Group theory 101

Suggested reading:

Landau & Lifshits, Quantum Mechanics, Ch. 12

Tinkham, Group Theory and Quantum Mechanics

Dresselhaus, Dresselhaus, Jorio, *Group Theory: Applications to the Physics of Condensed Matter*

Ramond, Group Theory: a Physicist's Survey

Definition

A (finite or infinite) sequence of elements *A*,*B*,*C*...form a group, if the following four conditions are satisfied

- 1. CLOSURE: If A and B are belong to the group, then A B also belongs to the group.
- 2. ASSOCIATIVITY: If A, B and C belong to the group, then $(A \bullet B) \bullet C = A \bullet (B \bullet C)$.
- 3. IDENTITY: There is an element e of the group such that for any element a of the group
 - $A \bullet I = E \bullet I = I.$
- 4. INVERSE: For any element *A* of the group there is an element *A* such that $A \cdot A^{-1} = A^{-1} \cdot A = I$

Group of rotations of an equilateral triangle

Closure property

Six elements: identity, three filps, two rotations Group of order 6

Cayley (multiplication) table classes $2C_{3}$ $3C_2$ Ι Left Right F B С Α D С F B D Α F B С Α D Α F С B Β D Α С С F Α Β D С F D D B Α F F Β С Α D

Three classes: 1) identity (E), 2) three 180 rotations (A,B,C), 3) 120 rotation (D) and 240 rotation (F)

Isomorphic groups

Two groups *G* and *G*' are called isomorphic, if there is one-to-one correspondence between their elements

 $G = \{A, B, C \dots P \dots\}$ $G' = \{A', B', C' \dots P' \dots\}$ $A \Leftrightarrow A'$ $B \Leftrightarrow B'$ \dots AB = P A'B' = P'

Basis

Let $\psi_1(\mathbf{x})$ is an arbitrary (single-valued) function of \mathbf{x} . Take an element R of group G (order g) Apply the operator P(R) to $\psi_1(\mathbf{x})$ defined as $P(R)\psi_1(\mathbf{x}) \equiv \psi_1(R^{-1}\mathbf{x}) \equiv \Phi_R(\mathbf{x})$

Operators P(R) form a group which is isomorphic to G: P(S)P(R) = P(SR)Proof:

 $P(S)P(R)\psi_{1}(\mathbf{x}) = P(S)\Phi_{R}(\mathbf{x}) = \Phi_{R}(S^{-1}\mathbf{x}) = \psi_{1}(R^{-1}S^{-1}\mathbf{x}) = \psi_{1}((SR)^{-1}\mathbf{x}) = P(SR)\psi_{1}(\mathbf{x})$

Applying all symmetry operations to ψ_1 , we get a set of r linearly indepedent functions

$$\underbrace{\{\psi_1 ... \psi_r\}}_{\text{BASIS}}$$

In general, $r \leq g$.

NB : choice of ψ_1 is arbitrary.

Representation of a group

Applying a symmetry operation to the basis function, we get a linear superposition of basis functions

 $P(S)\psi_{i} = \sum_{k=1}^{\prime} G_{ki}(S)\psi_{k}$ Matrices G(S) form a representation of the group.

Representation of a group is as arbitrary as the choice of the basis function.

If a matrix of particular representation cannot be reduced to a block-diagonal form by any similarity transformations, such a representaton is called *irreducible*.

Irreducible represenations of D_3

1) consider a function which does not change either upon rotations or flips

 $f(x,y,z) = 1, x^2 + y^2, z^2, \dots$

This function generates a trivial 1D representation

G(I) = G(A) = G(B) = G(C) = G(D) = G(F) = 1

2) consider a function which is invariant with respect to 120 rotations but changes its sign upon flips

f(x,y,z) = z

This function generates another 1D representation

G(I) = G(D) = G(F) = 1

G(A) = G(B) = G(C) = -1

Irreducible representations , continued...

3) 2D representations are formed by two basis functions which transform as elements of a vector (x, y)

 D_3

$$G(I) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; \text{ Tr}=2 \qquad G(A) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}; \text{ Tr}=0$$

identity 22' flip: $x \rightarrow -x, y \rightarrow y$

$$G(B) = \begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ -\sqrt{3}/2 & -1/2 \end{pmatrix}; \text{ Tr}=0 \qquad G(C) = \begin{pmatrix} 1/2 & \sqrt{3}/2 \\ \sqrt{3}/2 & -1/2 \end{pmatrix}; \text{ Tr}=0$$

33' flip 11' flip

$$G(D) = \begin{pmatrix} -1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & -1/2 \end{pmatrix}; \text{ Tr}=-1 \qquad G(F) = \begin{pmatrix} -1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & -1/2 \end{pmatrix}; \text{ Tr}=-1$$

120 rotation 240 rotation

Characters

Character=trace of an irreducible representation matrix

Traces are invariant→characters do not depend on the choice of basis functions

Reading character tables

Orthogonality of characters

Take trace², multiply by the number of the elements in the class, and sum over classes

Van Vleck orthogonality theorem for irreps

 $\sum_{R: \text{ symmetry elelements}} \left[G_{ik}^{\alpha}(R) \right]^* G_{lm}^{\beta}(R) = \frac{g}{f_{\alpha}} \delta_{\alpha\beta} \delta_{il} \delta_{km}$ Set i = k, l = m and take a trace \Rightarrow $\sum \qquad \left[\chi^{\alpha}(R) \right]^{*} \chi^{\beta}(R) = g \delta_{\alpha\beta}$ R: symmetry elelements All elements of the same class (C) have the same characters \Rightarrow $\sum N_C \left[\chi^{\alpha}(C) \right]^* \chi^{\beta}(C) = g \delta_{\alpha\beta}$ C: classes

Decomposition theorem

Let \overline{G} be a <u>reducible</u> representation of dim f with character χ_R .

A reducible representation can be expanded over irreps

$$\overline{G} = \sum_{\alpha} a_{\alpha} G_{\alpha}$$

or, since dims of G may be different,

$$\overline{G} = a_1 G_1 \oplus a_2 G_2 \oplus \dots$$
$$\oplus \equiv \text{direct sum}$$
$$A \oplus B = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$$

Applying trace,

$$\chi_R = \sum_{\alpha} a_{\alpha} \chi^{\alpha}$$

How many times an irrep G^{α} is contained in \overline{G} ? Using orthogonality of characters,

$$a_{\alpha} = \frac{1}{g} \sum_{C:\text{all classes of } G^{\alpha}} N_C \chi_R [\chi^{\alpha}(C)]^*$$

Applications in Quantum Mechanics

 $\hat{H}\boldsymbol{\psi} = E\boldsymbol{\psi}$

Wavefunctions must obey all symmetry properties of the Hamiltonian.

A proper description of a degenerate state is a linear superposition of wavefunctions.

Basis functions of a given irrep are transformed into each other under group operations \rightarrow

Degenerate states form a basis of a given irrep → Dimensionality of a given irrep gives us immediately degeneracy of the corresponding energy level

A,B: 1D representations \rightarrow non-degenerate levelsE:2D representation \rightarrow two-fold degeneracyF:D representation \rightarrow three-fold degeneracy

Lifting of degeneracy by perturbation

$$\hat{H} = \hat{H}_0 + \hat{H}'$$

Symmetry of $\hat{H}' <$ Symmetry of $\hat{H}_0 \Rightarrow$ Representations of \hat{H}' are contained in \hat{H} In general, a representation of \hat{H}' is a reducible representation of \hat{H}_0 Decomposing representations of \hat{H}' into irreps of \hat{H}_0 , we find which degeneracies are lifted.

Example: lifting of cubic degeneracy $\hat{H}_0(O)$: Rotational group of a cube (without inversion and reflection symmetries) $4 C_3 \text{ axes} \Rightarrow 8C_3 (4 C_3 + 4 C_3^2)$ Classes: $_{6 C_2} axes \Rightarrow 6C_2$ C3 $3 C_4 \text{ axes} \Rightarrow 6C_4 (3C_4 + 3C_4^3)$ С4 $O \qquad I \qquad \begin{array}{c} \Rightarrow 3C_2 \ (=3C_4^2) \\ 8C_3 \quad 3C_2 \quad 6C_2 \quad 6C_4 \end{array}$ Сг

 $\hat{H}'(D_3)$: A strain is applied along the main diagonal **How** does the strain split the degenerate levels?

Lifting of 3-fold degeneracy

Group *O* contants all the elements of D_3 [$E, 2C_3, 3C_2$] For example, irrep F_2 of *O* is a reducible representation of D_3

Decomposition formula: $a^{\alpha} = \frac{1}{g} \sum_{\substack{C:\text{all classes of } G^{\alpha}}} N_{C} \chi_{R}(\overline{C}) [\chi^{\alpha}(C)]^{*}$ $a(A_{1}) = \frac{1}{6} \left[\underbrace{1 \times 3 \times 1}_{N_{C} \times (I) \times 2^{A_{1}}(I)} + \underbrace{2 \times 0 \times 1}_{N_{C} \times 2^{(8C_{3})} \times 2^{A_{1}}(2C_{3})} + \underbrace{3 \times 1}_{N_{C} \times 2^{(6C_{2})} \times 2^{A_{1}}(3C_{2})} \right] = 1$ $a(A_{2}) = \frac{1}{6} [3 \times 1 + 2 \times 0 \times 1 + 3 \times 1 \times (-1)] = 0$ $a(E) = \frac{1}{6} [3 \times 2 + 2 \times 0 \times (-1) + 3 \times 1 \times 0] = 1$ $F_{2}(\times 2)$

Lattice symmetries

Rotational symmetries of building blocks (polygons) must be consistent with translational symmetry

crystallographic restriction theorem: lattice can have only 2, 3, 4, and 6fold rotational symmetries

Crystal Structure

Crystal structure can be obtained by attaching atoms or groups of atoms --basis-- to lattice sites.

23

Bravais lattices: monoatomic basis

Non-Bravais lattices: polyatomic basis

Five 2D Bravais lattices

Oblique

Elements of symmetry: C_2 rotations Group: C_2

Ohm's law on a lattice:

$$j_i = \sigma_{ij} E_j$$

Conductivity tensor

$$\hat{\sigma} = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} \tag{1}$$

How many independent components does an oblique lattice have?

The only symmetry operation is the 180 rotation about z. Matrix of rotation about z by θ :

$$U_{\theta} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \Rightarrow$$
(2)

$$U_{180} = \begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix} = -1 \times \mathbb{1} \tag{3}$$

Transformation of the Ohm's law under rotation

$$\hat{U}\vec{j} = \hat{U}\hat{\sigma}\hat{U}^{-1}\hat{U}\vec{E} \Rightarrow \hat{\sigma} \to \hat{U}\hat{\sigma}\hat{U}^{-1} \tag{4}$$

For rotations, $\hat{U} = U^{-1} \Rightarrow$

$$\hat{\sigma} = \hat{U}\hat{\sigma}\hat{U} \tag{5}$$

$$\begin{pmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} = \hat{U}_{180} \hat{\sigma} \hat{U}_{180} = (-1) \begin{pmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} (-1)$$
$$= \begin{pmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix}$$
(6)

 $\Rightarrow \text{lattice symmetry imposes no constrains on } \hat{\sigma}.$ Time-reversal symmetry (symmetry of Onsager kinetic coefficients):

$$\sigma_{ij} = \sigma_{ji} \Rightarrow \tag{7}$$

$$\hat{\sigma}_{\text{oblique}} = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{xy} & \sigma_{yy} \end{pmatrix} \tag{8}$$

3

Orthorhombic (Rectangular)

Equivalently, one can do reflections in vertical planes

$D_2 = (C_{2v})$ group (rhombohedral and orthorhombic lattices) We already know that \hat{U}_{180} about z axis imposes no constraints.

180 rotation about the x axis: $x \to x, \, y \to -y$

$$\hat{U}_{180}^x = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} \tag{9}$$

4

$$\begin{aligned} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{aligned} &= \hat{U}_{180}^{x} \hat{\sigma} \hat{U}_{180}^{x} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \sigma_{xx} & -\sigma_{xy} \\ \sigma_{yx} & -\sigma_{yy} \end{pmatrix} \\ &= \begin{pmatrix} \sigma_{xx} & -\sigma_{xy} \\ -\sigma_{yx} & \sigma_{yy} \end{pmatrix} \Rightarrow \sigma_{xy} = 0, \quad \sigma_{yx} = 0 \end{aligned}$$
(10)

$$\hat{\sigma}_{\text{rhombo/ortho}} = \begin{pmatrix} \sigma_{xx} & 0\\ 0 & \sigma_{yy} \end{pmatrix}$$
(11)

$D_4 = C_{4v}$ (tetragonal)

 $D_4(C_{4v})$ already contains all symmetries of $D_2(C_{2v})$. \Rightarrow At least, we must have

$$\hat{\sigma}_{\text{tetra}} = \begin{pmatrix} \sigma_{xx} & 0\\ 0 & \sigma_{yy} \end{pmatrix} \tag{12}$$

However, we have additional symmetries: 180 rotations about diagonals (or reflections in the diagonal vertical planes).

Reflection in a diagonal vertical plane: $x \to y, \, y \to x$

$$\hat{R} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\hat{R} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ x \end{pmatrix}$$
(13)
$$\sigma_{xx} \quad 0 \\ 0 \quad \sigma_{yy} \end{pmatrix} = \hat{R}\hat{\sigma}\hat{R} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \sigma_{xx} & 0 \\ 0 & \sigma_{yy} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma_{xx} \\ \sigma_{yy} & 0 \end{pmatrix} = \begin{pmatrix} \sigma_{yy} & 0 \\ 0 & \sigma_{xx} \end{pmatrix}$$

$$\Rightarrow \sigma_{xx} = \sigma_{yy}$$
(14)

$$\hat{\sigma}_{\text{tetra}} = \begin{pmatrix} \sigma_{xx} & 0\\ 0 & \sigma_{xx} \end{pmatrix} \tag{15}$$

Any tensor describing physical properties of the lattice

- dielectric permittivity $\hat{\varepsilon}$
- \bullet elastic moduli
- \bullet electron effective mass \hat{m}
- ...

have the same symmetries.

Exercise: work out symmetries of $\hat{\sigma}$ for the hexagonal lattice.

 $\mathbf{6}$

Vibrational modes of the H₂O molecule

System of *N* particles (not on the same line): *3N* degrees of freedom *3* translational *3 rotational* # of vibrational modes: N_v = 3*N*-3-3=3*N*-6 For H₂O: *N*=3 \rightarrow *N_v*=3

What are those 3 modes?

 C_2 axis+2 vertical planes (σ_v and σ'_v)

 $\rightarrow C_{2v}$ group

Symmetry operations of C_{2v} group: I, C_2, σ_v , and σ'_v . g = 4. Special property: C_{2v} is *cyclic* group. *Cyclic group*: Take one symmetry element, S. All other elements are given by S^k , k = 1, 2...Cyclic groups have only 1D irreps. C_{2v} is particularly simple: applying any element twice, we get I. $C_2^2 = I, \ \sigma_v^2 = I, \ (\sigma'_v)^2 = I.$

Let ψ be any basis function.

 $S(S\psi)=S^2\psi=\psi$

Irreps are numbers such that $G^2 = 1 \Rightarrow G = \pm 1$.

 $\sum_{\text{irreps}} \dim^2(\text{irrep}) = g$ $\sum_{\text{irreps}} 1 = 4 \Rightarrow \# \text{ of irreps} = 4$

How do the group elements act on coordinates?

$$C_2: x \to -x, y \to -y$$

$$\sigma_v: x \to x, y \to -y$$

$$\sigma'_v: x \to -x, y \to y$$

For all operations, $z \to z$.

Table of characters

C_{2v}	I	C_2	σ_v	σ'_v
z, A	1	1	1	1
xy, A	$ 1_2 $	1	-1	-1
x, l	$3_1 1$	-1	1	-1
y, I	$B_2 1$	-1	-1	1

 $A_{1,2}$ even under C_2 , $B_{1,2}$ odd under C_2 .

We know that $N_v = 3$ but we have 4 irreps. Some of the irreps do not correspond to molecular vibrations! Need to get rid of irreps that correspond to translations and rotations rather than to vibrations.

Equivalence ("atomic site") representation (G_{eq}) is formed by vibrational displacements of all atoms consistent with the symmetry operations of the group.

In general, G_{eq} is reducible. Expand G_{eq} over irreps.

 $C_{2v}: \quad G_{eq} = a_1 A_1 + a_2 A_2 + a_3 B_1 + a_4 B_2$

Some of the coefficients should be zero. Consider rotation by angle θ about some symmetry axis of the molecule in 3D

$$U_{\theta} = \begin{pmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Its character:

$$\chi(U_{\theta}) = \mathrm{Tr}U_{\theta} = 1 + 2\cos\theta$$

If there are N_a atoms on the same axis,

$$\chi(U_{\theta}) = N_a(1 + 2\cos\theta)$$

Each of the N_a atoms was subjected not only to vibrations but also to translations and rotations \Rightarrow $\chi(U_{\theta})$ contains extra degrees of freedom.

Translation is a vector $\vec{u} = (u_x, u_y, u_z)$. U_{θ} transforms its as any other vector. The corresponding character is

$1 + 2\cos\theta$

Rotation by an infinitesimally small angle $\delta \phi$ is described by vector $\delta \vec{\phi}$ of magnitude $\delta \phi$ and along the axis of rotation. $\delta \vec{\phi}$ is a polar vector but, under rotations, it transforms as a polar vector. Its transformation adds another $1 + 2\cos\theta$ term to $\chi(U_{\theta})$.

Subtracting $2(1 + 2\cos\phi)$ from $\chi(U_{\theta})$, we obtain a character of *purely vibrational* degrees of freedom

$$\chi_v = N_a (1 + 2\cos\theta) - 2(1 + 2\cos\theta) = (N_a - 2)(1 + 2\cos\theta)$$

 $\chi_v = (N_a - 2)(1 + 2\cos\theta)$ Identity (I): $N_a = N, \theta = 0 \Rightarrow$ $\chi_v(I) = 3$. C_2 contains 1 oxygen: $\Rightarrow N_a = 1, \theta = 180 \Rightarrow$ $\chi_v(C_2) = -1(1 - 2) = 1$ σ_v leaves all atoms intact \Rightarrow $\chi_v(\sigma_v) = \chi_v(I) = 3$ σ'_v is equivalent to $C_2 \Rightarrow$ $\chi_v(\sigma'_v) = \chi_v(C_2) = 1$ $\frac{C_{2v} \ I \ C_2 \sigma_v \sigma'_v}{G_{eq} \ 3 \ 1 \ 3 \ 1}$

Last part: decompose G_{eq} into irreps of C_{2v}

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$z, A_1 1 1 1 1 1$ $C_2 I C_2 \sigma \sigma'$
$xy, A_2 1 1 -1 -1 \frac{O_{2v} 1 O_2 O_v O_v}{G_{2v} 3 1 3 1}$
$x, B_1 1 -1 1 -1 Ceq S 1 S 1$
$y, B_2 \mid 1 \mid -1 \mid -1 \mid 1$
$G_{eq} = a_1 A_1 + a_2 A_2 + a_3 B_1 + a_4 B_2$
Decomposition formula
$a_{\alpha} = \frac{1}{g} \sum_{C} N_{C} \chi_{v}(C) \left[\chi_{\alpha}(C) \right]^{*}$
$g = 4, N_C = 1$
$a_1 = \frac{1}{4} \left(3 \times 1 + 1 \times 1 + 3 \times 1 + 1 \times 1 \right) = 2$
$a_2 = \frac{1}{4} \left(3 \times 1 + 1 \times 1 - 3 \times 1 - 1 \times 1 \right) = 0$
$a_3 = \frac{1}{4} \left(3 \times 1 - 1 \times 1 + 3 \times 1 - 1 \times 1 \right) = 1$
$a_4 = \frac{1}{4} \left(3 \times 1 - 1 \times 1 - 3 \times 1 + 1 \times 1 \right) = 0$
$G_{eq} = 2A_1 + B_1 \Rightarrow$

Two vibrational modes with symmetry A_1 , one with symmetry B_1 , none with A_2 and B_2 .

Symmetric Stretch 3657 cm⁻¹

Bend 1595 cm⁻¹

Asymmetric Stretch 3756 cm⁻¹

Selection Rules

Consider a basis function ψ_i^{α} (i = 1...f) of the an f dimensional representation ψ_i^{α} .

Theorem 1: The integral of ψ_i^{α} over an entire configurational space of the system

$$\int \psi_i^lpha dq$$

is non-zero is non-zero if and only if Γ^{α} is the identical (or symmetric) representation, Γ_1 .

Proof: Assume that $\Gamma^{\alpha} \neq \Gamma_1$. Since the integral must be the same in any coordinate system (it is over all space), we

can say

$$\int \psi_i^lpha dq = \int \hat{\Gamma}^lpha \psi_i^lpha dq = \int \sum_k \Gamma_{ki}^lpha \psi_k^lpha$$

where $\hat{\Gamma}$ transforms the function by acting as a matrix product. Now we sum the last equation over all symmetry elements of group G:

$$\sum_G \int \psi^lpha_i dq = \sum_G \int \Gamma^lpha_{ki} \psi^lpha_k dq$$

On the LHS, we simply get the group order (g) times the original integral,

$$g\int\psi_{i}^{lpha}dq=\int\sum_{G}\Gamma_{ki}^{lpha}\psi_{k}^{lpha}dq$$

Recall the orthogonality theorem

$$\sum_{G} \left(\Gamma_{ik}^{\beta} \right)^{*} \Gamma_{jl}^{\alpha} = \frac{g}{f_{\beta}} \delta_{\alpha\beta} \delta_{ij} \delta_{kl}$$

If $\Gamma^{\beta} = \Gamma_{1}$, then
$$\sum_{G} \Gamma_{jl}^{\alpha} = g \delta_{\alpha 1} = \begin{cases} g, & \alpha = 1\\ 0, & \alpha \neq 1 \end{cases}$$

Because of this, it immediately follows that

$$\int \psi_i^{\alpha} dq = \frac{1}{g} \int \sum_G \Gamma_{ki}^{\alpha} \psi_k^{\alpha} dq = 0$$

if $\Gamma^{\alpha} \neq \Gamma_1$. Hence, $\Gamma^{\alpha} = \Gamma_1$. Consider the Hamiltonian

$$H = H_o + H'$$

where H_o has group G and H' has some lower symmetry group. Define the matrix elements

$$M = \int \psi_k^\beta H' \psi_i^\alpha dq$$

The direct product (or tensor product or Kronecker product) of representations is denoted by

$$C = A \otimes B$$
 , $C_{sr} = A_{ij}B_{kl}$

for $1 \leq (i, j, k, l) \leq (m, n, p, q)$ and so

$$1 \leq (s,r) \leq (mp, nq). \text{ For example,}$$

$$A \otimes B = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \otimes \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} = \begin{pmatrix} a_{11}B & a_{12}B \\ a_{21}B & a_{22}B \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} a_{12} \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} a_{12} \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} a_{22} \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} d_{12}$$

$$(16)$$
Notice that

$$\operatorname{Tr} \{A \otimes B\} = \sum_{i} a_{ii} \sum_{j} b_{jj} = \operatorname{Tr} \{A\} \operatorname{Tr} \{B\}$$

Suppose we have two representations Γ^{α}_{ij} and Γ^{β}_{kl} . The direct product of two representations

 $\Gamma = \Gamma^{\alpha} \otimes \Gamma^{\beta}$

is a matrix given by the direct product of matrices corresponding to Γ^{α} and Γ^{β} . Going back to the matrix element,

$$M = \int \psi_k^\beta H' \psi_i^\alpha dq$$

we note that $M \neq 0$ if and only if the integrand transforms as Γ_1 . Suppose that H' transforms as some representation $\Gamma^{H'}$ which, in general, is a *reducible* representation of the Hamiltonian group G. The integrand transforms as a triple direct product

 $\Gamma^{\beta} \otimes \Gamma^{H'} \otimes \Gamma^{\alpha}$

According to Theorem 1, the matrix element is non-zero if and only if this triple product contains an identical

representation

 $\Gamma^{\beta} \otimes \Gamma^{H'} \otimes \Gamma^{\alpha} = \Gamma_1 \oplus \dots$

Now we have practical way to find if the matrix element is non-zero: we must decompose the triple product into irreps of G, and see if Γ_1 occurs in the decomposition. If it does, then $M \neq 0$; if it does not, M = 0. This procedure can be simplified further if we observe that the direct product of some representation Γ with itself, $\Gamma \otimes \Gamma$, must necessarily contain Γ_1 . Indeed, let us decompose $\Gamma \otimes \Gamma$ into irreps

 $\Gamma\otimes\Gamma=a_1\Gamma_1\oplus a_2\Gamma_2\oplus\cdots$

The weight of Γ_1 in this decomposition is found as

$$a_1 = \frac{1}{g} \sum_{G} \chi_{\Gamma \otimes \Gamma}(G) \chi^*_{\Gamma_1}(G)$$

For a direct product of two matrices, $\operatorname{Tr}(A \otimes B) = \operatorname{Tr}(A)\operatorname{Tr}(B)$. (To convince yourself in the validity of this identity have a look at the example of the direct product of 2 × 2 and 3 × 3 matrices.) Therefore, $\chi_{\Gamma \otimes \Gamma} = \chi_{\Gamma}^2$ while, by definition, $\chi_{\Gamma_1} = 1$. By the orthogonality property of characters,

$$\frac{1}{g}\sum_{G}\chi^2_{\Gamma^{\alpha}} = 1.$$

Therefore,

$$a_1 = \frac{1}{g} \sum_{G} \chi_{\Gamma \otimes \Gamma} = \frac{1}{g} \sum_{G} \chi_{\Gamma}^2 = \frac{1}{g} g = 1,$$

which means that Γ_1 contains in $\Gamma \otimes \Gamma$ once. Thus the condition $\Gamma^{\beta}\Gamma^{H'}\Gamma^{\alpha} = \Gamma_1 \oplus \ldots$ can be replaced by an equivalent one

$$\Gamma^{H'} \otimes \Gamma^{\alpha} = \Gamma^{\beta} \oplus \dots$$

Indeed, in this case, $\Gamma^{\beta} \otimes \left(\Gamma^{H'} \otimes \Gamma^{a}\right)$ must necessarily
contain Γ_{1} .

A. Dipole selection rule

Consider am electron system subject to a weak electromagnetic field. In the transverse gauge, $\nabla \cdot \vec{A} = 0$,

$$H = \frac{1}{2m} \left(\vec{p} + \frac{e}{c} \vec{A} \right)^2 = \underbrace{\frac{p^2}{2m}}_{H_o} + \underbrace{\frac{e}{mc} \vec{A} \cdot \vec{p}}_{H'} + O(A^2)$$

The matrix element of the transition is

$$\langle \beta, j | H' | \alpha, i \rangle = \frac{e}{mc} \vec{A} \cdot \langle \beta, j | \vec{p} | \alpha, i \rangle$$

Vector \vec{p} is a polar vector which transforms as the radial vector, $\vec{r} = (x, y, z)$. A representation of a polar vector is

denoted by Γ' . We need to decompose Γ' into irreps of H. Recall the character table of the C_{2v} group which described the H₂O molecule. The x, y, and z components of \vec{r} transform as B_1, B_2 , and A_1 . Therefore,

 $\Gamma'(C_{2v}) = A_1 \oplus B_1 \oplus B_2$

On the other hand, for the D_3 group

 $\Gamma'(D_3) = A_2 \oplus E$

Suppose that the initial state of the H_2O molecule is A_1 . Then we need to find

 $\Gamma' \otimes A_1 = (A_1 \oplus B_1 \oplus B_2) \otimes A_1$

Here is one more useful property:

 $\Gamma_{\alpha} \otimes \Gamma_1 = \Gamma_{\alpha}, \ \forall \Gamma_{\alpha}$

Proof: Decompose $\Gamma_{\alpha} \otimes \Gamma_1$ into irreps

$$\Gamma_a \otimes \Gamma_1 = \sum_\beta a_\beta \Gamma_\beta$$

where

$$a_{\beta} = \frac{1}{g} \sum_{G} \chi_{\Gamma_{\alpha} \otimes \Gamma_{1}} (\chi_{\Gamma_{\beta}})^{*} = \frac{1}{g} \sum_{G} \chi_{\Gamma_{\alpha}} \underbrace{\chi_{\Gamma_{1}}}_{=1} (\chi_{\Gamma_{\beta}})^{*} = \delta_{\alpha\beta}$$

Then, $(A_1 \oplus B_1 \oplus B_2) \otimes A_1 = A_1 \oplus B_1 \oplus B_2$. Vibrational normal modes transform as A_1 and B_1 . This means that the final state can be either A_1 or B_1 : each of these modes has a non-zero overlap with $\Gamma' \otimes A_1$. In other words, all vibrational modes of H₂O are infrared-active.

I. EXAMPLE: DIPOLE TRANSITIONS IN A D₃ MOLECULE

Consider a (hypothetical) molecule with D_3 symmetry. Determine possible transitions between electronic states of this molecule.

D_3		Ι	$2C_3$	$3C_2$
1	A_1	1	1	1
z,	A_2	1	1	-1
(x,y),	E	2	-1	0

A polar vector transforms as

 $\Gamma' = A_2 \oplus E$

Suppose that the initial state is A_1 .

 $\Gamma' \otimes A_1 = \Gamma' = A_2 \otimes E$

Allowed transitions: $A_1 \to A_2$ and $A_1 \to E$. Initial state: A_2 .

 $\Gamma' \otimes A_2 = (A_2 \oplus E) \otimes A_2 = A_2 \otimes A_2 \oplus E \otimes A_2$

 $\chi_{A_2 \otimes A_2} = \chi^2_{A_2} = 1$ for all symmetry classes \Rightarrow $A_2 \otimes A_2 = A_1$

ry. es of

D_3	Ι	$2C_3$	$3C_2$
1 A	1 1	1	1
z, A	.2 1	1	-1
(x,y), l	E 2	-1	0
$E\otimes A_2$	2	-1	0

$$\Rightarrow E \otimes A_2 = E$$

$$\Gamma' \otimes A_2 = A_1 + E$$

Allowed transitions

 $A_2 \to A_1, \ A_2 \to E$

Initial state:
$$E$$

$$\Gamma' \otimes E = (A_2 \oplus E) \otimes E = \underbrace{A_2 \otimes E}_{=E} \oplus E \otimes E = E \oplus E \otimes E$$

		•		-	T
	ecomp	OCT DOC	- L'	~ ~	
		MASTLIO	P ,	(X)	
$\boldsymbol{\Sigma}$	COUTIL	JODILLE		V V	_

D_3	Ι	$2C_3$	$3C_2$
1 A_1	1	1	1
z, A_2	1	1	-1
(x,y), E	2	-1	0
$E\otimes E$	4	1	0

$$E\otimes E=\sum_{lpha}a_{lpha}G_{lpha}$$

$$a_{lpha} = rac{1}{6} \sum_{G} \chi_{E\otimes E} \chi_{\Gamma_{c}}$$

$$a_{A1} = \frac{1}{6} \left(\underbrace{4 \times 1}_{I} + \underbrace{2 \times 1 \times 1}_{2C_3} \right) = 1$$
$$a_{A_2} = \frac{1}{6} \left(\underbrace{4 \times 1}_{I} + \underbrace{2 \times 1 \times 1}_{2C_3} \right) = 1$$
$$a_E = \frac{1}{6} \left(\underbrace{4 \times 2}_{I} - \underbrace{2 \times 1 \times 1}_{2C_3} \right) = 1$$
$$E \otimes E = A_1 \oplus A_2 \oplus E$$

$$\Gamma' \otimes E = E \oplus A_1 \oplus A_2 \oplus E = A_1 \oplus A_2 \oplus 2E$$

Transitions $E \to A_1, E \to A_2, E \to E$

Jahn-Teller Effect

Jahn-Teller Theorem (1937) Symmetric configurations of molecules with degenerate electron states are *unstable*

 \Rightarrow The nuclei in the molecule will distort to remove the degeneracy.

Let q_i^{α} be the normal modes of molecular vibrations ($i = x, yz, \alpha$ labels the irreducible representation) We are interested only in asymmetric positions of ions: Γ_1 is not considered Electron Hamiltonian: H_0 Suppose that the electrons are in

one the multidimensional representations

 $\Gamma_{\beta}, \dim(\Gamma_{\beta}) > 1$

 $\Gamma_b = E, F, T, \ldots$

Suppose that the molecule get distorted

$$H = H_0 \to H = H_0 + \sum_{\alpha,i} V_{\alpha i} q_{\alpha i} + \sum_{\alpha,\beta,i,j} W_{\alpha i,\beta j} q_{\alpha i} q_{\beta j} + \dots$$

Is the matrix element of the linear in q term finite? If it is, the energy will always be lowered (the sign of q can always be chosen negative) for small enough q. (Higher-order terms-non-linear JT-effect) Coefficients V_{α} transform as one of the equivalence representations of the symmetry group

 $V_{\alpha} \propto \Gamma_{\alpha}^{\rm eq}$

Reminder: an equivalence representation describes purely vibrational modes and exclude translations and vibrations

If the electron state is degenerate, the energy splitting due to a deformation is

> $\Delta E = \langle \beta, b | V_{\alpha,i} | \beta, a \rangle$ where $|\beta, a\rangle$ $(a = 1...f_{\beta})$ is the basis function

> > $\Delta E \neq 0$

if and only if

 $\Gamma_{\beta} \otimes \Gamma_{\alpha}^{eq} \otimes \Gamma_{\beta} \supset \Gamma_{1}$ Equivalently,

 $\Gamma_{\beta} \otimes \Gamma_{\beta} \supset \Gamma_{\alpha}^{eq}$

Non-degenerate electron configuration \Rightarrow no JT distortion JT distortion: an asymmetric configuration of nuclei \Rightarrow $\Gamma_{\alpha}^{eq} \neq \Gamma_{1}$ If the electron configuration is non-degenerate, Γ_{β} is a 1D representation and

$$\Gamma_{\beta} \otimes \Gamma_{\beta} = \Gamma_{1}$$

$$\chi_{\Gamma_B}(G) = \pm 1 \Rightarrow \chi_{\Gamma_\beta \otimes \Gamma_\beta} = \chi^2_{\Gamma_\beta}(G) = 1 \Rightarrow \Gamma_\beta \otimes \Gamma_\beta = \Gamma_1$$
$$\Rightarrow \Delta E = 0$$

If the electron configuration is degenerate, $\Delta E \neq 0$

Td symmetry

This document is provided by the Chemical Portal www.webqc.org

FIG. 1. Methane molecule

Example: CH₄ (methane) Vibrational modes

 $\Gamma^{eq} = A_1 \oplus E \oplus 2T_2$

Excluding the symmetric mode

 $\Gamma^{eq} = E \oplus 2T_2$

Degenerate electron configurations: E,T

 $E \otimes E = A_1 \oplus E \supset E$

 $T_1 \otimes T_1 = T_2 \otimes T_2 = A_1 \oplus E \oplus T_2 \supset T_2$ $\Rightarrow \text{ symmetric molecule is unstable}$

Character table for T_d point group

	E	8C3	3C ₂	6S ₄	6σ _d	linear, rotations	quadratic
A ₁	1	1	1	1	1		$x^2+y^2+z^2$
A ₂	1	1	1	-1	-1		
Е	2	-1	2	0	0		$(2z^2-x^2-y^2, x^2-y^2)$
T ₁	3	0	-1	1	-1	(R_x, R_y, R_z)	
T ₂	3	0	-1	-1	1	(x, y, z)	(xy, xz, yz)

You may print and redistribute verbatim copies of this document.

