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Applications to the Physics of Condensed Matter 
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A (finite or infinite) sequence of elements A,B,C…form a group, 
if the following four conditions are satisfied 

 

1. CLOSURE: If A and B are belong to the group, then A •  B also belongs to the group.
2. ASSOCIATIVITY: If A, B and C  belong to the group, then (A •  B) •  C  =  A •  (B •  C).
3. IDENTITY: There is an element e of the group such that for any element a of the group
    A •  I  =  E  •  I  =  I .
4. INVERSE: For any element A of the group there is an element A such that
          A i A−1  =A−1 i A =  I
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Closure property 

Six elements: identity, three filps, two rotations 
Group of order 6 



I A B C D F 
I I A B C D F 
A A I D F B C 
B B F I D C A 
C C D F I A B 
D D C A B F I 
F F B C A I D 

Three classes: 1) identity (E), 2) three 180 rotations (A,B,C), 
3) 120 rotation (D) and 240 rotation (F) 

Right Left 
 

 

 


classes 
I 3C2

2C3



Two groups G and G’ are called isomorphic, if there is 
one-to-one correspondence between their elements 

G = A,B,C...P...{ }
G ' = A ',B ',C '...P '...{ }
A⇔ A '
B⇔ B '
....
AB = P
A 'B ' = P '

 Example: D3  is isomorphic to C3v  (rotations by 120  + reflections in three vertical planes)



 

Let ψ 1 x( )  is an arbitrary (single-valued) function of x.
Take an element R of group G  (order g)
Apply the operator P R( )  to ψ 1 x( )  defined as

P R( )ψ 1 x( ) ≡ψ 1 R−1x( ) ≡ ΦR x( )
                          
Operators P(R) form a group which is isomorphic to G :  P(S)P(R) = P(SR)
Proof:

P S( )P R( )ψ 1 x( ) = P S( )ΦR x( ) = ΦR S−1x( ) =ψ 1 R−1S−1x( ) =ψ 1 SR( )−1 x( ) = P SR( )ψ 1 x( )

Applying all symmetry operations to ψ 1,  we get a set of r  linearly indepedent functions
                                            ψ 1...ψ r{ }

BASIS
 

In general, r ≤ g.

NB :choice of ψ 1 is arbitrary.



Applying a symmetry operation to the basis function, 
we get a linear superposition of basis functions 

P S( )ψ i = Gki S( )ψ k
k=1

r

∑
Matrices G S( )  form a representation of the group.

Representation of a group is as arbitrary as the choice 
of the basis function. 

If a matrix of particular representation cannot be reduced to 
a block-diagonal form by any similarity transformations, such 
a representaton is called irreducible. 



D3

1)  consider a function which does not change either upon  
rotations or flips 

f x, y, z( ) = z

This function generates a trivial 1D representation 
G I( ) = G A( ) = G(B) = G(C) = G(D) = G(F) = 1

2) consider a function which is invariant with respect to 120  
rotations but changes its sign upon flips 

f x, y, z( ) = 1, x2 + y2 , z2 ,...

This function generates another 1D representation 
G I( ) = G(D) = G(F) = 1
G A( ) = G(B) = G(C) = −1



D3

3) 2D representations are formed by two basis functions which 
transform as elements of a vector (x,y) 

1 

2 

3

3’ 1’ 

2’ 

x 

y 

G A( ) = −1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

;  Tr=0G I( ) = 1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

;  Tr=2

G B( ) = 1 / 2 − 3 / 2
− 3 / 2 −1 / 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

;  Tr=0 G C( ) = 1 / 2 3 / 2
3 / 2 −1 / 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

;  Tr=0

identity 22’ flip: x-x,yy 

33’ flip 11’ flip 

G D( ) = −1 / 2 3 / 2
− 3 / 2 −1 / 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

;  Tr=-1 G F( ) = −1 / 2 − 3 / 2
3 / 2 −1 / 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

;  Tr=-1

240 rotation 120 rotation 



Character=trace of an irreducible representation matrix 

Traces are invariantcharacters do not depend 
 on the choice of basis functions 



2C3 3C2I

1

z

(x, y)

A1

A2

E

1 1 1

1 1 −1

2 −1 0

A,B: 1D representations (A is even upon rotation, B is odd) 
E:     2D representation (not to be confused with identity!) 
F:     3D representation… 

D3

Group 

Basis 
function 

Class 

irrep Trace of irrep 



2C3 3C2I

1

z
(x, y)

A1
A2
E

1 1
1

1
−1

2 −1 0

D3

1
1×12 + 2 ×12 + 3×12 = 6 = g

1×12 + 2 ×12 + 3× −1( )2 = 6 = g

1× 22 + 2 × (−1)2 + 3× 02 = 6 = g

 

 
NC

number of elements in C
 | χα ( C

class
 ) |2

C
∑ = g

A1  and A2 :  1× (1×1) + 2 × (1×1) + 3× (1× −1( )) = 0

same irrep 

A1 and E :  1× (1× 2) + 2 × (1× (−1)) + 3× (1× 0) = 0

 

 
NC

number of elements in C
 χβ (C)⎡⎣ ⎤⎦

*
χα ( C

class
 )

C
∑ = gδαβ

Also,  

12 +12 + 22 = 6 = g

 

 
f 2
α

dim of irrep


α : over irreps
∑ = g

different irreps 

Take trace2,  multiply by the number of the elements in the class,
 and sum over classes



Van Vleck orthogonality theorem for irreps 

Gik
α R( )⎡⎣ ⎤⎦

*
Glm

β

R: symmetry elelements
∑ (R) = g

fα
δαβδ ilδkm

Set i = k,l = m and take a trace ⇒

χα R( )⎡⎣ ⎤⎦
*
χβ R( )

R: symmetry elelements
∑ = gδαβ

All elements of the same class (C) have the same characters ⇒

NC χα C( )⎡⎣ ⎤⎦
*
χβ C( )

C : classes
∑ = gδαβ



How many times an irrep Gα  is contained in  G?  Using orthogonality of characters,

                         aα = 1
g

NCχR
C:all classes of Gα  

∑ χα C( )⎡⎣ ⎤⎦
*

 A reducible representation can be expanded over irreps
                          G = aαGαα∑
 or, since dims of G  may be different, 
                          G = a1G1 ⊕ a2G2 ⊕ ...                   ⊕ ≡ direct sum

                         A⊕ B = A 0
0 B

⎛
⎝⎜

⎞
⎠⎟

Applying trace,  
                        χR  = aα

α  
∑ χα

Let G  be a reducible representation of dim f  with character χR  .



A,B: 1D representations  non-degenerate levels  
E:     2D representation   two-fold degeneracy 
F:     3D representation    three-fold degeneracy 

Ĥψ = Eψ

Wavefunctions must obey all symmetry properties  
of the Hamiltonian. 
A proper description of a degenerate state is a linear 
superposition of wavefunctions. 
Basis functions of a given irrep are transformed 
into each other under group operations 
Degenerate states form a basis of a given irrep 
Dimensionality of a given irrep gives us immediately  
degeneracy of the corresponding energy level 



Ĥ = Ĥ0 + Ĥ '

Symmetry of Ĥ ' < Symmetry of Ĥ0 ⇒

Representations of Ĥ '  are contained in Ĥ

In general, a representation of Ĥ '  is a reducible representation of Ĥ0

Decomposing representations of Ĥ '  into irreps of Ĥ0 ,
we find which degeneracies are lifted.



Rotational group of a cube (without inversion and reflection symmetries) 

O I 8C3 3C2 6C2 6C4

A1(Γ1) 1 1 1 1 1
A2 (Γ2 ) 1 1 1 −1 −1
E Γ12( ) 2 −1 2 0 0

F1 Γ15( ) 3 0 −1 −1 1

F2 Γ25( ) 3 0 −1 1 1

 non-degen. 

2-fold 

3-fold 

Ĥ0 O( ) :

Ĥ ' D3( ) : A strain is applied along the main diagonal  

How does the strain split the degenerate levels? 

 

4 C3  axes ⇒ 8C3  (4C3
120
 + 4C 2

3
240
)

6 C2  axes ⇒ 6C2

3 C4  axes ⇒ 6C4  (3C4 + 3C4
3)

                 ⇒ 3C2  (=3C4
2 )

}
}

}

Classes: 



Group O contans all the elements of D3  [E,2C3, 3C2 ]
For example, irrep F2  of O is a reducible representation of D3

O I 8C3 3C 2 (= 3C
2
4 ) 6C2 6C4

A1 1 1 1 1 1
A2 1 1 1 −1 −1
E 2 −1 2 0 0
F1 3 0 −1 −1 1
F2 3 0 −1 1 −1

D3 I 2C3 3C2

A1 1 1 1
A2 1 1 −1
E 2 −1 0

Decomposition formula: aα =
1
g

NCχR C( )
C :all classes of Gα  

∑ χα C( )⎡⎣ ⎤⎦
*

 

a A1( ) = 1
6
1
NC
 × 3

χ I( )
 × 1

χA1 I( )


I  
+ 2

NC
 × 0

χ 8C3( )
 × 1

χA1 2C3( )


2C3  
+ 3

NC
 × 1

χ 6C2( )
 × 1

χA1 3C2( )


3C2  ⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1

a A2( ) = 1
6
3×1+ 2 × 0 ×1+ 3×1× −1( )⎡⎣ ⎤⎦ = 0

a E( ) = 1
6
3× 2 + 2 × 0 × (−1) + 3×1× 0[ ] = 1

 
F2 (×3)

A1(×1)

E(×2)



Rotational symmetries of building blocks (polygons)  
must be consistent with translational symmetry 

crystallographic restriction theorem:  
lattice can have only 2, 3, 4, and 6-

fold rotational symmetries 
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  Crystal structure can be obtained by attaching atoms 
or groups of atoms --basis-- to  lattice sites. 

Crystal Structure 23 

Crystal Structure = Crystal Lattice        + Basis 

Partially from Prof. C. W. Myles (Texas Tech)  course presentation 



Bravais lattices: monoatomic basis 

Non-Bravais lattices: polyatomic basis 

Graphene: Honeycomb 
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2180
2
π= 2180

2
π=

290 4-fold axis
4
π= ⇒

Rhombohedral 

Hexagonal (Triangular) Tetragonal (Square) 

Orthorhombic (Rectangular) Oblique 
2180 2 fold axis
2
π= ⇒ −

260 6-fold axis
6
π= ⇒



Oblique 

180 

Elements of symmetry: C2 rotations 
Group: C2 
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Ohm’s law on a lattice:

j

i

= �

ij

E

j

Conductivity tensor

�̂ =

0

BB@
�

xx

�

xy

�

yx

�

yy

1

CCA (1)

How many independent components does an oblique lattice
have?

The only symmetry operation is the 180 rotation about z.
Matrix of rotation about z by ✓:

U

✓

=

0

BB@
cos ✓ sin ✓
� sin ✓ cos ✓

1

CCA ) (2)

U

180

=

0

BB@
�1 0
0 �1

1

CCA = �1⇥ 1 (3)

Transformation of the Ohm’s law under rotation

Û

~

j = Û �̂Û

�1

Û

~

E ) �̂ ! Û �̂Û

�1 (4)

For rotations, Û=̂U�1 )
�̂ = Û �̂Û (5)
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0

BB@
�

xx

�

xy

�

yx

�

yy

1

CCA = Û

180

�̂Û

180

= (�1)

0

BB@
�

xx

�

xy

�

yx

�

yy

1

CCA (�1)

=

0

BB@
�

xx

�

xy

�

yx

�

yy

1

CCA (6)

) lattice symmetry imposes no constrains on �̂.
Time-reversal symmetry

(symmetry of Onsager kinetic coe�cients):

�

ij

= �

ji

) (7)

�̂

oblique

=

0

BB@
�

xx

�

xy

�

xy

�

yy

1

CCA (8)



Rhombohedral 
Orthorhombic (Rectangular) 

180 

180 

180 

D2 D2 



Equivalently, one can do reflections in vertical planes 

D2=C2v (=means “isomorphic”) 

180 



4

D

2

= (C
2v

) group
(rhombohedral and orthorhombic lattices)

We already know that Û
180

about z axis imposes no
constraints.

180 rotation about the x axis: x ! x, y ! �y

Û

x

180

=

0

BB@
1 0
0 �1

1

CCA (9)

0

BB@
�

xx

�

xy

�

yx

�

yy

1

CCA = Û

x

180

�̂Û

x

180

=

0

BB@
1 0
0 �1

1

CCA

0

BB@
�

xx

�

xy

�

yx

�

yy

1

CCA

0

BB@
1 0
0 �1

1

CCA

=

0

BB@
1 0
0 �1

1

CCA

0

BB@
�

xx

��

xy

�

yx

��

yy

1

CCA

=

0

BB@
�

xx

��

xy

��

yx

�

yy

1

CCA ) �

xy

= 0, �

yx

= 0 (10)

�̂

rhombo/ortho

=

0

BB@
�

xx

0
0 �

yy

1

CCA (11)



Tetragonal (Square) 

Symmetry operations: 
3×90 rotations 

180 rotations about 4 
horizontal axes 

D4 

90 

Symmetry operations: 
3×90 rotations 
Reflections in 4 
Vertical planes 

C4v 

D4=C4v 



5

D

4

= C

4v

(tetragonal)

D

4

(C
4v

) already contains all symmetries of D
2

(C
2v

). )
At least, we must have

�̂

tetra

=

0

BB@
�

xx

0
0 �

yy

1

CCA (12)

However, we have additional symmetries: 180 rotations about
diagonals (or reflections in the diagonal vertical planes).
Reflection in a diagonal vertical plane: x ! y, y ! x

R̂ =

0

BB@
0 1
1 0

1

CCA

R̂

0

BB@
x

y

1

CCA =

0

BB@
0 1
1 0

1

CCA

0

BB@
x

y

1

CCA =

0

BB@
y

x

1

CCA (13)

0

BB@
�

xx

0
0 �

yy

1

CCA = R̂�̂R̂ =

0

BB@
0 1
1 0

1

CCA

0

BB@
�

xx

0
0 �

yy

1

CCA

0

BB@
0 1
1 0

1

CCA

=

0

BB@
0 1
1 0

1

CCA

0

BB@
0 �

xx

�

yy

0

1

CCA =

0

BB@
�

yy

0
0 �

xx

1

CCA

) �

xx

= �

yy

(14)

�̂

tetra

=

0

BB@
�

xx

0
0 �

xx

1

CCA (15)
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Any tensor describing physical properties of the lattice

• dielectric permittivity "̂

• elastic moduli

• electron e↵ective mass m̂

• ...
have the same symmetries.

Exercise: work out symmetries of �̂ for the hexagonal lattice.



Vibrational modes of the H2O molecule 

System of N particles (not on the same line): 
3N degrees of freedom 
3 translational 
3 rotational 
# of vibrational modes: Nv= 3N-3-3=3N-6 
For H2O: N=3Nv=3 

What are those 3 modes? 



H2O 

C2 axis+2 vertical planes (σv and σ’v) 

                 C2v group 

σv σ'v 



7

Symmetry operations of C
2v

group: I , C
2

, �
v

, and �0
v

. g = 4.
Special property: C

2v

is cyclic group.
Cyclic group:

Take one symmetry element, S.
All other elements are given by S

k, k = 1, 2...
Cyclic groups have only 1D irreps.

C

2v

is particularly simple:
applying any element twice, we get I .

C

2

2

= I, �

2

v

= I, (�0
v

)2 = I.

Let  be any basis function.

S(S ) = S

2

 =  

Irreps are numbers such that G2 = 1 ) G = ±1.
X

irreps

dim2(irrep) = g

X

irreps

1 = 4 ) # of irreps = 4
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How do the group elements act on coordinates?

C

2

: x ! �x, y ! �y

�

v

: x ! x, y ! �y

�

0
v

: x ! �x, y ! y

For all operations, z ! z.

Table of characters

C

2v

I C

2

�

v

�

0
v

z, A

1

1 1 1 1
xy, A

2

1 1 -1 -1
x, B

1

1 -1 1 -1
y, B

2

1 -1 -1 1

A

1,2

even under C
2

, B
1,2

odd under C
2

.

We know that N
v

= 3 but we have 4 irreps.
Some of the irreps do not correspond to molecular vibrations!
Need to get rid of irreps that correspond to translations and

rotations rather than to vibrations.

σv σ'v 
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Equivalence (“atomic site”) representation (G
eq

) is formed
by vibrational displacements of all atoms consistent with the

symmetry operations of the group.

In general, G
eq

is reducible. Expand G

eq

over irreps.

C

2v

: G

eq

= a

1

A

1

+ a

2

A

2

+ a

3

B

1

+ a

4

B

2

Some of the coe�cients should be zero.
Consider rotation by angle ✓

about some symmetry axis of the molecule in 3D

U

✓

=

0

BBBBBBB@

cos ✓ sin ✓ 0
� sin ✓ cos ✓ 0

0 0 1

1

CCCCCCCA

Its character:

�(U
✓

) = TrU
✓

= 1 + 2 cos ✓

If there are N
a

atoms on the same axis,

�(U
✓

) = N

a

(1 + 2 cos ✓)

Each of the N
a

atoms was subjected not only to vibrations
but also to translations and rotations )
�(U

✓

) contains extra degrees of freedom.
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Translation is a vector ~u = (u
x

, u

y

, u

z

). U
✓

transforms its as
any other vector. The corresponding character is

1 + 2 cos ✓

Rotation by an infinitesimally small angle �� is described by
vector �~� of magnitude �� and along the axis of rotation. �~�

is a polar vector but, under rotations, it transforms as a
polar vector. Its transformation adds another 1 + 2 cos ✓

term to �(U
✓

).
Subtracting 2(1 + 2 cos�) from �(U

✓

), we obtain a character
of purely vibrational degrees of freedom

�

v

= N

a

(1 + 2 cos ✓)� 2(1 + 2 cos ✓) = (N
a

� 2)(1 + 2 cos ✓)
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Equivalence representation of C
2v

�

v

= (N
a

� 2)(1 + 2 cos ✓)

Identity (I): N
a

= N , ✓ = 0 )

�

v

(I) = 3

. C
2

contains 1 oxygen: ) N

a

= 1, ✓ = 180 )
�

v

(C
2

) = �1(1� 2) = 1

�

v

leaves all atoms intact)
�

v

(�
v

) = �

v

(I) = 3

�

0
v

is equivalent to C

2

)
�

v

(�0
v

) = �

v

(C
2

) = 1

C

2v

I C

2

�

v

�

0
v

G

eq

3 1 3 1

σ
v 

σ
'v 
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Last part: decompose G
eq

into irreps of C
2v

C

2v

I C

2

�

v

�

0
v

z, A

1

1 1 1 1
xy, A

2

1 1 -1 -1
x, B

1

1 -1 1 -1
y, B

2

1 -1 -1 1

C

2v

I C

2

�

v

�

0
v

G

eq

3 1 3 1

G

eq

= a

1

A

1

+ a

2

A

2

+ a

3

B

1

+ a

4

B

2

Decomposition formula

a

↵

=
1

g

X

C

N

C

�

v

(C) [�
↵

(C)]⇤

g = 4, N
C

= 1

a

1

=
1

4
(3⇥ 1 + 1⇥ 1 + 3⇥ 1 + 1⇥ 1) = 2

a

2

=
1

4
(3⇥ 1 + 1⇥ 1� 3⇥ 1� 1⇥ 1) = 0

a

3

=
1

4
(3⇥ 1� 1⇥ 1 + 3⇥ 1� 1⇥ 1) = 1

a

4

=
1

4
(3⇥ 1� 1⇥ 1� 3⇥ 1 + 1⇥ 1) = 0

G

eq

= 2A
1

+ B

1

)
Two vibrational modes with symmetry A

1

, one with
symmetry B

1

, none with A

2

and B

2

.



A1 

A1 

B1 

χ C2( ) = +1

χ C2( ) = −1
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Selection Rules

Consider a basis function  ↵i (i = 1...f ) of the an f
dimensional representation  ↵i .

Theorem 1: The integral of  ↵i over an entire
configurational space of the systemˆ

 ↵i dq

is non-zero is non-zero if and only if �↵ is the identical (or
symmetric) representation, �

1

.
Proof: Assume that �↵ 6= �

1

. Since the integral must be
the same in any coordinate system (it is over all space), we

can sayˆ
 ↵i dq =

ˆ
�̂↵ ↵i dq =

ˆ X

k

�↵ki 
↵
k

where �̂ transforms the function by acting as a matrix
product. Now we sum the last equation over all symmetry

elements of group G:
X

G

ˆ
 ↵i dq =

X

G

ˆ
�↵ki 

↵
k dq

On the LHS, we simply get the group order (g) times the
original integral,

g

ˆ
 ↵i dq =

ˆ X

G

�↵ki 
↵
k dq
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Recall the orthogonality theorem
X

G

⇣
��ik

⌘⇤
�↵jl =

g

f �
�↵��ij�kl

If �� = �
1

, then

X

G

�↵jl = g�↵1 =

(
g, ↵ = 1

0, ↵ 6= 1

Because of this, it immediately follows thatˆ
 ↵i dq =

1

g

ˆ X

G

�↵ki 
↵
k dq = 0

if �↵ 6= �
1

. Hence, �↵ = �
1

.
Consider the Hamiltonian

H = Ho +H 0

where Ho has group G and H 0 has some lower symmetry
group. Define the matrix elements

M =

ˆ
 �kH

0 ↵i dq

The direct product (or tensor product or Kronecker product)
of representations is denoted by

C = A⌦ B , Csr = AijBkl

for 1  (i, j, k, l)  (m,n, p, q) and so
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1  (s, r)  (mp, nq). For example,

A⌦ B =

✓
a
11

a
12

a
21

a
22

◆
⌦

0

@
b
11

b
12

b
13

b
21

b
22

b
23

b
31

b
32

b
33

1

A =

✓
a
11

B a
12

B
a
21

B a
22

B

◆

=

0

BBBBBBBBB@

a
11

0

@
b
11

b
12

b
13

b
21

b
22

b
23

b
31

b
32

b
33

1

A a
12

0

@
b
11

b
12

b
13

b
21

b
22

b
23

b
31

b
32

b
33

1

A

a
21

0

@
b
11

b
12

b
13

b
21

b
22

b
23

b
31

b
32

b
33

1

A a
22

0

@
b
11

b
12

b
13

b
21

b
22

b
23

b
31

b
32

b
33

1

A

1

CCCCCCCCCA

(16)

Notice that

Tr {A⌦ B} =
X

i

aii
X

j

bjj = Tr {A}Tr {B}

Suppose we have two representations �↵ij and ��kl. The direct
product of two representations

� = �↵ ⌦ ��

is a matrix given by the direct product of matrices
corresponding to �↵ and ��.

Going back to the matrix element,

M =

ˆ
 �kH

0 ↵i dq

we note that M 6= 0 if and only if the integrand transforms
as �

1

. Suppose that H 0 transforms as some representation



16

�H 0
which, in general, is a reducible representation of the

Hamiltonian group G. The integrand transforms as a triple
direct product

�� ⌦ �H 0 ⌦ �↵

According to Theorem 1, the matrix element is non-zero if
and only if this triple product contains an identical

representation

�� ⌦ �H 0 ⌦ �↵ = �
1

� . . .

Now we have practical way to find if the matrix element is
non-zero: we must decompose the triple product into irreps
of G, and see if �

1

occurs in the decomposition. If it does,
then M 6= 0; if it does not, M = 0.

This procedure can be simplified further if we observe that
the direct product of some representation � with itself,

�⌦ �, must necessarily contain �
1

. Indeed, let us decompose
�⌦ � into irreps

�⌦ � = a
1

�
1

� a
2

�
2

� · · ·
The weight of �

1

in this decomposition is found as

a
1

=
1

g

X

G

�
�⌦�

(G)�⇤
�

1

(G)

For a direct product of two matrices,
Tr (A⌦ B) = Tr(A)Tr(B). (To convince yourself in the
validity of this identity have a look at the example of the
direct product of 2⇥ 2 and 3⇥ 3 matrices.) Therefore,
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�
�⌦�

= �2

�

while, by definition, �
�

1

= 1. By the
orthogonality property of characters,

1

g

X

G

�2

�

↵ = 1.

Therefore,

a
1

=
1

g

X

G

�
�⌦�

=
1

g

X

G

�2

�

=
1

g
g = 1,

which means that �
1

contains in �⌦ � once.
Thus the condition ���H 0

�↵ = �
1

� . . . can be replaced by
an equivalent one

�H 0 ⌦ �↵ = �� � . . .

Indeed, in this case, �� ⌦
⇣
�H 0 ⌦ �a

⌘
must necessarily

contain �
1

.

A. Dipole selection rule

Consider am electron system subject to a weak
electromagnetic field. In the transverse gauge, r · ~A = 0,

H =
1

2m

⇣
~p +

e

c
~A
⌘
2

=
p2

2m|{z}
Ho

+
e

mc
~A · ~p

| {z }
H 0

+O(A2)

The matrix element of the transition is

h�, j|H 0|↵, ii = e

mc
~A · h�, j|~p|↵, ii

Vector ~p is a polar vector which transforms as the radial
vector, ~r = (x, y, z). A representation of a polar vector is
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denoted by �0. We need to decompose �0 into irreps of H .
Recall the character table of the C

2v group which described
the H

2

O molecule. The x, y, and z components of ~r
transform as B

1

, B
2

, and A
1

. Therefore,

�0(C
2v) = A

1

� B
1

� B
2

On the other hand, for the D
3

group

�0(D
3

) = A
2

� E

Suppose that the initial state of the H
2

O molecule is A
1

.
Then we need to find

�0 ⌦ A
1

= (A
1

� B
1

� B
2

)⌦ A
1

Here is one more useful property:

�↵ ⌦ �
1

= �↵, 8�↵

Proof: Decompose �↵ ⌦ �
1

into irreps

�a ⌦ �
1

=
X

�

a���

where

a� =
1

g

X

G

�
�↵⌦�

1

(�
��
)⇤ =

1

g

X

G

�
�↵ �

�

1|{z}
=1

(�
��
)⇤ = �↵�

Then, (A
1

� B
1

� B
2

)⌦ A
1

= A
1

� B
1

� B
2

.
Vibrational normal modes transform as A

1

and B
1

.
This means that the final state can be either A

1

or B
1

: each
of these modes has a non-zero overlap with �0 ⌦ A

1

.
In other words, all vibrational modes of H

2

O are
infrared-active.
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I. EXAMPLE: DIPOLE TRANSITIONS IN A D3 MOLECULE

Consider a (hypothetical) molecule with D
3

symmetry.
Determine possible transitions between electronic states of

this molecule.
D

3

I 2C
3

3C
2

1 A
1

1 1 1
z, A

2

1 1 -1
(x, y), E 2 -1 0

A polar vector transforms as

�0 = A
2

� E

.
Suppose that the initial state is A

1

.

�0 ⌦ A
1

= �0 = A
2

⌦ E

Allowed transitions: A
1

! A
2

and A
1

! E.
Initial state: A

2

.

�0 ⌦ A
2

= (A
2

� E)⌦ A
2

= A
2

⌦ A
2

� E ⌦ A
2

�A
2

⌦A
2

= �2

A
2

= 1

for all symmetry classes )
A

2

⌦ A
2

= A
1
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D
3

I 2C
3

3C
2

1 A
1

1 1 1
z, A

2

1 1 -1
(x, y), E 2 -1 0
E ⌦ A

2

2 -1 0

) E ⌦ A
2

= E

�0 ⌦ A
2

= A
1

+ E

Allowed transitions

A
2

! A
1

, A
2

! E

Initial state: E

�0 ⌦ E = (A
2

� E)⌦ E = A
2

⌦ E| {z }
=E

�E ⌦ E = E � E ⌦ E
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Decomposing E ⌦ E

D
3

I 2C
3

3C
2

1 A
1

1 1 1
z, A

2

1 1 -1
(x, y), E 2 -1 0

E ⌦ E 4 1 0

E ⌦ E =
X

↵

a↵G↵

a↵ =
1

6

X

G

�E⌦E��↵

aA1 =
1

6

0

@4⇥ 1| {z }
I

+2⇥ 1⇥ 1| {z }
2C

3

1

A = 1

aA
2

=
1

6

0

@4⇥ 1| {z }
I

+2⇥ 1⇥ 1| {z }
2C

3

1

A = 1

aE =
1

6

0

@4⇥ 2| {z }
I

� 2⇥ 1⇥ 1| {z }
2C

3

1

A = 1

E ⌦ E = A
1

� A
2

� E

�0 ⌦ E = E � A
1

� A
2

� E = A
1

� A
2

� 2E

Transitions

E ! A
1

, E ! A
2

, E ! E



Jahn-Teller Effect 



two long axial 
Cu-O bonds 
= 2.45 Å 

        [Cu(H2O)6]2+ 
[Ni(H2O)6]2+ 

four short  
in-plane 
Cu-O bonds 
= 2.00 Å 

All six Ni-O bonds 
equal at 2.05 Å 

From Prof. Hancock 
Chemistry, UNC-Wilmington 



t2g 

eg 
d8 

High-spin Ni(II) – only one 
way of filling the eg level – 
not degenerate, no J-T 
distortion 

energy eg 
eg 

t2g t2g 

Cu(II) – two ways of filling eg level – it is 
degenerate, and has J-T distortion 

d9 

Ni(II) 
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Jahn-Teller Theorem (1937)
Symmetric configurations of molecules

with degenerate electron states are unstable

)The nuclei in the molecule will distort
to remove the degeneracy.
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Let q↵i be the normal modes of molecular vibrations
(i = x, yz, ↵ labels the irreducible representation) We are
interested only in asymmetric positions of ions: �

1

is not
considered

Electron Hamiltonian: H
0

Suppose that the electrons are in
one the multidimensional representations

��, dim(��) > 1

�b = E,F, T, . . .

Suppose that the molecule get distorted

H = H
0

! H = H
0

+
X

↵,i

V↵iq↵i +
X

↵,�,i,j

W↵i,�jq↵iq�j + . . .

Is the matrix element of the linear in q term finite?
If it is, the energy will always be lowered (the sign of q can

always be chosen negative) for small enough q.
(Higher-order terms–non-linear JT-e↵ect)

Coe�cients V↵ transform as one of the equivalence
representations of the symmetry group

V↵ / �eq

↵

Reminder: an equivalence representation describes purely
vibrational modes and exclude translations and vibrations

H
2

O (C
2v)

C
2v I C

2

�v �0
v

�eq 3 1 3 1

�eq = 2A
1

� B
1
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If the electron state is degenerate, the energy splitting due to
a deformation is

�E = h�, b|V↵,i|�, ai
where |�, ai (a = 1...f�) is the basis function

�E 6= 0

if and only if

�� ⌦ �eq
↵ ⌦ �� � �

1

Equivalently,

�� ⌦ �� � �eq
↵

Non-degenerate electron configuration )no JT distortion
JT distortion: an asymmetric configuration of nuclei )

�eq
↵ 6= �

1

If the electron configuration is non-degenerate, �� is a 1D
representation and

�� ⌦ �� = �
1

�
�B(G) = ±1 ) �

��⌦��
= �2

��
(G) = 1 ) �� ⌦ �� = �

1

) �E = 0

If the electron configuration is degenerate, �E 6= 0
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FIG. 1. Methane molecule

Example: CH
4

(methane)
Vibrational modes

�eq = A
1

� E � 2T
2

Excluding the symmetric mode

�eq = E � 2T
2

Degenerate electron configurations: E,T
1

,T
2

E ⌦ E = A
1

� E � E

T
1

⌦ T
1

= T
2

⌦ T
2

= A
1

� E � T
2

� T
2

) symmetric molecule is unstable

Td symmetry 

This document is provided by the Chemical Portal www.webqc.org

Character table for Td point group

E 8C3 3C2 6S4 6σd
linear,

rotations quadratic

A1 1 1 1 1 1 x2+y2+z2

A2 1 1 1 -1 -1

E 2 -1 2 0 0 (2z2-x2-y2, x2-y2)
T1 3 0 -1 1 -1 (Rx, Ry, Rz)

T2 3 0 -1 -1 1 (x, y, z) (xy, xz, yz)
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