Group theory 101

Suggested reading:
Landau \& Lifshits, Quantum Mechanics, Ch. 12

Tinkham, Group Theory and Quantum Mechanics

Dresselhaus, Dresselhaus, Jorio, Group Theory: Applications to the Physics of Condensed Matter

Ramond, Group Theory: a Physicist's Survey

Definition

A (finite or infinite) sequence of elements $A, B, C \ldots$ form a group, if the following four conditions are satisfied

1. CLOSURE: If A and B are belong to the group, then $A \bullet B$ also belongs to the group.
2. ASSOCIATIVITY: If A, B and C belong to the group, then $(A \bullet B) \cdot C=A \bullet(B \bullet C)$.
3. IDENTITY: There is an element e of the group such that for any element a of the group
$A \cdot I=E \bullet I=I$.
4. INVERSE: For any element A of the group there is an element A such that

$$
A \cdot A^{-1}=A^{-1} \cdot \mathrm{~A}=I
$$

Group of rotations of an equilateral triangle D_{3}

Closure property

Six elements: identity, three filps, two rotations Group of order 6

Cayley (multiplication) table

Left		classes			$2 C_{3}$	
	1	A	B	C	D	F
I	I	A	B	C	D	F
A	A	I	D	F	B	C
B	B	F	I	D	C	A
C	C	D	F	I	A	B
D	D	C	A	B	F	I
F	F	B	C	A	1	D

Three classes: 1) identity (E), 2) three 180 rotations (A,B,C), 3) 120 rotation (D) and 240 rotation (F)

Isomorphic groups

Two groups G and G'are called isomorphic, if there is one-to-one correspondence between their elements

$$
\begin{aligned}
& G=\{A, B, C \ldots P \ldots\} \\
& G^{\prime}=\left\{A^{\prime}, B^{\prime}, C^{\prime} \ldots P^{\prime} \ldots\right\} \\
& A \Leftrightarrow A^{\prime} \\
& B \Leftrightarrow B^{\prime} \\
& \ldots \ldots \\
& A B=P \\
& A^{\prime} B^{\prime}=P^{\prime}
\end{aligned}
$$

Exampter is isomorphic to $C_{3 v}$ (rotations by $120^{\circ}+$ reflections in three vertical planes)

Basis

Let $\psi_{1}(\mathbf{x})$ is an arbitrary (single-valued) function of \mathbf{x}.
Take an element R of group G (order g)
Apply the operator $P(R)$ to $\psi_{1}(\mathbf{x})$ defined as
$P(R) \psi_{1}(\mathbf{x}) \equiv \psi_{1}\left(R^{-1} \mathbf{x}\right) \equiv \Phi_{R}(\mathbf{x})$

Operators $P(R)$ form a group which is isomorphic to $G: P(S) P(R)=P(S R)$
Proof:
$P(S) P(R) \psi_{1}(\mathbf{x})=P(S) \Phi_{R}(\mathbf{x})=\Phi_{R}\left(S^{-1} \mathbf{x}\right)=\psi_{1}\left(R^{-1} S^{-1} \mathbf{x}\right)=\psi_{1}\left((S R)^{-1} \mathbf{x}\right)=P(S R) \psi_{1}(\mathbf{x})$

Applying all symmetry operations to ψ_{1}, we get a set of r linearly indepedent functions

$$
\underbrace{\left\{\psi_{1} \ldots \psi_{r}\right\}}_{\text {BASIS }}
$$

In general, $r \leq g$.

Representation of a group

Applying a symmetry operation to the basis function, we get a linear superposition of basis functions

$$
\begin{aligned}
& P(S) \psi_{i}=\sum_{k=1}^{r} G_{k i}(S) \psi_{k} \\
& \text { Matrices } G(S) \text { form a representation of the group. }
\end{aligned}
$$

Representation of a group is as arbitrary as the choice of the basis function.

If a matrix of particular representation cannot be reduced to a block-diagonal form by any similarity transformations, such a representaton is called irreducible.

Irreducible represenations of

1) consider a function which does not change either upon rotations or flips

$$
f(x, y, z)=1, x^{2}+y^{2}, z^{2}, \ldots
$$

This function generates a trivial 1D representation

$$
G(I)=G(A)=G(B)=G(C)=G(D)=G(F)=1
$$

2) consider a function which is invariant with respect to 120 rotations but changes its sign upon flips

$$
f(x, y, z)=z
$$

This function generates another 1D representation

$$
\begin{aligned}
& G(I)=G(D)=G(F)=1 \\
& G(A)=G(B)=G(C)=-1
\end{aligned}
$$

Irreducible representations of ,continued...

3) 2D representations are formed by two basis functions which transform as elements of a vector (x, y)

Characters

Character=trace of an irreducible representation matrix
Traces are invariant \rightarrow characters do not depend on the choice of basis functions

Reading character tables

$A, B: 1 \mathrm{D}$ representations (A is even upon rotation, B is odd)
$E: \quad 2 \mathrm{D}$ representation (not to be confused with identity!)

Orthogonality of characters

Take trace ${ }^{2}$, multiply by the number of the elements in the class, and sum over classes

D_{3}		I	$2 C_{3}$	$3 C_{2}$
1	A_{1}	1	1	1
z	A_{2}	1	1	-1
(x, y)	E	2	-1	0

different irreps
A_{1} and $A_{2}: 1 \times(1 \times 1)+2 \times(1 \times 1)+3 \times(1 \times(-1))=0$
A_{1} and $E: 1 \times(1 \times 2)+2 \times(1 \times(-1))+3 \times(1 \times 0)=0$

same irrep

$$
\begin{aligned}
& 1 \times 1^{2}+2 \times 1^{2}+3 \times 1^{2}=6=g \\
& 1 \times 1^{2}+2 \times 1^{2}+3 \times(-1)^{2}=6=g \\
& 1 \times 2^{2}+2 \times(-1)^{2}+3 \times 0^{2}=6=g
\end{aligned}
$$

Also,

$$
\begin{gathered}
1^{2}+1^{2}+2^{2}=6=g \\
\sum_{\alpha: \text { over irreps }} \underbrace{f_{\alpha}^{2}}_{\text {dim of irrep }}=g
\end{gathered}
$$

Van Vleck orthogonality theorem for irreps

$$
\sum_{R: \text { symmerry elelements }}\left[G_{i k}^{\alpha}(R)\right]^{*} G_{l m}^{\beta}(R)=\frac{g}{f_{\alpha}} \delta_{\alpha \beta} \delta_{i l} \delta_{k m}
$$

Set $i=k, l=m$ and take a trace \Rightarrow

$$
\sum_{R: \text { symmetry elelements }}\left[\chi^{\alpha}(R)\right]^{*} \chi^{\beta}(R)=g \delta_{\alpha \beta}
$$

All elements of the same class (C) have the same characters \Rightarrow

$$
\sum_{C: \text { classes }} N_{C}\left[\chi^{\alpha}(C)\right]^{* *} \chi^{\beta}(C)=g \delta_{\alpha \beta}
$$

Decomposition theorem

Let \bar{G} be a reducible representation of $\operatorname{dim} f$ with character χ_{R}.
A reducible representation can be expanded over irreps

$$
\bar{G}=\sum_{\alpha} a_{\alpha} G_{\alpha}
$$

or, since dims of G may be different,

$$
\begin{array}{ll}
\bar{G}=a_{1} G_{1} \oplus a_{2} G_{2} \oplus \ldots & \oplus \equiv \text { direct sum } \\
A \oplus B=\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right) &
\end{array}
$$

Applying trace,

$$
\chi_{R}=\sum_{\alpha} a_{\alpha} \chi^{\alpha}
$$

How many times an irrep G^{α} is contained in \bar{G} ? Using orthogonality of characters,

$$
a_{\alpha}=\frac{1}{g} \sum_{C \text { all classes of } G^{\alpha}} N_{C} \chi_{R}\left[\chi^{\alpha}(C)\right]^{*}
$$

Applications in Quantum Mechanics

$$
\hat{H} \psi=E \psi
$$

Wavefunctions must obey all symmetry properties of the Hamiltonian.
A proper description of a degenerate state is a linear superposition of wavefunctions.
Basis functions of a given irrep are transformed into each other under group operations \rightarrow
Degenerate states form a basis of a given irrep \rightarrow Dimensionality of a given irrep gives us immediately degeneracy of the corresponding energy level

Lifting of degeneracy by perturbation

$$
\hat{H}=\hat{H}_{0}+\hat{H}^{\prime}
$$

Symmetry of $\hat{H}^{\prime}<$ Symmetry of $\hat{H}_{0} \Rightarrow$
Representations of \hat{H}^{\prime} are contained in \hat{H}
In general, a representation of \hat{H}^{\prime} is a reducible representation of \hat{H}_{0}
Decomposing representations of \hat{H}^{\prime} into irreps of \hat{H}_{0},
we find which degeneracies are lifted.

Example: lifting of cubic degeneracy

$\hat{H}_{0}(O):$ Rotational group of a cube (without inversion and reflection symmetries)
Classes: $6 C_{2}$ axes $\Rightarrow 6 \mathrm{C}_{2}$

$\hat{H}^{\prime}\left(D_{3}\right)$: A strain is applied along the main diagonal Hodoes the strain split the degenerate levels?

Lifting of 3-fold degeneracy

Group O contans all the elements of $D_{3}\left[E, 2 C_{3}, 3 C_{2}\right]$
For example, irrep F_{2} of O is a reducible representation of D_{3}

O	I	$8 C_{3}$	$3 C_{2}\left(=3 C_{4}^{2}\right)$	$6 C_{2}$	$6 C_{4}$	D_{3}	I	$2 C_{3}$	$3 C_{2}$
A_{1}	1	1	1	1	1	A_{1}	1	1	1
A_{2}	1	1	1	-1	-1	A_{2}	1	1	-1
E	2	-1	2	0	0	E	2	-1	0
F_{1}	3	0	-1	-1	1				
F_{2}	3	0	-1	1	-1				

Decomposition formula: $a^{\alpha}=\frac{1}{g} \sum_{C \text { :all classes of } G^{\alpha}} N_{C} \chi_{R}(\bar{C})\left[\chi^{\alpha}(C)\right]^{*}$

$$
\begin{aligned}
& a\left(A_{2}\right)=\frac{1}{6}[3 \times 1+2 \times 0 \times 1+3 \times 1 \times(-1)]=0 \\
& \stackrel{F_{2}(\times 3)}{\rightarrow}{\underset{E(\times 2)}{-}}_{\stackrel{A_{1}(\times 1)}{-}}^{-}
\end{aligned}
$$

Lattice symmetries

Rotational symmetries of building blocks (polygons) must be consistent with translational symmetry
crystallographic restriction theorem: lattice can have only $2,3,4$, and 6fold rotational symmetries

Crystal Structure

Crystal structure can be obtained by attaching atoms or groups of atoms --basis-- to lattice sites.

Crystal Structure = Crystal Lattice • + Basis 0

Bravais lattices: monoatomic basis

Non-Bravais lattices: polyatomic basis

Graphene: Honeycomb

Five 2D Bravais lattices

Oblique

$$
180^{\circ}=\frac{2 \pi}{2} 180^{\circ}=\frac{2 \pi}{2} \Rightarrow 2-\text { fold axis }
$$

Rhombohedral

Orthorhombic (Rectangular)

$60^{\circ}=\frac{2 \pi}{6} \Rightarrow 6$-fold axis
$90^{\circ}=\frac{2 \pi}{4} \Rightarrow 4$-fold axis \quad Tetragonal (Square) Hexagonal (Triangular)

Oblique

Elements of symmetry: C_{2} rotations Group: C_{2}

Ohm's law on a lattice:

$$
j_{i}=\sigma_{i j} E_{j}
$$

Conductivity tensor

$$
\hat{\sigma}=\left(\begin{array}{ll}
\sigma_{x x} & \sigma_{x y} \tag{1}\\
\sigma_{y x} & \sigma_{y y}
\end{array}\right)
$$

How many independent components does an oblique lattice
have?

The only symmetry operation is the 180 rotation about z.
Matrix of rotation about z by θ :

$$
\begin{align*}
U_{\theta} & =\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) \Rightarrow \tag{2}\\
U_{180} & =\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=-1 \times \mathbb{1} \tag{3}
\end{align*}
$$

Transformation of the Ohm's law under rotation

$$
\begin{equation*}
\hat{U} \vec{j}=\hat{U} \hat{\sigma} \hat{U}^{-1} \hat{U} \vec{E} \Rightarrow \hat{\sigma} \rightarrow \hat{U} \hat{\sigma} \hat{U}^{-1} \tag{4}
\end{equation*}
$$

For rotations, $\hat{U} \hat{=} U^{-1} \Rightarrow$

$$
\begin{equation*}
\hat{\sigma}=\hat{U} \hat{\sigma} \hat{U} \tag{5}
\end{equation*}
$$

$$
\begin{align*}
\left(\begin{array}{ll}
\sigma_{x x} & \sigma_{x y} \\
\sigma_{y x} & \sigma_{y y}
\end{array}\right) & =\hat{U}_{180} \hat{\sigma} \hat{U}_{180}=(-1)\left(\begin{array}{cc}
\sigma_{x x} & \sigma_{x y} \\
\sigma_{y x} & \sigma_{y y}
\end{array}\right)(-1) \\
& =\left(\begin{array}{ll}
\sigma_{x x} & \sigma_{x y} \\
\sigma_{y x} & \sigma_{y y}
\end{array}\right) \tag{6}
\end{align*}
$$

\Rightarrow lattice symmetry imposes no constrains on $\hat{\sigma}$.
Time-reversal symmetry
(symmetry of Onsager kinetic coefficients):

$$
\begin{align*}
\sigma_{i j} & =\sigma_{j i} \Rightarrow \tag{7}\\
\hat{\sigma}_{\text {oblique }} & =\left(\begin{array}{cc}
\sigma_{x x} & \sigma_{x y} \\
\sigma_{x y} & \sigma_{y y}
\end{array}\right) \tag{8}
\end{align*}
$$

Rhombohedral

Orthorhombic (Rectangular)

D_{2}

Equivalently, one can do reflections in vertical planes

$D_{2}=C_{2 v}$ (=means "isomorphic")

$$
D_{2}=\left(C_{2 v}\right) \text { group }
$$

(rhombohedral and orthorhombic lattices)
We already know that \hat{U}_{180} about z axis imposes no constraints.
180 rotation about the x axis: $x \rightarrow x, y \rightarrow-y$

$$
\begin{gather*}
\hat{U}_{180}^{x}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \tag{9}\\
\left(\begin{array}{cc}
\sigma_{x x} & \sigma_{x y} \\
\sigma_{y x} & \sigma_{y y}
\end{array}\right)=\hat{U}_{180}^{x} \hat{\sigma} \hat{U}_{180}^{x}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
\sigma_{x x} & \sigma_{x y} \\
\sigma_{y x} & \sigma_{y y}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{\sigma_{x x}-\sigma_{x y}}{\sigma_{y x}-\sigma_{y y}} \\
=\left(\begin{array}{cc}
\sigma_{x x} & -\sigma_{x y} \\
-\sigma_{y x} & \sigma_{y y}
\end{array}\right) \Rightarrow \sigma_{x y}=0, \quad \sigma_{y x}=0 \tag{10}\\
\hat{\sigma}_{\text {rhombo/ortho }}=\left(\begin{array}{cc}
\sigma_{x x} & 0 \\
0 & \sigma_{y y}
\end{array}\right) \tag{11}
\end{gather*}
$$

$$
\begin{gathered}
D_{4}=C_{4 v} \\
\text { (tetragonal) }
\end{gathered}
$$

$D_{4}\left(C_{4 v}\right)$ already contains all symmetries of $D_{2}\left(C_{2 v}\right) . \Rightarrow$ At least, we must have

$$
\hat{\sigma}_{\mathrm{tetra}}=\left(\begin{array}{cc}
\sigma_{x x} & 0 \tag{12}\\
0 & \sigma_{y y}
\end{array}\right)
$$

However, we have additional symmetries: 180 rotations about diagonals (or reflections in the diagonal vertical planes).
Reflection in a diagonal vertical plane: $x \rightarrow y, y \rightarrow x$

$$
\begin{gather*}
\hat{R}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
\hat{R}\binom{x}{y}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{x}{y}=\binom{y}{x} \tag{13}\\
\left(\begin{array}{cc}
\sigma_{x x} & 0 \\
0 & \sigma_{y y}
\end{array}\right)=\hat{R} \hat{\sigma} \hat{R}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
\sigma_{x x} & 0 \\
0 & \sigma_{y y}
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & \sigma_{x x} \\
\sigma_{y y} & 0
\end{array}\right)=\left(\begin{array}{cc}
\sigma_{y y} & 0 \\
0 & \sigma_{x x}
\end{array}\right) \\
\Rightarrow \sigma_{x x}=\sigma_{y y} \tag{14}\\
\hat{\sigma}_{\text {tetra }}=\left(\begin{array}{cc}
\sigma_{x x} & 0 \\
0 & \sigma_{x x}
\end{array}\right) \tag{15}
\end{gather*}
$$

Any tensor describing physical properties of the lattice

- dielectric permittivity $\hat{\varepsilon}$
- elastic moduli
- electron effective mass \hat{m}
- ...
have the same symmetries.

Exercise: work out symmetries of $\hat{\sigma}$ for the hexagonal lattice.

Vibrational modes of the $\mathrm{H}_{2} \mathrm{O}$ molecule

System of N particles (not on the same line):
$3 N$ degrees of freedom
3 translational
3 rotational
\# of vibrational modes: $N_{v}=3 N-3-3=3 N-6$
For $\mathrm{H}_{2} \mathrm{O}: N=3 \rightarrow N_{v}=3$
What are those 3 modes?

$\mathrm{H}_{2} \mathrm{O}$

C_{2} axis +2 vertical planes (σ_{v} and σ_{v}^{\prime})
$\rightarrow C_{2 v}$ group

Symmetry operations of $C_{2 v}$ group: I, C_{2}, σ_{v}, and $\sigma_{v}^{\prime} . g=4$.
Special property: $C_{2 v}$ is cyclic group.
Cyclic group:
Take one symmetry element, S.
All other elements are given by $S^{k}, k=1,2 \ldots$
Cyclic groups have only 1D irreps.
$C_{2 v}$ is particularly simple:
applying any element twice, we get I.

$$
C_{2}^{2}=I, \quad \sigma_{v}^{2}=I, \quad\left(\sigma_{v}^{\prime}\right)^{2}=I
$$

Let ψ be any basis function.

$$
S(S \psi)=S^{2} \psi=\psi
$$

Irreps are numbers such that $G^{2}=1 \Rightarrow G= \pm 1$.

$$
\begin{gathered}
\sum_{\text {irreps }} \operatorname{dim}^{2}(\text { irrep })=g \\
\sum_{\text {irreps }} 1=4 \Rightarrow \# \text { of irreps }=4
\end{gathered}
$$

8
How do the group elements act on coordinates?

$$
\begin{aligned}
C_{2}: & x \rightarrow-x, y \rightarrow-y \\
\sigma_{v}: & x \rightarrow x, y \rightarrow-y \\
\sigma_{v}^{\prime}: & x \rightarrow-x, y \rightarrow y
\end{aligned}
$$

For all operations, $z \rightarrow z$.

Table of characters

$C_{2 v}$	I	C_{2}	σ_{v}	σ_{v}^{\prime}	
z,	A_{1}	1	1	1	1
$x y$,	A_{2}	1	1	-1	-1
x,	B_{1}	1	-1	1	-1
y,	B_{2}	1	-1	-1	1

$A_{1,2}$ even under $C_{2}, B_{1,2}$ odd under C_{2}.
We know that $N_{v}=3$ but we have 4 irreps.
Some of the irreps do not correspond to molecular vibrations!
Need to get rid of irreps that correspond to translations and rotations rather than to vibrations.

Equivalence ("atomic site") representation $\left(G_{e q}\right)$ is formed by vibrational displacements of all atoms consistent with the symmetry operations of the group.
In general, $G_{e q}$ is reducible. Expand $G_{e q}$ over irreps.

$$
C_{2 v}: \quad G_{e q}=a_{1} A_{1}+a_{2} A_{2}+a_{3} B_{1}+a_{4} B_{2}
$$

Some of the coefficients should be zero.
Consider rotation by angle θ
about some symmetry axis of the molecule in 3D

$$
U_{\theta}=\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Its character:

$$
\chi\left(U_{\theta}\right)=\operatorname{Tr} U_{\theta}=1+2 \cos \theta
$$

If there are N_{a} atoms on the same axis,

$$
\chi\left(U_{\theta}\right)=N_{a}(1+2 \cos \theta)
$$

Each of the N_{a} atoms was subjected not only to vibrations but also to translations and rotations \Rightarrow $\chi\left(U_{\theta}\right)$ contains extra degrees of freedom.

Translation is a vector $\vec{u}=\left(u_{x}, u_{y}, u_{z}\right) . U_{\theta}$ transforms its as any other vector. The corresponding character is

$$
1+2 \cos \theta
$$

Rotation by an infinitesimally small angle $\delta \phi$ is described by vector $\delta \vec{\phi}$ of magnitude $\delta \phi$ and along the axis of rotation. $\delta \vec{\phi}$ is a polar vector but, under rotations, it transforms as a polar vector. Its transformation adds another $1+2 \cos \theta$ term to $\chi\left(U_{\theta}\right)$.
Subtracting $2(1+2 \cos \phi)$ from $\chi\left(U_{\theta}\right)$, we obtain a character
of purely vibrational degrees of freedom

$$
\chi_{v}=N_{a}(1+2 \cos \theta)-2(1+2 \cos \theta)=\left(N_{a}-2\right)(1+2 \cos \theta)
$$

Equivalence representation of $C_{2 v}$

$$
\chi_{v}=\left(N_{a}-2\right)(1+2 \cos \theta)
$$

Identity $(I): N_{a}=N, \theta=0 \Rightarrow$

$$
\chi_{v}(I)=3
$$

C_{2} contains 1 oxygen: $\Rightarrow N_{a}=1, \theta=180 \Rightarrow$

$$
\chi_{v}\left(C_{2}\right)=-1(1-2)=1
$$

σ_{v} leaves all atoms intact \Rightarrow

$$
\chi_{v}\left(\sigma_{v}\right)=\chi_{v}(I)=3
$$

σ_{v}^{\prime} is equivalent to $C_{2} \Rightarrow$

$$
\begin{aligned}
& \chi_{v}\left(\sigma_{v}^{\prime}\right)=\chi_{v}\left(C_{2}\right)=1 \\
& \left.\begin{array}{|l|l|l|l|}
\hline C_{2 v} & I & C_{2} & \sigma_{v} \\
\hline & \sigma_{v}^{\prime} \\
\hline G_{e q} & 3 & 1 & 3
\end{array} \right\rvert\, \\
& \hline
\end{aligned}
$$

Last part: decompose $G_{e q}$ into irreps of $C_{2 v}$

Decomposition formula

$$
\begin{gathered}
a_{\alpha}=\frac{1}{g} \sum_{C} N_{C} \chi_{v}(C)\left[\chi_{\alpha}(C)\right]^{*} \\
g=4, N_{C}=1 \\
a_{1}=\frac{1}{4}(3 \times 1+1 \times 1+3 \times 1+1 \times 1)=2 \\
a_{2}=\frac{1}{4}(3 \times 1+1 \times 1-3 \times 1-1 \times 1)=0 \\
a_{3}=\frac{1}{4}(3 \times 1-1 \times 1+3 \times 1-1 \times 1)=1 \\
a_{4}=\frac{1}{4}(3 \times 1-1 \times 1-3 \times 1+1 \times 1)=0 \\
G_{e q}=2 A_{1}+B_{1} \Rightarrow
\end{gathered}
$$

Two vibrational modes with symmetry A_{1}, one with symmetry B_{1}, none with A_{2} and B_{2}.

Symmetric Stretch $3657 \mathrm{~cm}^{-1}$

Bend $1595 \mathrm{~cm}^{-1}$

Asymmetric Stretch
$3756 \mathrm{~cm}^{-1}$

Consider a basis function $\psi_{i}^{\alpha}(i=1 \ldots f)$ of the an f
dimensional representation ψ_{i}^{α}.
Theorem 1: The integral of ψ_{i}^{α} over an entire configurational space of the system

$$
\int \psi_{i}^{\alpha} d q
$$

is non-zero is non-zero if and only if Γ^{α} is the identical (or symmetric) representation, Γ_{1}.
Proof: Assume that $\Gamma^{\alpha} \neq \Gamma_{1}$. Since the integral must be the same in any coordinate system (it is over all space), we
can say

$$
\int \psi_{i}^{\alpha} d q=\int \hat{\Gamma}^{\alpha} \psi_{i}^{\alpha} d q=\int \sum_{k} \Gamma_{k i}^{\alpha} \psi_{k}^{\alpha}
$$

where $\hat{\Gamma}$ transforms the function by acting as a matrix product. Now we sum the last equation over all symmetry elements of group G :

$$
\sum_{G} \int \psi_{i}^{\alpha} d q=\sum_{G} \int \Gamma_{k i}^{\alpha} \psi_{k}^{\alpha} d q
$$

On the LHS, we simply get the group order (g) times the original integral,

$$
g \int \psi_{i}^{\alpha} d q=\int \sum_{G} \Gamma_{k i}^{\alpha} \psi_{k}^{\alpha} d q
$$

Recall the orthogonality theorem

$$
\begin{gathered}
\sum_{G}\left(\Gamma_{i k}^{\beta}\right)^{*} \Gamma_{j l}^{\alpha}=\frac{g}{f_{\beta}} \delta_{\alpha \beta} \delta_{i j} \delta_{k l} \\
\text { If } \Gamma^{\beta}=\Gamma_{1}, \text { then } \\
\sum_{G} \Gamma_{j l}^{\alpha}=g \delta_{\alpha 1}= \begin{cases}g, & \alpha=1 \\
0, & \alpha \neq 1\end{cases}
\end{gathered}
$$

Because of this, it immediately follows that

$$
\int \psi_{i}^{\alpha} d q=\frac{1}{g} \int \sum_{G} \Gamma_{k i}^{\alpha} \psi_{k}^{\alpha} d q=0
$$

$$
\text { if } \Gamma^{\alpha} \neq \Gamma_{1} \text {. Hence, } \Gamma^{\alpha}=\Gamma_{1} \text {. }
$$

Consider the Hamiltonian

$$
H=H_{o}+H^{\prime}
$$

where H_{o} has group G and H^{\prime} has some lower symmetry group. Define the matrix elements

$$
M=\int \psi_{k}^{\beta} H^{\prime} \psi_{i}^{\alpha} d q
$$

The direct product (or tensor product or Kronecker product) of representations is denoted by

$$
C=A \otimes B \quad, \quad C_{s r}=A_{i j} B_{k l}
$$

for $1 \leq(i, j, k, l) \leq(m, n, p, q)$ and so

$$
\left.\begin{array}{rl}
& 1 \leq(s, r) \leq(m p, n q) . \text { For example, } \\
A \otimes B= & \left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \otimes\left(\begin{array}{ll}
b_{11} & b_{12}
\end{array} b_{13}\right. \\
b_{21} & b_{22} \tag{16}\\
b_{23} \\
b_{31} & b_{32}
\end{array} b_{33}\right)=\left(\begin{array}{lll}
a_{11} B & a_{12} B \\
a_{21} B & a_{22} B
\end{array}\right), ~\left(\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
a_{11} & \left(\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right) a_{12}\left(\begin{array}{lll}
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right) \\
= & \left(\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
a_{21} & \left(\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right) a_{22}\left(\begin{array}{lll}
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right)
\end{array}\right)
\end{array}\right.
$$

$\operatorname{Tr}\{A \otimes B\}=\sum_{i} a_{i i} \sum_{j} b_{j j}=\operatorname{Tr}\{A\} \operatorname{Tr}\{B\}$
Suppose we have two representations $\Gamma_{i j}^{\alpha}$ and $\Gamma_{k l}^{\beta}$. The direct product of two representations

$$
\Gamma=\Gamma^{\alpha} \otimes \Gamma^{\beta}
$$

is a matrix given by the direct product of matrices
corresponding to Γ^{α} and Γ^{β}.
Going back to the matrix element,

$$
M=\int \psi_{k}^{\beta} H^{\prime} \psi_{i}^{\alpha} d q
$$

we note that $M \neq 0$ if and only if the integrand transforms as Γ_{1}. Suppose that H^{\prime} transforms as some representation
$\Gamma^{H^{\prime}}$ which, in general, is a reducible representation of the Hamiltonian group G. The integrand transforms as a triple direct product

$$
\Gamma^{\beta} \otimes \Gamma^{H^{\prime}} \otimes \Gamma^{\alpha}
$$

According to Theorem 1, the matrix element is non-zero if and only if this triple product contains an identical
representation

$$
\Gamma^{\beta} \otimes \Gamma^{H^{\prime}} \otimes \Gamma^{\alpha}=\Gamma_{1} \oplus \ldots
$$

Now we have practical way to find if the matrix element is non-zero: we must decompose the triple product into irreps of G , and see if Γ_{1} occurs in the decomposition. If it does,
then $M \neq 0$; if it does not, $M=0$.
This procedure can be simplified further if we observe that the direct product of some representation Γ with itself,
$\Gamma \otimes \Gamma$, must necessarily contain Γ_{1}. Indeed, let us decompose
$\Gamma \otimes \Gamma$ into irreps

$$
\Gamma \otimes \Gamma=a_{1} \Gamma_{1} \oplus a_{2} \Gamma_{2} \oplus \cdots
$$

The weight of Γ_{1} in this decomposition is found as

$$
a_{1}=\frac{1}{g} \sum_{G} \chi_{\Gamma \otimes \Gamma}(G) \chi_{\Gamma_{1}}^{*}(G)
$$

For a direct product of two matrices,
$\operatorname{Tr}(A \otimes B)=\operatorname{Tr}(A) \operatorname{Tr}(B)$. (To convince yourself in the validity of this identity have a look at the example of the direct product of 2×2 and 3×3 matrices.) Therefore,
$\chi_{\Gamma \otimes \Gamma}=\chi_{\Gamma}^{2}$ while, by definition, $\chi_{\Gamma_{1}}=1$. By the orthogonality property of characters,

$$
\begin{gathered}
\frac{1}{g} \sum_{G} \chi_{\Gamma^{\alpha}}^{2}=1 . \\
\text { Therefore } \\
a_{1}=\frac{1}{g} \sum_{G} \chi_{\Gamma \otimes \Gamma}=\frac{1}{g} \sum_{G} \chi_{\Gamma}^{2}=\frac{1}{g} g=1,
\end{gathered}
$$

which means that Γ_{1} contains in $\Gamma \otimes \Gamma$ once. Thus the condition $\Gamma^{\beta} \Gamma^{H^{\prime}} \Gamma^{\alpha}=\Gamma_{1} \oplus \ldots$ can be replaced by
an equivalent one

$$
\Gamma^{H^{\prime}} \otimes \Gamma^{\alpha}=\Gamma^{\beta} \oplus \ldots
$$

Indeed, in this case, $\Gamma^{\beta} \otimes\left(\Gamma^{H^{\prime}} \otimes \Gamma^{a}\right)$ must necessarily contain Γ_{1}.
A. Dipole selection rule

Consider am electron system subject to a weak electromagnetic field. In the transverse gauge, $\nabla \cdot \vec{A}=0$,

$$
H=\frac{1}{2 m}\left(\vec{p}+\frac{e}{c} \vec{A}\right)^{2}=\underbrace{\frac{p^{2}}{2 m}}_{H_{o}}+\underbrace{\frac{e}{m c} \vec{A} \cdot \vec{p}}_{H^{\prime}}+O\left(A^{2}\right)
$$

The matrix element of the transition is

$$
\langle\beta, j| H^{\prime}|\alpha, i\rangle=\frac{e}{m c} \vec{A} \cdot\langle\beta, j| \vec{p}|\alpha, i\rangle
$$

Vector \vec{p} is a polar vector which transforms as the radial vector, $\vec{r}=(x, y, z)$. A representation of a polar vector is
denoted by Γ^{\prime}. We need to decompose Γ^{\prime} into irreps of H. Recall the character table of the $C_{2 v}$ group which described
the $\mathrm{H}_{2} \mathrm{O}$ molecule. The x, y, and z components of \vec{r} transform as B_{1}, B_{2}, and A_{1}. Therefore,

$$
\Gamma^{\prime}\left(C_{2 v}\right)=A_{1} \oplus B_{1} \oplus B_{2}
$$

On the other hand, for the D_{3} group

$$
\Gamma^{\prime}\left(D_{3}\right)=A_{2} \oplus E
$$

Suppose that the initial state of the $\mathrm{H}_{2} \mathrm{O}$ molecule is A_{1}.
Then we need to find

$$
\Gamma^{\prime} \otimes A_{1}=\left(A_{1} \oplus B_{1} \oplus B_{2}\right) \otimes A_{1}
$$

Here is one more useful property:

$$
\Gamma_{\alpha} \otimes \Gamma_{1}=\Gamma_{\alpha}, \forall \Gamma_{\alpha}
$$

Proof: Decompose $\Gamma_{\alpha} \otimes \Gamma_{1}$ into irreps

$$
\Gamma_{a} \otimes \Gamma_{1}=\sum_{\beta} a_{\beta} \Gamma_{\beta}
$$

where

$$
a_{\beta}=\frac{1}{g} \sum_{G} \chi_{\Gamma_{\alpha} \otimes \Gamma_{1}}\left(\chi_{\Gamma_{\beta}}\right)^{*}=\frac{1}{g} \sum_{G} \chi_{\Gamma_{\alpha}} \underbrace{\chi_{\Gamma_{1}}}_{=1}\left(\chi_{\Gamma_{\beta}}\right)^{*}=\delta_{\alpha \beta}
$$

Then, $\left(A_{1} \oplus B_{1} \oplus B_{2}\right) \otimes A_{1}=A_{1} \oplus B_{1} \oplus B_{2}$.
Vibrational normal modes transform as A_{1} and B_{1}.
This means that the final state can be either A_{1} or B_{1} : each
of these modes has a non-zero overlap with $\Gamma^{\prime} \otimes A_{1}$.
In other words, all vibrational modes of $\mathrm{H}_{2} \mathrm{O}$ are infrared-active.
I. EXAMPLE: DIPOLE TRANSITIONS IN A D_{3} MOLECULE

Consider a (hypothetical) molecule with D_{3} symmetry. Determine possible transitions between electronic states of this molecule.

D_{3}		I	$2 C_{3}$	$3 C_{2}$
1	A_{1}	1	1	1
z,	A_{2}	1	1	-1
(x, y),	E	2	-1	0

A polar vector transforms as

$$
\Gamma^{\prime}=A_{2} \oplus E
$$

Suppose that the initial state is A_{1}.

$$
\Gamma^{\prime} \otimes A_{1}=\Gamma^{\prime}=A_{2} \otimes E
$$

Allowed transitions: $A_{1} \rightarrow A_{2}$ and $A_{1} \rightarrow E$.
Initial state: A_{2}.

$$
\Gamma^{\prime} \otimes A_{2}=\left(A_{2} \oplus E\right) \otimes A_{2}=A_{2} \otimes A_{2} \oplus E \otimes A_{2}
$$

$$
\chi_{A_{2} \otimes A_{2}}=\chi_{A_{2}}^{2}=1
$$

for all symmetry classes \Rightarrow

$$
A_{2} \otimes A_{2}=A_{1}
$$

D_{3}	$I{ }^{2} C_{3} 3 C_{2}$		
A_{1}		1	
$z, \quad A_{2}$	1	1	-1
(x,y), E	2	-1	
$E \otimes A_{2}$	2	-1	
$\Rightarrow E \otimes A_{2}=E$			

Allowed transitions
$A_{2} \rightarrow A_{1}, A_{2} \rightarrow E$
Initial state: E
$\Gamma^{\prime} \otimes E=\left(A_{2} \oplus E\right) \otimes E=\underbrace{A_{2} \otimes E}_{=E} \oplus E \otimes E=E \oplus E \otimes E$

$$
\begin{aligned}
& \text { Decomposing } E \otimes E \\
& E \otimes E=\sum_{\alpha} a_{\alpha} G_{\alpha} \\
& a_{\alpha}=\frac{1}{6} \sum_{G} \chi_{E \otimes E} \chi_{\Gamma_{\alpha}} \\
& a_{A 1}=\frac{1}{6}(\underbrace{4 \times 1}_{I}+\underbrace{2 \times 1 \times 1}_{2 C_{3}})=1 \\
& a_{A_{2}}=\frac{1}{6}(\underbrace{4 \times 1}_{I}+\underbrace{2 \times 1 \times 1}_{2 C_{3}})=1 \\
& a_{E}=\frac{1}{6}(\underbrace{4 \times 2}_{I}-\underbrace{2 \times 1 \times 1}_{2 C_{3}})=1 \\
& E \otimes E=A_{1} \oplus A_{2} \oplus E \\
& \Gamma^{\prime} \otimes E=E \oplus A_{1} \oplus A_{2} \oplus E=A_{1} \oplus A_{2} \oplus 2 E \\
& \text { Transitions } \\
& E \rightarrow A_{1}, E \rightarrow A_{2}, E \rightarrow E
\end{aligned}
$$

Jahn-Teller Effect

From Prof. Hancock Chemistry, UNC-Wilmington

$\mathrm{Cu}(\mathrm{II})$ - two ways of filling e_{g} level - it is degenerate, and has J-T distortion

Jahn-Teller Theorem (1937)
Symmetric configurations of molecules with degenerate electron states are unstable
\Rightarrow The nuclei in the molecule will distort
to remove the degeneracy.

Let q_{i}^{α} be the normal modes of molecular vibrations ($i=x, y z, \alpha$ labels the irreducible representation) We are interested only in asymmetric positions of ions: Γ_{1} is not considered
Electron Hamiltonian: H_{0} Suppose that the electrons are in one the multidimensional representations

$$
\begin{aligned}
& \Gamma_{\beta}, \operatorname{dim}\left(\Gamma_{\beta}\right)>1 \\
& \Gamma_{b}=E, F, T, \ldots
\end{aligned}
$$

Suppose that the molecule get distorted

$$
H=H_{0} \rightarrow H=H_{0}+\sum_{\alpha, i} V_{\alpha i} q_{\alpha i}+\sum_{\alpha, \beta, i, j} W_{\alpha i, \beta j} q_{\alpha i} q_{\beta j}+\ldots
$$

Is the matrix element of the linear in q term finite?
If it is, the energy will always be lowered (the sign of q can always be chosen negative) for small enough q.
(Higher-order terms-non-linear JT-effect)
Coefficients V_{α} transform as one of the equivalence
representations of the symmetry group

$$
V_{\alpha} \propto \Gamma_{\alpha}^{\mathrm{eq}}
$$

Reminder: an equivalence representation describes purely vibrational modes and exclude translations and vibrations

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O}\left(C_{2 v}\right) \begin{array}{|l|l|l|l|l|}
\hline C_{2 v} & I & C_{2} & \sigma_{v}^{\prime} & \sigma_{v} \\
\hline \Gamma^{e q} & 3 & 1 & 3 & 1 \\
\hline
\end{array} \\
\Gamma^{e q}=2 A_{1} \oplus B_{1}
\end{gathered}
$$

If the electron state is degenerate, the energy splitting due to a deformation is

$$
\Delta E=\langle\beta, b| V_{\alpha, i}|\beta, a\rangle
$$

where $|\beta, a\rangle\left(a=1 \ldots f_{\beta}\right)$ is the basis function

$$
\Delta E \neq 0
$$

if and only if

$$
\Gamma_{\beta} \otimes \Gamma_{\alpha}^{e q} \otimes \Gamma_{\beta} \supset \Gamma_{1}
$$

Equivalently,

$$
\Gamma_{\beta} \otimes \Gamma_{\beta} \supset \Gamma_{\alpha}^{e q}
$$

Non-degenerate electron configuration \Rightarrow no JT distortion
JT distortion: an asymmetric configuration of nuclei \Rightarrow

$$
\Gamma_{\alpha}^{e q} \neq \Gamma_{1}
$$

If the electron configuration is non-degenerate, Γ_{β} is a 1D representation and

$$
\Gamma_{\beta} \otimes \Gamma_{\beta}=\Gamma_{1}
$$

$$
\begin{gathered}
\chi_{\Gamma_{B}}(G)= \pm 1 \Rightarrow \chi_{\Gamma_{\beta} \otimes \Gamma_{\beta}}=\chi_{\Gamma_{\beta}}^{2}(G)=1 \Rightarrow \Gamma_{\beta} \otimes \Gamma_{\beta}=\Gamma_{1} \\
\Rightarrow \Delta E=0
\end{gathered}
$$

If the electron configuration is degenerate, $\Delta E \neq 0$

FIG. 1. Methane molecule
Example: CH_{4} (methane)
Vibrational modes

$$
\Gamma^{e q}=A_{1} \oplus E \oplus 2 T_{2}
$$

Excluding the symmetric mode

$$
\Gamma^{e q}=E \oplus 2 T_{2}
$$

Degenerate electron configurations: E, T

$$
E \otimes E=A_{1} \oplus E \supset E
$$

$T_{1} \otimes T_{1}=T_{2} \otimes T_{2}=A_{1} \oplus E \oplus T_{2} \supset T_{2}$ \Rightarrow symmetric molecule is unstable

Td symmetry

This document is provided by the Chemical Portal www.webqc.org

Character table for $\mathbf{T}_{\mathbf{d}}$ point group

	\mathbf{E}	$\mathbf{8 C}$	$\mathbf{3}$	$\mathbf{3 C}$	$\mathbf{2}$	$\mathbf{6 S _ { \mathbf { 4 } }}$	$\mathbf{6} \boldsymbol{\sigma}_{\mathbf{d}}$
linear, rotations	quadratic						
$\mathbf{A}_{\mathbf{1}}$	1	1	1	1	1		$\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$
$\mathbf{A}_{\mathbf{2}}$	1	1	1	-1	-1		
\mathbf{E}	2	-1	2	0	0		$\left(2 \mathrm{z}^{2}-\mathrm{x}^{2}-\mathrm{y}^{2}, \mathrm{x}^{2}-\mathrm{y}^{2}\right)$
$\mathbf{T}_{\mathbf{1}}$	3	0	-1	1	-1	$\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}, \mathrm{R}_{\mathrm{z}}\right)$	
$\mathbf{T}_{\mathbf{2}}$	3	0	-1	-1	1	$(\mathrm{x}, \mathrm{y}, \mathrm{z})$	$(\mathrm{xy}, \mathrm{xz}, \mathrm{yz})$

You may print and redistribute verbatim copies of this document.

