposi-
tion principle is the distinguishing property be-
tween linear and nonlinear systems. Show that
solutions to the pendulum equation, d2θ/dt2 =
−(g/l) sin θ, obey the superposition principle
only if one can assume sin θ = θ throughout
the motion. That is, if θ1(t) and θ2(t) are so-
lutions, show that θ1 + θ2 is a solution when
sin θ = θ, but not otherwise.

Apparatus

The apparatus consists of a physical pendu-
lum coupled to a drive motor using a pair
of springs, a pulley, and string. The physi-
cal pendulum consists of an aluminum disk, a
removable pendulum mass, a pulley, and an
axle. The axle and pulley are those of the
Pasco Rotary Motion Sensor which has a ro-
tary encoder for measuring the pendulum an-
gle. A computer equipped with a National In-
struments PCI 6601 timer/counter board con-
trols the drive motor and reads the rotary en-
coder. The computer is also used to save, dis-
play, and analyze the resulting data.

The drive system consists of a stepper mo-
tor, shaft, and controller. A uniform pulse
train is sent by the computer to the controller
which sequentially energizes the various motor
windings to effect a single angular step of the
motor shaft for each pulse. The stepper motor
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Figure 1: The chaotic pendulum apparatus. Not
shown: electronics, supports, and the rotary en-
coder housing the axle.

requires 200 pulses to complete one revolution.
As the stepper motor rotates, the driven end
of the spring oscillates, keeping the pendulum
in motion.

For measuring the pendulum angle, the ro-
tary encoder emits logic pulses (1440/rev) on
two separate phonojacks for clockwise and
counterclockwise rotations. The computer is
capable of direct up-down counting with these
signals. The count, directly proportional to
the rotation angle, is read with every stepper
motor pulse and saved into an array. Because
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the same pulses initiate a reading of the angu-
lar count and step the motor, the pendulum
angle and the drive angle are simultaneously
determined.

The raw counter readings, spaced 1/200th
of the drive period apart in time, are scaled
and numerically smoothed and differentiated
using Savitsky-Golay filtering.1 The filters are
equivalent to a separate least squares fit to a
polynomial for each data point with the fitting
region symmetrically surrounding the point.
They are used to determine the angle θ, the
angular velocity ω = dθ/dt, and the angular
acceleration α = d2θ/dt2.

Equation of Motion

As shown in Fig. 1, the pendulum angle θ is
defined from the vertical with θ = 0 for the
straight-up, or inverted, position. Clockwise
angles are taken positive.

Also illustrated on Fig. 1, the drive phase φ
is taken as the angle of the motor shaft from
vertical. The uniform pulse train sent to the
motor has an adjustable rate and will cause
the shaft to rotate at a constant angular ve-
locity Ω so that

φ = Ωt (1)

where the shaft is assumed to be straight up at
t = 0. Then, the displacement d of the driven
end of the spring can be taken to be2

d = A cos Ωt (2)

1Abraham Savitsky and Marcel J. E. Golay,
Smoothing and differentiation of data by simplified
least squares procedures, Analytical Chemistry, 36 pp
1627-39, 1964.

2With the distance from the center of the drive mo-
tor to the guide hole given by L, the driven end of the
spring moves according to d = A cos φ−A2

4L (1−cos 2φ).
The offset term, −A2/4L, is typically no larger than
2 mm and the term proportional to cos 2φ causes a
small amplitude driving oscillation at an angular fre-
quency of 2Ω which will be ignored in the analysis.

Figure 2: Near scale drawing of the potential V (θ)
for our system.

The disk, pulley and axle have a moment
of inertia I0. They are well balanced and
cause virtually no torque in a gravitational
field. The pendulum mass m placed a distance
l from the rotation axis produces a gravita-
tional torque mgl sin θ. It also increases the
moment of inertia to I = I0 + Im +ml2, where
Im is its principal moment of inertia.

The string between the two springs rides
over the pulley without slipping, and the rela-
tively weak springs stay elongated at all times.
The springs/strings/pulley arrangement is ad-
justed as described later so that the springs
have equal stretch (provide equal tension)
when θ = 0 and d = 0. In this inverted config-
uration, the pendulum would have no torque
acting on it, but it would be in an unstable
equilibrium, ready to fall to the left or right.

Exercise 2 (a) Show that the torque arising
from the two springs and from gravity acting
on the pendulum mass is given by

τc = −2kr2θ + krd + mgl sin θ (3)

where k is the force constant for each spring
and r is the pulley radius. (b) Show that for
d = 0, (i.e., A = 0, which means the pendulum
is undriven) the potential energy is given by

V = kr2θ2 + mgl cos θ (4)
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(c) Show that for mgl ≤ 2kr2, V (θ) has one
minimum at θ = 0; and that for mgl > 2kr2,
V (θ) has a maximum at θ = 0 and two equally
deep minima at ±θe where

sin θe

θe

=
2kr2

mgl
(5)

As shown in Fig. 2, our system potential has
a double well shape.

Dissipation

The torque τc (Eq. 3) arises from the conserva-
tive forces of gravity and Hooke’s law. There
are also nonconservative torques due to eddy
current damping and axle friction through
which energy is continually drained or dissi-
pated from the system. If this energy is not
continually replenished, for example, by the
stepper motor drive system, the motion slows
and ultimately stops. A damping torque pro-
portional to and opposite the angular velocity
is created by induced eddy-currents when a
neodymium magnet is brought near the rotat-
ing aluminum disk. This torque can be mod-
eled as −b ω. Friction, arising largely in the
axle bearings, causes an additional damping
torque of constant magnitude b′ that is always
opposite the angular velocity. This “axle fric-
tion” torque can be modeled −b′ sgn ω, where
sgn ω = ω/|ω|. Thus, the net nonconservative
torque is given by

τf = −b ω − b′ sgn ω (6)

This form for the damping torque will be ver-
ified by fits of data taken from the appara-
tus. It will also be used in simulations. The
(probably small) effect of static friction as
the pendulum momentarily stops each time
ω goes through zero has not been explored.
Occasionally, the entire axle friction term will
be dropped in this writeup for readability or

whenever analytic solutions are desired. (In-
cluding axle friction makes the equation of mo-
tion nonlinear and the solutions are not ex-
pressible in closed form.)

Exercise 3 Show that the equation of motion
for the apparatus can be written as an au-
tonomous3 set of three first order differential
equations.

θ̇ = ω (7)

ω̇ = −Γω − Γ′sgn ω − κθ (8)

+ µ sin θ + ε cos φ

φ̇ = Ω (9)

where a dot over a variable represents its time
derivative and

Γ = b/I (10)

Γ′ = b′/I (11)

κ = 2kr2/I (12)

µ = mgl/I (13)

ε = krA/I (14)

Linear Dynamics

Despite being nonlinear, the system can still
behave like a harmonic oscillator as long as
the total energy remains small compared to
the height of the potential barrier at θ = 0.

Exercise 4 (a) Show that a Taylor expan-
sion4 of V (Eq. 4) about either minimum θ0 =
±θe gives

V = kr2θ2
e + mgl cos θe (15)

+
1

2
(2kr2 −mgl cos θe)(θ − θ0)

2

+ higher order terms

3Autonomous means that time does not appear ex-
plicitly on the right sides of the equations.

4The first three terms are given by f(x) = f(x0) +
f ′(x0)(x− x0) + 1

2f ′′(x0)(x− x0)2, where primes indi-
cate first and second derivatives with respect to x.
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Why is the first order term in (θ−θ0) miss-
ing? (b) Show that keeping only up to the
quadratic term, (and taking Γ′ = 0), the equa-
tions of motion can be written

θ̈′ + Γθ̇′ + Ω2
0θ
′ = ε cos Ωt (16)

where a double dot over a variable represents
a second derivative with respect to time, θ′ =
θ − θ0 is the angular displacement from equi-
librium, and

Ω0 =
√

κ− µ cos θe (17)

is the natural resonance frequency. As dis-
cussed below, Eq. 16 is the standard driven
harmonic oscillator equation.

Although it is required for chaotic motion,
the pendulum mass m can be removed, turn-
ing the apparatus into an excellent example
of a harmonic oscillator even for large ampli-
tude oscillations. The equation of motion with
m = 0 (and Γ′ = 0) can be expressed

θ̈ + Γθ̇ + Ω2
0θ = ε cos Ωt (18)

where Ω2
0 = κ, and Γ, κ, and ε are given by

Eqs. 10, 12 and 14 (with I = I0).

Exercise 5 (a) Show that for ε = 0 (undriven
system), Eq. 18 has an underdamped (Γ/2 <
Ω0) solution of the form

θ = Ce−
1
2
Γt cos(Ω′t + δ) (19)

where
Ω′ =

√
Ω2

0 − Γ2/4 (20)

is the oscillation frequency (pulled slightly be-
low the natural resonance frequency Ω0 for
weak damping). Although you are not asked to
do so here, C and δ can be determined from
the initial conditions on θ and θ̇ at t = 0. (b)
Show that for a nonzero ε (driven system), the
solution to Eq. 18 is the sum of Eq. 19 (called

the homogeneous or transient solution) and a
particular or steady state solution given by

θ = C ′ cos(Ωt + δ′) (21)

where

C ′ =
ε√

(Ω2
0 − Ω2)2 + Ω2Γ2

(22)

and

tan δ′ =
ΩΓ

Ω2 − Ω2
0

(23)

Non-linear Dynamics

For chaotic motion, there are no analytic so-
lutions, no closed form expressions for θ vs. t
like Eqs. 19 and 21. So how can the measure-
ments be analyzed? The following few sec-
tions present some of the techniques for rep-
resenting, analyzing, and comparing chaotic
data sets.

Phase space

The Poincaré-Bendixson theorem states that
at least three time dependent (dynamical)
variables are required for a system to display
chaotic behavior. Our system is at this mini-
mum as demonstrated by the three equations
of motion, Eqs. 7-9, one for each variable.
Consider carefully how θ, ω, and φ are the
only time-dependent variables in the system,
how they are independent from one another,
and how they completely describe the state of
the system at any particular point in time.

θ — Angle of the pendulum.

ω — How fast and in what direction the
pendulum is moving.

φ — Angle of the drive shaft.
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The triplet of values (θ, ω, φ) can be consid-
ered a point u in a three dimensional coordi-
nate system called phase space.

u =




θ
ω
φ


 (24)

As the three variables change continuously in
time, the phase point describing the system
moves continuously through phase space. The
path through phase space is called a trajectory
and a plot of a trajectory is called a phase plot.

The trajectory is predicted by Eqs. 7-9
which can be expressed compactly using the
vector notation

u̇ = G(u) (25)

where

u̇ =




θ̇
ω̇

φ̇


 (26)

and G(u) is a 3-vector function of the three
dynamic variables.

G(u) =




Gθ(θ, ω, φ)
Gω(θ, ω, φ)
Gφ(θ, ω, φ)


 (27)

For our system

G(u) = (28)




ω
−Γω − Γ′sgn ω − κθ + µ sin θ + ε cos φ

Ω




For any point u in phase space, the equa-
tion u̇ = G(u) predicts the value of u a short
time later. For a small enough time step τ , the
future phase can be predicted in terms of the
present phase via the definition of the deriva-
tive, u̇ = (u(t + τ)− u(t))/τ , as

u(t + τ) = u(t) + τ G(u(t)) (29)

φ

ω

θ

Figure 3: The three-dimensional phase space for
the driven nonlinear oscillator. Each rectangle
represents a θ-ω plane at a different drive phase
φ. A darkened plane is shown for one value of φ.

To determine u over a longer time interval,
this equation would be iterated using a “small
enough” time step τ . With certain refine-
ments to improve accuracy and speed, this
is how computer simulations and differential
equation solvers work.

The phase space coordinate system can be
represented as a continuous set of θ-ω planes
encircling a common axis as shown in Fig. 3.
Each plane is in one-to-one correspondence
with the drive phase φ. One turn of the drive
system can be thought of as forcing one “or-
bit” through the planes.

C.Q. 1 For undriven motion, φ is not a dy-
namical variable for the system and phase
space becomes two-dimensional—a single θ-ω
plane. Show that the trajectory for undamped,
undriven harmonic oscillations lies on an el-
lipse in the θ-ω phase plane. What relative
axes scaling is needed to make the ellipse circu-
lar? What determines the direction of motion
around the ellipse? What determines the time
it takes to go around the ellipse? How do the
trajectories depend on the initial conditions?
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Hand sketch at least two different ellipses on
the same θ-ω plane.

C.Q. 2 How does the addition of damping
change the trajectories above? How do the
trajectories depend on the initial conditions?
Hand sketch at least two different trajectories
on the same θ-ω plane. Where on the phase
plane do all trajectories, no matter the initial
conditions, ultimately end up?

C.Q. 1 demonstrates that oscillations at
constant amplitude have a circular trajectory
in an appropriately-scaled θ-ω phase plane,
while C.Q. 2 demonstrates that the trajectory
spirals into the point (0, 0) when damping is
present. What do trajectories look like in a
driven system, for which phase space is three
dimensional—like that of Fig. 3? Figure 4(a)
shows a plot of θ vs. t for a driven harmonic
oscillator. The fast oscillations at the begin-
ning of the curve correspond to the transient
behavior of Eq. 19. These fast oscillations are
superimposed on the slower steady state oscil-
lations corresponding to Eq. 21. In plot (b),
this motion is shown as a three dimensional
phase space trajectory. Starting at the end-
point on the left, the fast transient oscillations
become the corkscrew motion about the circu-
lar pattern, on which the trajectory repeatedly
cycles and representing the steady state oscil-
lations. The steady state orbit is not quite
circular, but rides on the surface of a torus
as shown in plot (c). With proper scaling, a
cross section of the torus would have the two-
dimensional circular trajectory of C.Q. 1. But
now, while the trajectory cycles around the
circle in the θ-ω planes, it simultaneously cy-
cles through the drive phase φ—around the
long direction of the torus.

Of course, other trajectories are also possi-
ble. For example, the natural frequency Ω0

might be closer to or lower than the drive fre-
quency Ω rather than 20 times higher as in

Figs. 4(a) and (b). Or, the damping might be
weaker or stronger. These variations require
a change in the system parameters. The only
variations possible in a given system depend
on how the motion is started and determine
whether the transient motion starts off large
or small. In contrast, the steady state trajec-
tory does not depend on initial conditions—it
is an invariant of the system. It is an invari-
ant because the amplitude and phase relations
(Eqs. 22 and 23) specify a single closed curve
through phase space. Because the phase point
repeatedly cycles around a closed curve, the
motion is called a limit cycle. The motion re-
peats after a single drive period because the
steady state oscillation frequency within the
θ-ω planes is the same as the drive frequency
through them. Thus, the closed curve is a sin-
gle loop and called a period-1 limit cycle. Not
possible with a linear oscillator, our apparatus
can display motion that repeats only after the
drive motor has gone around five (or more)
times. This would be called a period-5 (or
higher) limit cycle.

Attractors

The single invariant curve representing the
steady state motion of a driven harmonic os-
cillator is called an attractor for that (three
dimensional) system. The final ending point
(0, 0) for the damped undriven motion of
C.Q. 2 is an attractor for that (two dimen-
sional) system. Attractors are the ultimate
fate of the trajectories after transients have
decayed away.

Nonlinear oscillators also have attractors.
For our system, the type and number of attrac-
tors that occur depend on the drive frequency
Ω, its amplitude ε, and the other system pa-
rameters κ, µ, Γ, and Γ′.

At low drive amplitudes, only two steady
state motions are possible—near harmonic os-
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Figure 4: (a) θ vs. t for a linear oscillator. (b) The same data represented as a phase space trajectory.
(c) The dark curve represents the steady state trajectory (attractor) for a linear oscillator. It lies on
a torus.

cillations centered about one or the other equi-
librium point. Each of these motions corre-
sponds to a period-1 limit cycle attractor. An
interesting question not relevant to linear os-
cillators is to determine which of the two at-
tractors the motion will end on. The initial
conditions do, in fact, unambiguously deter-
mine which attractor the motion will end on.
Thus, a basin of attraction can be associated
with each attractor, and is defined as those
phase points that lead to motion on that at-
tractor. For nonlinear systems, the shapes of
these basins can be quite complex.

At larger drive amplitudes, chaotic motion
can occur for which the trajectory never re-
peats. The phase point cycles through the
full set of θ-ω planes once per drive period
yet never hits the same point twice. More-
over, an attractor still describes the ultimate
motion. As with the linear oscillator, arbi-
trary initial conditions cause motion off the
attractor, but after this transient motion de-
cays away, the system phase point ultimately
moves on a subset of points in phase space.
The subset is the attractor, and determining
its shape and properties are important parts
of the analysis.

One trivial property is that it must lie
within a bounded three dimensional volume of

phase space. Under most operating conditions
the bounds for θ are |θ| < 2π (the pendulum
never goes over the top twice in the same di-
rection). The range of φ is also bounded; its
extents can be taken from 0 to 2π. And ω
must be bounded as well. The kinetic energy
Iω2/2 will not grossly exceed the largest pos-
sible potential energy k(rθ)2 with θ ≈ 2π.

Just as a point in phase space represents
the state of a system, a volume in phase space
represents a set of states. For every value of
(θ, ω, φ) in that volume, the relation u̇ = G(u)
provides unique values for the derivatives of
each variable. The derivatives specify a unique
flow for each trajectory point so that as the
trajectories evolve, they can converge toward
one another and they can diverge away from
one another but they can never cross. A cross-
ing would require two different values for u̇ at
the same value of u, forbidden under the as-
sumption that the pendulum is governed by
u̇ = G(u).

As outlined in the appendix on the Lya-
punov exponent algorithm, one can prove that
any finite volume of phase points simulta-
neously evolving according to Eq. 25 (with
Eq. 28) will exponentially decay to zero with
a rate constant given by −Γ. Thus, consider
a set of initial conditions filling a finite vol-
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ume of phase space that completely covers the
attractor. As the transients decay away, the
phase points must all come to lie on the at-
tractor while at the same time the volume
of the attractor must exponentially decay to
zero. This is possible if the attractor con-
sists of any number of limit cycles because
a limit cycle is a finite length curve through
phase space and thus has zero volume. How-
ever, limit cycles are not the only possibility.
In fact, chaotic motion never repeats. Con-
sequently, the attractor on which it lies can
not be a limit cycle and must be a curve with
an infinite length. Thus, the chaotic attrac-
tor must be a set of points with an infinite
length but zero volume. How can this be? A
two dimensional surface of arbitrary shape in
phase space is a set of points with this prop-
erty, but it will turn out that our attractor
is not any kind of oddly shaped area in phase
space. You will determine that the dimension-
ality of our attractors is between that of an
area (a two dimensional object) and a volume
(a three dimensional object). Chaotic attrac-
tors apparently have strange shapes with frac-
tional dimensions (fractals). Fractal attrac-
tors are called strange attractors.

Poincaré sections

We will only be able to measure a subset of
the complete attractor—a very long trajec-
tory. Overnight runs of 50,000 drive cycles
are typical for our apparatus. Such a long tra-
jectory is nearly enough to completely repre-
sent the attractor and we will often not dis-
tinguish between the trajectory and the at-
tractor. However, you should always keep in
mind that the full attractor has infinitely more
points than any finite trajectory.

A long trajectory is difficult to display on a
two-dimensional medium such as a computer
screen or a piece of paper. One way to achieve

ω

θ

Figure 5: A Poincaré section from the apparatus
of Fig. 1.

Figure 6: A sequence of Poincaré sections ar-
ranged to illustrate the complete three dimen-
sional attractor in the phase space coordinate sys-
tem of Fig. 3

a compact representation of a very long tra-
jectory is with a Poincaré surface of section
(Poincaré section for short)—so named be-
cause it is a cross section of the full three-
dimensional trajectory. In a Poincaré section,
θ and ω are recorded as a single point each
time the trajectory pierces through the θ-ω
plane corresponding to one value of the drive
phase φ. Thus, once per drive period, a new
(θ, ω) point is added to the plot as the trajec-
tory repeatedly pierces that particular plane.

A Poincaré section from our apparatus is
shown in Fig. 5. A collection of Poincaré sec-
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tions at sequential drive phases φ is a rep-
resentation of the complete attractor. Fig-
ure 6 shows a three dimensional arrangement
of 20 Poincaré sections illustrating the attrac-
tor. Several sequences of 40 Poincaré sections
can be seen as movie loops on the laboratory
web page.

Fractal dimension

The attractor for chaotic motion is called
“strange” because it has a strange shape called
a fractal. A fractal is a self-similar object,
meaning it looks similar on ever decreasing
scales. One invariant of a strange attractor is
its fractal dimension. Since our attractor is di-
mensionally the same as an extruded Poincaré
section, its fractal dimension is one plus the
fractal dimension of any of its Poincaré sec-
tions. Consequently, it is the fractal dimen-
sion of a Poincaré section that will be sought.
While there are several different varieties of
fractal dimensions, the most common is the
capacity dimension. The box-counting algo-
rithm used to determine the capacity dimen-
sion also demonstrates the self similarity of a
fractal Poincaré section.

The algorithm for a two dimensional frac-
tal is as follows. Determine the bounds in the
plane over which the fractal extends. Divide
that area into M×rM grid boxes (r = 1 is fine
but not required). Count the number of grid
boxes N covering any part of the fractal. Re-
peat the procedure as M is increased, making
the grid boxes smaller and smaller. The slope
of the log N vs. log M graph (in the limit as
M →∞) is the capacity dimension.

The procedure above is for the idealized case
of an infinite trajectory—a Poincaré section
from the complete attractor. It will need to
be modified for an experimental Poincaré sec-
tion obtained from a finite trajectory. The
phrase “covering any part of the fractal” is

modified to “having at least one phase point.”
The phrase “in the limit as M →∞” must be
dropped because if the size of boxes become
too small, N will saturate at the total number
of phase points in the Poincaré section. Thus,
one must simply check that the graph of log N
vs. log M appears to be a straight line before
N saturates. For our 50,000-point Poincaré
sections, r = 1/2 (twice as many grid lines in
θ as in ω) and M in a range from 10 to 300 or
so works well.

C.Q. 3 The ordinary geometric dimensions
of a point, line, area, and volume are 0, 1, 2,
and 3, respectively. (a) Explain how the box-
counting algorithm would give a dimension of
0, 1, and 2, respectively, for a very large num-
ber of phase points distributed uniformly at a
point, along a line, and over an area in the θ-
ω plane. (b) When there are two or more such
objects, e.g., points and lines or lines and ar-
eas, explain why the algorithm should give the
dimension of the highest dimensional object in
the set.

Lyapunov exponents

Fractal attractors are one hallmark of chaotic
behavior. Extreme sensitivity to initial con-
ditions is another. It is typified by an expo-
nential growth in the phase-space separation
of two trajectories which start out very near
one another. Actually, at each point u on the
attractor there are three different directions
(global Lyapunov vectors) êi that characterize
three different exponential time dependencies
that occur. Any phase point u′ near u having
a small difference

δu = u′ − u (30)

that is parallel to one of these directions,
evolves with a single exponential time depen-
dence characterized by one of three Lyapunov
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exponents. In other words, any initial sepa-
ration δu(0) in the direction of a particular
Lyapunov vector êi evolves according to

|δu(t)| = |δu(0)|eλit (31)

where λi is the corresponding Lyapunov expo-
nent for the particular direction êi.

The λi can be positive, negative, or zero.
A negative value corresponds to a direction
in which the separation decays over time. A
zero value corresponds to a direction in which
the separation remains constant. And for
chaotic motion, at least one of the λi must
be positive—corresponding to a direction in
which the separation grows. No matter how
small, any two initial conditions will always
have some component along the expanding di-
rection, and the trajectories evolving there-
from will always diverge.

Small random forces and torques acting on
the pendulum (e.g., from the pickup of vibra-
tions in the pendulum supports and from small
variations in friction), cause small perturba-
tions to the phase space trajectory. These
perturbations then also evolve according to
the system dynamics and are called dynami-
cal noise. Extremely close phase points, which
might take a long time to separate in a noise-
less system, do so more quickly in the presence
of dynamical noise. A study of the effects of
dynamical noise would make an interesting ad-
vanced project. However, the dynamical noise
in our apparatus is small enough that many
predictions made assuming it is negligible will
still be valid.

One of the three Lyapunov directions and
its corresponding exponent is essentially triv-
ial and easily visualized. Imagine two identi-
cal trajectories differing only in that one leads
the other by some small time interval δt. For
small enough δt, Eq. 25 implies their phases
will differ by δu = G δt, and although δu
changes as the two systems evolve (because G

depends on u), there is no average increase or
decrease with time. Thus, this “propagation”
direction has a corresponding Lyapunov expo-
nent of zero. All dynamical systems governed
by an autonomous set of differential equations
will have such a direction and at least one Lya-
punov exponent will be zero.

Because the motion in the propagation di-
rection is basically trivial, the behavior of
nearby points on the same Poincaré section
provide all the essential information. The gen-
eral behavior is illustrated in the two Poincaré
sections shown in Fig. 7. Consider the sin-
gle phase point un marked by the cursor in
the section on the left. The highlighted points
centered around un are a set of nearest neigh-
bors uj found by searching through all points
on this Poincaré section and selecting those
inside an elliptical region satisfying

(
δθj

θr

)2

+

(
δωj

ωr

)2

< 1 (32)

where δθj = θn − θj, δωj = ωn − ωj. The
quantities θr and ωr specify the major axes
of the elliptical neighborhood (0.15 rad and
0.30 rad/s, respectively, for the section on the
left in Fig. 7).

For the point un and the set of points uj,
a corresponding point un+1 and set uj+1 are
also thereby determined as those points one
time step later. These points are shown in the
section on the right for a time step τ equal to
1/5th of the drive period. From these two sets
are constructed two sets of deviations δun =
un − uj and δun+1 = un+1 − uj+1 one time
step forward.

For small values of δu, the transfor-
mation between the δu in each neighbor-
hood is predicted to be relatively simple—
rotations and/or contractions and/or expan-
sions. While the rotations can not be dis-
cerned in Fig. 7, a contracting and expanding
direction are evident. (The scaling is the same
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Figure 7: A small area of a Poincaré section showing how an initial set of δun around the cursor in
the left plot move and change shape when propagated 1/5 period. The scale ranges are the same in
the two figures and the evolved set δun+1 is the elongated and flattened patch around the cursor in
the right figure.

in the two sections.) The basic transformation
can be modeled as a 2 × 2 matrix multiplica-
tion

(
δθn+1

δωn+1

)
=

(
b11 b12

b21 b22

) (
δθn

δωn

)
(33)

with the matrix elements bij depending on
where u is located on the attractor. A least
squares fit of the data (the δun and δun+1) to
Eq. 33 provides best estimates of the trans-
formation matrix elements.5 The matrix el-
ements are then used to determine two local
Lyapunov exponents which must be averaged
along a long trajectory to determine the global
Lyapunov exponents characteristic of the at-
tractor as a whole. From an arbitrary start-
ing point, this procedure—finding the near-
est neighbors, determining the δun and δun+1,
performing the fit, and determining the two
local Lyapunov exponents—is repeated at se-
quential points along a trajectory. The lo-
cal Lyapunov exponents are monitored and

5As shown in the Appendix on Lyapunov exponents
a modified version of Eq. 33 is actually fit to the data.

the calculation continues until their average
is deemed to have stabilized.

A more complete description of the algo-
rithm and its theoretical underpinnings is pro-
vided in the Lyapunov Exponent addendum
that can be found on the laboratory web site.

Fit of the angular acceleration

The Savitsky-Golay filters can be used to cal-
culate the angular acceleration at every point
along a trajectory. Modeling the values of α
(= ω̇) according to Eq. 8, a linear regression
can be used to experimentally determine Γ, Γ′,
κ, µ, and ε.

For the fit, it is important to take into ac-
count the differences between the measured
angles and those of the theory. For example,
θ = θm +δθ would be used to describe the fact
that the computer value θm may be offset from
that of the theory θ. Similarly, φ = φm + δφ.
Lastly, the possibility that the spring equilib-
rium may not be set exactly at θ = 0 should
be taken into account; it is taken to occur at
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some unknown angle θ0.
With these offsets in mind, Eq. 8 becomes

α = −Γω − Γ′sgn ω − κ(θm + δθ − θ0) (34)

+µ sin(θm + δθ) + ε cos(φm + δφ)

This equation can be put in a form suitable
for regression analysis using the trigonometric
identities: sin(a + b) = sin a cos b + sin b cos a
and cos(a + b) = cos a cos b− sin a sin b.

C.Q. 4 (a) Show that the regression expres-
sion can be written:

α = C[1] + G[ω] + G′[sgn ω] + K[θm]

+Ms[sin θm] + Mc[cos θm] (35)

+Ec[cos φm] + Es[sin φm]

where each regression term is in brackets and
where the coefficients of each term are given
by

C = −κ(δθ − θ0) (36)

G = −Γ

G′ = −Γ′

K = −κ

Ms = µ cos δθ

Mc = µ sin δθ

Ec = ε cos δφ

Es = −ε sin δφ

(b) After obtaining these coefficients from the
fit, they are used to determine the parameters.
Show that this becomes:

Γ = −G (37)

Γ′ = −G′

κ = −K

µ =
√

M2
s + M2

c

δθ = tan−1 Mc

Ms

ε =
√

E2
c + E2

s

δφ = tan−1 −Es

Ec

θ0 = tan−1 Mc

Ms

− C

K

While the Savitsky-Golay filters can be
quite accurate when fitting continuous func-
tions, the discontinuous behavior of axle fric-
tion (it changes sign at ω = 0) presents a slight
problem. Because the filters average over a fi-
nite time, they smooth the discontinuity over
a range that depends on the number of points
used in the filter. For the recommended 33-
point filters, the axle friction smoothing ap-
pears to be over a range of ±3 rad/s. To pre-
vent systematic errors, the fits should exclude
data points in this range.

LabVIEW Programs

The following sections describe the use of the
data acquisition and analysis programs avail-
able for this experiment. All analysis pro-
grams are limited to three-dimensional attrac-
tors like those for the system described here.
The analyses typically begin by converting the
data sets to a discrete set of two-dimensional
Poincaré sections equally spaced along the
trivial (drive phase) dynamical variable.

The analysis programs are designed to work
with several kinds of data sets that can be gen-
erated in our lab. In the programs they are
labeled:

• Poincaré: A text-type spreadsheet file
whose first two columns contain a single
Poincaré section.

• I16: A binary file containing a single row
of 16-bit signed integers. This is the cor-
rect file type for the chaotic pendulum.

• datalog: A binary file containing mul-
tiple rows of double precision numbers.
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This is the type of file made by the simu-
lation programs.

• N×I16: A binary file containing multi-
ple rows of 16-bit signed integers. This
is the type of file made when collecting
data for a driven electronic circuit. The
first two indices in the var. order control
then determine which variables are used
in the Poincaré sections.

All of the programs are started by clicking
on the Run button on the toolbar. Different
analysis programs may run with only particu-
lar kinds of data sets. The File type tab control
on the front panel of the program will have a
tab for each allowed type and the type desired
must be selected before hitting the Run but-
ton. For all but the DisplayI16 program for
real time display of experimental data, vari-
ous data set parameters (described next) must
also be selected before running the program.

For the I16 file type there is a delta t control
giving the time between each measured inte-
ger. It is used with the Savitsky-Golay filter-
ing to determine properly scaled derivatives.
For the chaotic pendulum it should be set to
1/200 of the drive period. For both the I16
and N×I16 file types there is a delta y control
(array for the latter) which gives the physical
step size for each change of 1 in the 16-bit in-
teger. For the chaotic pendulum, it should be
set to 2π/1440, the default setting.

Savitsky-Golay filtering is used to determine
θ, ω = θ̇, and α = θ̈ values from the raw ro-
tary encoder readings.6 This filtering is equiv-
alent to performing an unweighted, linear least
squares fit of the readings to a polynomial at
each point. The control for filter averaging
(pts) is used to set the number of consecutive
data points used (33 is recommended) and the
polynomial order is set by the polynomial order

6See the laboratory chaos web page for addendum
on the theory of Savitsky-Golay filters.

control (a 4th order or quartic polynomial is
recommended).

The programs may have from and to con-
trols and/or a Slice control. The from and to
controls determine which drive cycles in the
data set will be analyzed. For a data set with
50,000 drive cycles, choosing the from and to
to be 5001 and 15000 would cause the pro-
gram to use the ten thousand cycles starting
from cycle 5001.

Programs requiring multiple Poincaré sec-
tions from the attractor will have a sec-
tions/cycle control. These programs use a set
of n equally-spaced Poincaré sections, where n
is the setting for this control. Programs that
use only a single Poincaré section will have an
additional slice control to select which of the n
Poincaré sections the program will use. Both
kinds of programs must also know the total
number of data points per drive cycle and will
have a readings/cycle control, which should be
set for 200 for experimental chaotic data (I16
files) or 40 for simulations (default-sized dat-
alog files).

Acquire chaotic pendulum data

Raw data from the rotary encoder (1440 pulses
per revolution) are collected and saved to a
file by the Acquire chaotic pendulum data pro-
gram. This program steps the (200 pulse-per-
revolution) drive motor at a constant rate and
triggers a reading of the rotary encoder with
each motor pulse.

The drive frequency (in rotations per sec-
ond) is set by the stepper motor frequency con-
trol. After the Run button in the toolbar is
pressed, the control is updated with the near-
est frequency the system was able to reach.
This program will ask for a file name in which
it will store the data. Navigate to the My Doc-
uments area to store the data. Unless this is
a run you are sure you will want to save, keep
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the default name Data.bin and click OK when
it asks if it can be overwritten. You can always
rename it afterward if you decide it will be
needed later. The reset button can be pressed
while taking data to restart saving data at the
beginning of the file. However, previous data
remains part of the file until overwritten.

You can change the drive frequency two
ways. The automatic method repeatedly
changes the frequency by a specific amount
while continuously taking data and it should
only be used for independent study. At the
bottom of the front panel there is a button
to turn the frequency sweep feature on and off
and a control for the frequency change per step
(negative values are OK). Each step is applied
after a fixed number of pulses to the stepper
motor (step delay). The default value gives a
sweep of -0.001 Hz/cycle. With the frequency
sweep off, the frequency can be changed manu-
ally and “on the fly” while data collection con-
tinues. To do so, simply change the value in
the stepper motor frequency control and then
click on change frequency button. Keep in
mind that unless the drive frequency is con-
stant for the entire run, any programs using
the delta t control (described later) will not
have correct time or frequency scales. All in-
formation about the run, such as drive fre-
quency, the magnet damping distance and the
drive shaft length, should be written in your
lab notebook.

The angular position of the drive shaft and
of the rotary encoder when the toolbar Run
button is pressed are taken to be φ = 0 and
θ = 0, respectively, in the data analysis pro-
grams. Consequently, if you want φ = 0 and
θ = 0 to be close to the straight up positions,
you will have to set the drive shaft and hold
the pendulum in these positions as you press
the Run button. To set the drive shaft, turn
the motor controller off, adjust the shaft by
hand to the vertical position, and turn the mo-

tor controller back on before pressing the Run
button. However, these zeroing procedures are
hardly ever relevant. Just keep in mind that
in any analysis, the drive shaft and pendulum
angle for any data set will generally have an
unknown offset. The offsets are irrelevant for
most analyses, and when they are relevant, for
example in the fits to the angular acceleration,
they are included as parameters.

For collecting data on undriven motion, set
the drive frequency to 1.0 Hz. This will estab-
lish the rotary encoder data collection rate at
200 readings per second. Set the drive shaft
for A = 0 and shut off the motor controller to
prevent the motor from turning.

DisplayI16

Use the DisplayI16 program to look at the
data while it is being collected, to look at short
data sets, or to make ASCII files of the data
suitable for spreadsheets.

Before hitting the toolbar Run button, en-
ter values for the readings/cycle (200), delta
y (2π/1440) and delta t (T/200, where T is
the drive period). The history length (cycles)
control (described shortly) must also be se-
lected before running the program. After hit-
ting the Run button, the program asks for
a data file. Specify the file name given for
the Acquire chaotic pendulum data program—
Data.bin or any previously collected binary
data files. However, depending on the file and
buffer size, only points from the end of the
data set may be available to look at.

The topmost raw readings graph displayed
on the front panel is the raw count from the
rotary encoder vs. the cycle number. The his-
tory length (cycles) control sets the number of
drive cycles N that will be available for use
by this program. As the data set grows, only
the most recent N cycles will be available. The
button labeled real time updating should be set
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to on to update the buffer with new data as
it is being collected. New data is then added
to the end of the buffer as old data is removed
from the beginning. Click real time updating to
off to stop reading in new data and to make
it easier to select data for further processing.
When you later click it back on, all unread
data will then be read in.

Set the cursors on the raw readings graph
to cover the desired data and click on the up-
date graphs button to the left of this graph to
display the selected data on the other three
graphs on the front panel or to save it to a
spreadsheet file. The leading cursor deter-
mines the first data point processed, while the
sections/cycle determine the subsequent data
points processed until such point would be af-
ter the trailing cursor. (For example, at 40
sections/cycle, every fifth point is processed.)
Each of the other three graphs and the save
x, v, a to spreadsheet have a button next to
them labeled update or don’t update. For the
graphs, the state of these buttons determines
whether the graphed data is updated accord-
ing to the new settings or left unchanged. For
the save θωα to spreadsheet the update/don’t
update determines whether the processed data
will be saved to a text file readable by most
spreadsheet programs. The format %.7e can
be changed. Change the 7 to the number of
digits to the right of the decimal point.

The graph directly below the raw readings is
a plot of x (θ), v (ω), and/or a (α) vs. t, as
chosen by the check boxes to the left of the
graph. The time interval between points is
calculated assuming the raw acquisition rate
is constant—200 times the (starting, saved)
motor frequency. Thus, if frequency scanning
were used, the time scales on these graphs will
be incorrect. To the right of the vs. t graphs is
the Fourier power spectrum (associated with
x vs. t). Below the vs. t graphs is a graph
of ω vs. θ. Set the Readings/rev to 1 and the

plot style to points/no line to get a Poincaré
section. Set the Readings/rev anywhere from
40-200 and change the plot style to line/no
points for a phase plot. (To set the plot style
click in the legend box at the upper left of the
graph. The Common Plots options let you set
whether points, lines, or both are displayed.)

Chaotic pendulum fit

The algorithm is described in the theory sec-
tion. The program needs to be told the data
for the fit. You do not want to fit too big a
data set. It will bog down the computer. Fit-
ting about ten thousand drive cycles at 10 sec-
tions per cycle works well and goes reasonably
fast. You can try fitting data from the begin-
ning, middle, and end of the data set (with
the from and to controls) to see if the param-
eter estimates are stable throughout the run.
The parameters displayed on the right of the
front panel are those of Eq. 34. However, the
displayed covariance matrix is that of the fit-
ting parameters of Eq. 35. It is a matrix of
the sample covariances s2

ij (diagonal elements
are the square of the estimated parameter un-
certainties), with the rows and columns of the
matrix in the following order: G, K, Ms, Mc,
Es, Ec, C, G′.

The fit residuals are the differences between
α as determined by the Savitsky-Golay filters
and the value obtained through Eq. 8 using
the fitted parameter values. These can be plot
versus θ, ω, or φ, and the excluded points can
be included in this plot or not.

Box counting dimension

The algorithm is described in the theory sec-
tion. Recall that the fractal dimension it will
find is that of one Poincaré section from the at-
tractor as selected with the Slice control. After
clicking Run on the toolbar, the program de-
termines the chosen Poincaré section and then
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starts histogramming it. The histogramming
consists of setting up a phase space grid and
determining the number of measured phase
points in each grid box. The overall phase
space area it will “grid up” is determined by
the minimum and maximum values of θ and ω
found in the data. Thus, you should autoscale
the graph of the Poincaré section to make sure
it does not contain any phase points far from
the main attractor which would cause the pro-
gram to cover an inappropriately large area.

The program repeatedly performs the his-
togramming as it decreases the grid box size
(increases the number of grid boxes). The
grids are determined by the array labeled grid
size M. For each entry in this array, a phase
space grid is formed with M θ-intervals and
rM ω-intervals, with the ω-factor (r) as given
in the control for this parameter (0.5 is the de-
fault). Thus the first default grid (M = 10) is
a 10× 5 grid and thus has 50 grid boxes. The
final M = 400 value produces a 400×200 grid
of 80,000 boxes.

The Probability density shown below the
Poincaré section is an intensity graph with the
z-value indicated by the color and is propor-
tional to the number of phase points per unit
area in each grid box. Looking at this graph,
you will see the grid size decrease as the pro-
gram proceeds.

As each histogram is determined, the cells
occupied N indicator displays the number of
grid boxes in which at least one phase point
was found. This data is plotted on a log N
(ordinate) vs. log M (abscissa) plot. As de-
scribed in the theory section, there are good
reasons why the value of N for the smallest
and largest values of M may not behave as
the fractal scaling would predict. Use the cur-
sors to select the starting and ending points of
an appropriate region to use in the fit to the
straight line. Then click on the compute slope
button. The slope of this line is the capacity

dimension.

Besides the capacity dimension, two com-
mon fractal dimensions are the information
dimension and correlation dimension. In all
three cases, the dimension is the slope of a fit-
ted line with log M as the abscissa. For the
capacity dimension, each grid box contributes
1 (if there is a phase point in it) or 0 (if it
is empty), and the ordinate is the log of the
sum of the contributions. For the information
dimension, each grid box contributes fi log fi,
where fi is the fraction of the phase points in
the grid box i, and the graph ordinate is the
sum of this quantity over all grid boxes. For
the correlation dimension, each grid box con-
tributes f 2

i , and the ordinate is the log of the
sum of the contributions from all grid boxes.
These other two dimensions can be selected by
the Dimension type control.

Lyapunov

The algorithm is described in the theory sec-
tion and more fully in the Lyapunov Expo-
nent Addendum on the laboratory web site.
This program reads the data and makes a set
of equally spaced Poincaré sections as deter-
mined by the Readings/rev control. (It al-
ways uses slice 0 as the first Poincaré section.)
Ten sections (i.e., slices) have been found to
be enough. No check has been made for the
minimum number of drive cycles needed, but
40,000-50,000 is enough to get good results.
Use more if you have them, but the computer
may start to get bogged down if you try to use
too many slices, or too many drive cycles.

The size of the ellipse for selecting δun

around each point un along the trajectory is
determined by the θ-radius and ω-radius con-
trols (θr and ωr in Eq. 32). They should be
set to produce a near-circular area and be as
small as possible while big enough that the
area will nearly always have more than some
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minimum number of phase points in it. The
program ignores points on the trajectory with
fewer available δu than the number set in the
Min points control, ten by default. There must
be at least six points for the six parameter
(quadratically modified) fit of Eq. 33. Hav-
ing more δu improves the precision of the fit-
ting parameters, but the δu must not get too
large. Points on the trajectory are also ig-
nored if the fitted rms deviation exceeds the
Tolerance control value. Bad fits have not
been a problem and you can leave the Tol-
erance high to defeat this feature. With the
default Order control setting (quadratic) the
local fits are as described in the Lyapunov ex-
ponent Appendix. Setting it to linear removes
the quadratic terms, and setting it to cubic or
quartic adds additional terms to the local fit
which should not generally be needed. If the
higher order fits (having more fitting param-
eters) are used, the min points control would
also need to be increased.)

The operating mode can be set to station-
ary, single step or iterate. Use stationary to
check how the parameters effect the local fit.
This mode does not move the calculation along
the trajectory so you can try different settings
at the same trajectory point. The single step
and iterate modes do move the point along the
trajectory with the single step mode requir-
ing that you push the step button for each
trajectory point, while iterate mode continues
along the trajectory without any user inter-
vention until the step button is pressed a sec-
ond time. Graphing at each point is slow but
useful when trying to learn what the program
does. The iterations go faster if the graph up-
dating is switched to off once you are ready to
determine the Lyapunov exponents.

The Lyapunov contributions λiτ, i = 1, 2—
where τ is the time interval between slices—
are displayed for each trajectory point un in
the bottom graph. Their sum (λ1+λ2)τ is also

displayed. Set the cursors over the region you
would like averaged. You should exclude the
first 100 or so cycles of the calculation because
the calculation is iterative and improves as the
iterations go on. When you click on the aver-
age exponents button, the mean and standard
deviation of values between the cursors are dis-
played just below the button. The actual Lya-
punov exponents are obtained from these aver-
ages by dividing by τ , the time between slices.
Thus, if you are using ten slices, multiply by
ten to get the Lyapunov exponents per drive
cycle (a common way to express them). Fur-
ther multiply by the drive frequency (in Hz)
to get the exponent expressed per unit time as
in this writeup.

Lyapunov Dot

This program simply shows a group of δu in
a user selected region as they propagate over
one or more cycles. Unlike the Lyapunov pro-
gram, a new set of δu is not redetermined after
each time step so you can see how a group of
phase points from one small region becomes
dispersed throughout a Poincaré section after
a certain number of cycles.

Simulate pendulum

This program uses a fourth order Runge-Kutta
algorithm to solve Eq. 25. Because the pro-
gramming environment makes it difficult to
use Greek letters, x and v are substituted for
θ and ω in this program. Also, the equation
φ̇ = Ω is not used. Instead, the term ε sin φ
in the equation for ω̇ is simply replaced with
ε sin Ωt.

Clicking on the reset initial conditions button
causes the differential equation solver to begin
the next drive cycle (at t = 0, i.e., φ = 0) with
x and v at the values specified in the X and V
control just below it.
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The points per drive cycle determines the
time step. The Runge-Kutta algorithm works
best when the time step is neither too big nor
too small. Furthermore the points per drive cy-
cle needs to have common divisors if equally-
spaced Poincaré sections will later need to be
sliced out. The default value of 40 works well.
Graphing can be turned off, but for this pro-
gram, does not significantly affect the running
time.

Procedure

Adjusting the springs

The string should be wrapped two and a half
times around the middle pulley. When the
pendulum mass is installed, the spring equilib-
rium position should be set at the top center
(12:00 position). To make it so, first remove
the pendulum mass. I like to do this adjust-
ment with the motor running so that friction
is less of a problem. Set the stepper motor
shaft for about A = 1 cm and run the data
acquisition program (described below) at 0.5
Hz. For coarse adjust, hold the aluminum disk
and pull down on the string to the left or right
of the pulley. For fine adjust, loosen the lock-
ing nut and turn the adjustment screw on the
cross rod. Retighten the locking nut when fin-
ished. When you are satisfied the tap hole is
at 12:00, reinstall the pendulum mass.

Preliminary investigations

1. Remove the aluminum disk, determine its
mass and diameter and calculate its mo-
ment of inertia. This is the major contri-
bution to I0; the axle and pulley should
contribute an additional few percent.

2. Remove the brass pendulum mass and
measure its mass m and its diameter. De-
termine Im, the moment of inertia of the

pendulum mass about its axis. On the
aluminum disk, measure the radius l to
the tap hole where the pendulum mass
will be mounted. Determine the contribu-
tion ml2 to the total moment of inertia.
Make a rough estimate of the contribu-
tion of the pulley and axle to the total
moment of inertia.

3. Measure the diameter of the middle pul-
ley and determine the radius r.

4. Use a spare spring and determine its force
constant k.

With the pendulum mass removed, there
are a number of experiments that can be per-
formed to learn about the physics of the driven
and undriven harmonic oscillator. The follow-
ing step demonstrates the resonance response
of the linear oscillator so that it can be com-
pared later with the response of a nonlinear
oscillator.

5. Set up the apparatus for driven motion
but leave off the pendulum mass. Set the
damping magnet about 5 mm from the
disk and set the drive amplitude to about
2.5 cm. Set the drive frequency to 0.2 Hz
and start the Acquire Data program. Run
the Display I16 program and select this
data set. Set the number of sections per
cycle to 100 and on the vs. t graphs check
only the x data so only the angular posi-
tion will be displayed when you click on
the update graphs button. Don’t worry
about the delta t control as you will be
changing the drive frequency repeatedly
— so it won’t be accurate anyway. If you
leave it at the default (1/200 = 0.005), all
times will be in units of the drive period
and all frequencies will be in units of the
drive frequency.
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After the transients die out and the mo-
tion settles on the steady state oscilla-
tions with constant amplitude, turn real
time updating off (to hold the display),
then set the cursors over the region of
constant amplitude motion. Click on the
update graphs button to get the x (really
θ) vs. t graph. Use the horizontal cursors
on this graph to determine the amplitude
of the motion in radians.

Turn the real time updating back on and
go back to the Acquire data program.
Change the frequency to 0.25 Hz and click
on the change frequency button. As for
the previous data, wait for any transients
to die out and determine the amplitude of
the motion. Continue measuring the am-
plitude vs. frequency up to around 0.8 Hz
or so in 0.05 Hz increments or smaller.
As the frequency passes through the nat-
ural resonance frequency of the oscillator
the amplitude will rise to a maximum and
then decrease.

Make a table and graph of amplitude
vs. frequency. Determine the frequency
where the oscillation amplitude maxi-
mizes and determine the FWHM (for the
peak amplitudes). Analyze your data
with respect to Eq. 22. Compare the
resonance frequency with the predicted
Ω0 based on values from the preliminary
measurements and determine the damp-
ing constant Γ. (This analysis improp-
erly lumps the somewhat weaker effects
of axle friction together with the stronger
magnetic damping into a single effective
Γ.) How would the amplitude versus fre-
quency graph change if the magnet was
moved nearer or farther from the disk?

Nonlinear oscillations

6. Adjust the springs as described previ-
ously (to get the tapped hole at the top)
and install the pendulum mass in that top
tapped hole. Don’t worry that it will fall
to one side or the other when you let it
go. Retract the damping magnet, set the
drive shaft all the way in (for zero am-
plitude motion), and turn off the stepper
motor controller. Start taking data and
then set the disk into motion by hand
for oscillations about one of the equilib-
rium angles. Without stopping the data
acquisition, restart the pendulum for mo-
tion about the opposite equilibrium an-
gle. Look at the data with the Display I16
program. Sketch the phase plots. Use the
cursors to determine the low-amplitude
resonance frequency and the angular sep-
aration between the two stable equilib-
rium points. Compare with predictions.

7. Move the damping magnet closer to the
disk—about 5 mm. Again look at oscil-
lations with the drive off and sketch the
phase plot. How does it change?

8. In this step you will measure the fre-
quency response of the chaotic pendu-
lum in a manner similar to that used for
the linear oscillator. These measurements
should all be made with the pendulum
oscillating around the equilibrium point
on one side only. Adjust the drive shaft
for A = 3 cm. Start with a frequency of
1.1 Hz — again waiting for transients to
die out and then analyzing for the ampli-
tude of the motion using the Display I16
program. Repeat for frequencies down to
0.3 Hz again in 0.05 Hz increments. Make
a table and graph of the amplitude vs. fre-
quency.
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9. Repeat the previous step starting at
0.5 Hz and increasing the frequency up to
1.1 Hz or so in steps of 0.05 Hz or smaller.
Make a table of amplitude vs. frequency
and add it as a plot to the graph from the
previous step.

10. Discuss how the amplitude vs. frequency
for the linear and nonlinear oscillators dif-
fer. In particular, how does the nonlinear
oscillator data show hysteresis? Can a lin-
ear oscillator have hysteresis effects?

11. Set the frequency to 0.8 Hz, and start
data acquisition. At this frequency, you
should have obtained large amplitude mo-
tion in Step 8 and small amplitude mo-
tion in Step 9. Try different initial con-
ditions checking which conditions lead to
the larger amplitude motion and which
lead to the smaller amplitude motion.
Which of the two motions has higher en-
ergy? Which has a bigger basin of attrac-
tion? Finding complete basins of attrac-
tion is not yet practical experimentally.
Simply try as many initial conditions as
needed (checking which attractor the mo-
tion ends on) to decide whether one basin
of attraction is smaller, larger, or roughly
the same size as the other.

12. Set the drive amplitude to A = 3 cm and
the drive frequency to Ω = 0.5 Hz. Find
all three steady state motions and sketch
their θ-ω phase plots. Two are small
amplitude oscillations centered about the
equilibrium angles θ = ±θe. The third
is a large amplitude oscillation centered
about θ = 0. (You will have to give the
disk a larger starting amplitude to get this
motion.) How many attractors does this
system have? Discuss the energy of the
oscillations and the basins of attraction.

Limit cycles, Fourier analysis

The periodic motions found above are called
period-1 limit cycles. They have Fourier power
spectra with peaks at the fundamental Ω and
higher harmonics (e.g., 2Ω, 3Ω, ...), but do
not have any components below the funda-
mental. Long-period limit cycles, which re-
peat after two, three, or more (N) periods of
the drive are also possible. You might try to
find these motions by playing with the drive
frequency, drive amplitude, and/or the damp-
ing. A period-N limit cycle will have Fourier
spectra with peaks at Ω/N , 2Ω/N , ... Peaks at
subharmonics of the drive frequency are char-
acteristic of nonlinear oscillators. If you can
find a reliable way to get these motions, please
let me know. I have spent several hours try-
ing to reproduce one without success. If you
do find one, save it and compare its Fourier
spectrum with those of period-1 limit cycles.

Chaotic Vibrations

In this part of the experiment, you should try
to learn about some of the features of chaotic
behavior in nonlinear oscillators.

13. Retract the damping magnet. Set the
drive frequency to 0.825 Hz and the drive
amplitude for A ≈ 6 cm. The motion
should be chaotic, but if it goes into a
limit cycle, decrease the drive amplitude
closer to 5 or 5.5 cm. When you get
chaotic motion, look at its Fourier spec-
trum and compare with those for limit cy-
cle behavior.

CHECKPOINT: Procedure should be
completed through the prior step.

14. Take an overnight run to obtain a strange
attractor for the chaotic pendulum. Re-
peat with the damping magnet approx-
imately 4 mm from the aluminum disk.
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Again, you may need to adjust the drive
amplitude to get chaotic motion.

15. Analyze the two attractors for the system
parameters using Chaotic Pendulum Fit.
The default settings should work fine—10
Poincaré sections each with 10,000 points.
Discuss the parameters of the two fits.
Did the damping parameters behave as
expected? How big was θ0, the spring
equilibrium angle? If it is larger than ex-
pected, try to determine why.

16. Analyze a Poincaré section or two from
each of the two attractors to determine
their capacity dimensions using the Box
counting dimensions program.

17. Analyze the two attractors for their Lya-
punov exponents using the Lyapunov pro-
gram. The top two graphs show the group
uj (left) and uj+1 (right). The bottom
graph shows the local contributions for
each exponent (τλi, red and white dots)
and their sum (white line). Setting the
two cursors and clicking on the calcu-
late Lyapunov exponents button will dis-
play the average and standard deviation
of these contributions for the points be-
tween the cursors. To get the Lyapunov
exponents, you must divide by τ . For ex-
ample, if you use the default setting of
10 readings/rev, you must divide by T/10
(multiply by 10f) where T is the drive pe-
riod (f is the drive frequency in Hertz).
For Γ′ = 0, the local Lyapunov exponents
should sum to −Γ everywhere. Compare
the sum of the Lyapunov exponents with
−Γ, using Γ from the Chaotic Pendulum
Fit. Compare the rms deviations of the
local Lyapunov exponents with that of
their sum. Explain why the latter is so
much smaller than former.

18. Simulate the system with the differential

equation solver Simulate pendulum pro-
gram. Adjust the differential equation
parameters and make simulations com-
parable with real data sets. Analyze
and compare with your measured data
for Poincaré sections, fractal dimension
and/or Lyapunov exponents.
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