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I. SOME EXAMPLES

1. Strong explosion

A nuclear bomb goes off at t = 0. The energy deposited into the explosion is E0, the air

density before the explosion is ρ0. Find the dependence of the shock wave front, R, on time

t.

Dimensions

[E0] =
ML2

T 2
,

[ρ0] =
M

L3
,

[R] = L,

[t] = T

As all three variables of the problem (E0, ρ0, and t0) have independent dimensions, R must

be a product of those three

R ∼ Ea
0ρb

0t
c.

The dimensions of the left-hand-side and right-hand-side must coincide:

L =

(

ML2

T 2

)a (
M

L3

)b

T c

Equating the exponents of like dimensions gives:

L : 1 = 2a − 3b

M : 0 = a + b

T : 0 = −2a + c

from which

a = 1/5, b = −1/5, c = 2/5

Therefore,

R ∼
(

E0

ρ0

)1/5

t2/5.

When this solution is going to work? The size of the bomb, R0, did not enter (that allowed

to form the scaling combination for R), which means that we have effectively treated the

bomb as a point source. Every source looks like a point one from the distance much larger

than its size. Therefore, our solution is valid for such times that R ≫ R0.
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2. Diffusion

At t = 0, N particle is born at the origin (r = 0). Find the concentration of the particles,

n(r, t), at all subsequent times.

Diffusion is described by two macroscopic equations: a) continuity equation, which reflects

the particle number conservation
∂n

∂t
+ ~∇ · j = 0

and Ficks law, which relates the particle current to the concentration gradient

j = −D~∇n,

where D is the diffusion coefficient. The dimensions of D follow directly from the Ficks law

[D] =
L2

T
.

If our particles move in such a way that the mean free path is ℓ and the mean free time is

τ, then a microscopic theory (Boltzmann equation) gives D = ℓ2/dτ, where d is the spatial

dimensionality. Substituting Ficks law into the continuity equation results in the diffusion

equation
∂n

∂t
= D∇2n.

As time t = 0, all the particles were concentrated at r = 0, the initial condition for this

equation is

n(r, 0) = Nδ(r).

The total number of particles is conserved at all times. That means the integral of n over

the entire space must not depend on time

∫

ddrn(r, t) = N.

Concentration n is a function of three variables (r, t, and D) :

n = f(r, t,D)

Out of those three, only two have independent dimension, whereas the dimensions of the

third one can be expressed via that of the first two. For example, r and t may be taken as

having independent dimensions (L and T, respectively), whereas [D] = [r]2/[t] = L2/T. It
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is more convenient to take the dimensions of D and t as independent ones though. Then,

[r] = [D]1/2[t]1/2. That means that n can be represented as

n =
N

rd
F

(

r√
Dt

)

.

I have chosen r−3 (inverse volume in the d−dimensional space) to be the overall scale of n.

Also, because of number conservation, n must be proportional to N. It is more convenient

to re-write the last equation in the following form

n = N
(Dt)d/2

rd

1

(Dt)d/2
F

(

r√
Dt

)

= N
1

(Dt)d/2
Φ

(

r√
Dt

)

,

where the new dimensionless function

Φ(x) ≡ 1

xd
F (x).

Substituting of the scaling form of n into the diffusion equation helps to reduce this partial

differential equation into the ordinary one. Let’s do this for d = 1, (diffusion on the line,

r = x). Denoting

ξ ≡ x√
Dt

,

we get

∂n

∂t
= N

∂

∂t

1

(Dt)1/2
Φ (ξ) =

= − N

2D1/2

1

t3/2
Φ (ξ) + N

1

(Dt)1/2

dΦ

dξ

∂ξ

∂t

= − N

2D1/2

1

t3/2
Φ (ξ) − N

1

(Dt)1/2

x

2D1/2t3/2

dΦ

dξ
.

∇2n =
∂2n

∂x2
=

∂

∂x

(

∂

∂x
n

)

=
N

(Dt)1/2

∂

∂x

(

dΦ

dξ

∂ξ

∂x

)

=
N

(Dt)1/2

∂

∂x

(

dΦ

dξ

1

(Dt)1/2

)

=
N

(Dt)1/2

1

(Dt)1/2

d2Φ

dξ2

∂ξ

∂x

=
N

(Dt)3/2

d2Φ

dξ2
.

Diffusion equation reduces to

− N

2D1/2

1

t3/2
Φ − N

1

(Dt)1/2

x

2D1/2t3/2

dΦ

dξ

= D
N

(Dt)3/2

d2Φ

dξ2
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Multiplying both sides of the equation by (Dt)3/2 /ND gives

−1

2
Φ − 1

2

x

(Dt)1/2

dΦ

dξ
=

d2Φ

dξ2

or

d2Φ

dξ2
+

1

2
ξ
dΦ

dξ
+

1

2
Φ (ξ) = 0

which can be written as

d2Φ

dξ2
+

1

2

d

dξ
(ξΦ) = 0 →

dΦ

dξ
+

1

2
ξΦ = 0 →

Φ = Ce−ξ2/4.

Thus

n(r, t) =
N

(Dt)1/2
C exp(− x2

4Dt
).

The constant C can be found from, e.g., the conservation law:

∫ ∞

−∞
dxn(x, t) = N →

NC
∫ ∞

−∞
dx

1

(Dt)1/2
exp(− x2

4Dt
) = N →

NC
∫ ∞

−∞
dξ exp

(

−ξ2/4
)

= NC →

C =
1

2
√

π

The final result is

n(r, t) =
N

2 (πDt)1/2
exp(− x2

4Dt
).

A. Scattering cross-section for power-law potentials.

B.

Problem.
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Suppose that the potential of a scattering center is

V (r) =
A

ra
, (1)

where r is the distance from the center. Using the dimensional analysis, find an order-of-

magnitude estimate for the scattering cross-section.

Solution.

The scattering cross-section, σ, has units of area (L2) and depends on two parameters:

energy of the incident particle, ε, and prefactor A.

[A] = [E]La →

L =

(

[A]

[E]

)
1

a

→

σ ∼
(

A

ε

)1/a

.

Paradox.

Now the paradox comes. Recall the definition of the scattering cross-section from the

Classical Mechanics course

dσ = 2πρdρ, (2)

where ρ is the impact parameter. σ is the ratio of the number of particles scattered per unit

time by the center to the incoming flux: σ = Ṅ/J ([Ṅ ] = T−1, [J ] = L−2T−1 → [σ] = L2).

Thus dσ is the change in the ration caused by the change in the impact parameter by dρ.

Total cross-section

σ = 2π
∫ ?

0

dρρ. (3)

I intentionally left the upper limit in the integral undetermined. If the potential had finite

range of action. i.e., as in the case of a hard-sphere, the upper limit would be this range,

as a particle flying at larger distances from the center would not know about its presence.

In our case, however, the potential has infinite range. Therefore, the upper limit is infinity,

hence the integral diverges

σ = 2π
∫ ∞

0

dρρ = ∞. (4)

What has gone wrong? Why does an exact calculation gives a physically meaningless result

whereas the dimensional analysis produces something finite and meaningful?
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Let’s get to the root of the divergence. It occurs at large impact parameters when the

corresponding scattering angles are small. Let’s estimate the dependence of the scattering

angle, θ, on ρ for large ρ (small θ). For small θ,

θ ∼ ∆p⊥
p

, (5)

where ∆p⊥ is the change in the transverse momentum of the particle and p = mv is the

momentum.

∆p⊥ ∼ F⊥∆t ∼ A

ρa+1

ρ

v
=

A

ρav
→

θ ∼ A

ρamv2
→ ρ ∼

(

A

θmv2

)1/a

(one can see that the units are right). Write σ as

σ ∼
∫

dρρ =
∫

dθ

∣

∣

∣

∣

∣

dρ

dθ

∣

∣

∣

∣

∣

ρ(θ) ∝
∫

dθ
1

θ1/a+1

1

θ1/a
=
∫ dθ

θ2/a+1
(6)

as the exponent > 1, the integral diverges at the lower limit. Divergence is always the sign

of the limited validity of our model. Classical Mechanics is a model of limited validity. A

more general description is provided by Quantum Mechanics. CM is OK as far as the QM

uncertainties in physical quantities are small. But when the quantities themselves are small

uncertainties increase. In particular, CM becomes inapplicable at small scattering angles,

that is, precisely where we are having problems with the integral.

How large should be the angle for CM to be still applicable? CM works if the uncertainties

both in θ and ρ are small:

δθ ≪ θ, δρ ≪ ρ. (7)

For small angles,

δθ ∼ δp⊥/p (8)

Heisenberg uncertainty relation states that

δp⊥ ∼ h̄/δρ ≫ h̄/ρ →

δθ ≫ h̄/pρ

On the other hand,

θ ≫ δθ ≫ h̄/pρ →

θ ≫ h̄/pρ = h̄/mvρ = h̄/L
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(angular momentum should be larger than h̄). Now, in CM description

θ ∼ A

ρamv2
(9)

thus

A

ρamv2
≫ h̄

mvρ
→

ρa−1 ≪ A

h̄v

If a < 1, CM works at large ρ, if a > 1, it works at small ρ, for a = 1 (Coulomb

potential) the range of applicability does not depend on ρ but only on the parameters

(A = Ze2 → Ze2/h̄v ≫ 1 –note that this condition is opposite to that one needs to use

Born approximation for the Coulomb potential).

So, CM fails, therefore the cross-section can be determined only by using QM. Thus, the

whole body of many centuries work on molecular theory of gases, which was done before

QM is wrong. How come that we still use this results?

Divergence in the calculation in an unpleasant thing but it may not necessarily mean

a failure of our approach. What if for some physical reason the domain of small angles is

irrelevant for our purposes? Then we may not run into the problem with QM. Here is an

example. Suppose that instead of measuring the total cross section at a single center,we

have plenty of them scattered all over the space, and we do transport experiment: say pump

some gas through the medium containing these centers. The relevant quantity for us is then

the distribution function

f(r,p,t). (10)

It satisfies the Boltzmann equation (aka kinetic or transport equation)

df

dt
=

∂f

∂t
+

∂f

∂r
· dr

dt
+

∂f

∂p
· dp

dt
= I{f} ≡ “collision integral” (11)

Collision integral describes scattering processes leading to changes in particle number with

given momentum. There are always two terms in I = Igain − Iloss. For example, if the

probability (per unit time) of scattering from momentum p into p′ at a stationary scattering

center is

Wp→p′ , (12)
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then

Igain =
∑

p′

f(r,p′, t)Wp′→p

Iloss = f(r,p, t)
∑

p′

Wp→p′

and

I =
∑

p′

f(r,p′, t)Wp′→p − f(r,p, t)
∑

p′

Wp→p′

Small angle scattering means that p ≈ p′. Each Wp′→p and Wp→p′ have singularities in this

limits. But because gain and loss compensate each other this singularity may be canceled.

A more detailed analysis of this equation (given, e.g., in Ashcroft & Mermin, Solid State

Physics) shows that the relevant cross-section, which governs the evolution of f , is not the

total cross-section we tried to determine before, but the transport cross-section

σt ≡
∫

dΩ
dσ

dΩ
(1 − cos θ) =

∫

dθ|dρ

dθ
|(1 − cos θ), (13)

where dΩ is the element of the solid angle. For small θ, 1 − cos θ ≈ θ2/2 and the integrand

behaves as
θ2

θ2/a+1
=

1

θ2/a−1
. (14)

For

2/a − 1 < 1 →

a < 1

the integral is convergent and is dominated by θ ∼ 1 for which quantum uncertainty is small.

Thus for the transport cross-section, CM is fine. It turns out that the total cross-section

simply does not enter the classical theory of gases–everywhere you see “cross-section” it

is either transport or another one–the cross-section of energy transfer–which also finite for

a < 1. The case a = 1 (Coulomb potential) is a marginal one: σt is logarithmically divergent

(typical situation in plasma physics). Because ln is a slowly varying function the situation

is marginal: small angle-scattering events are important but only in the logarithmic sense.

This is part of the reason why the plasma physics is such a complicated subject. There exist

an approach in which electron-ion collisions are treated as as large-angle events, the small-

angle events being combined into an effective force (friction) transfered to the left-hand-side

of the Boltzmann equation.
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What we were (unconsciously) estimating via the dimensional analysis was the transport

cross-section, and for this quantity our result is correct (up to a number, certainly).

II. MAIN THEOREM OF THE DIMENSIONAL ANALYSIS (Π− THEOREM)

Suppose that a physical quantity a is expressed as a function of other physical quantities

a = f(a1, . . . , an) (15)

Suppose also that out of n parameters, a1, . . . , an, k parameters, a1, . . . , ak have indepen-

dent units whereas the units of the rest n− k parameters, ak+1, . . . , an can be expressed via

the units of the first k

[ak+1] = [a1]
pk+1 . . . [ak]

rk+1 (16)

. . . (17)

[an] = [a1]
pn . . . [ak]

rn (18)

The units of the observed quantity, a, must be expressible via units of the independent

parameters, a1 . . . ak. Indeed, for expression (15), units of a must be expressible via units of

a1, . . . , an. But units of ak+1, . . . , an are expressible via that of a1 . . . ak, therefore a must be

expressible solely via units of a1 . . . ak

[a] = [a1]
p . . . [ak]

r (19)

Form n − k + 1 dimensionless combinations

Π =
a

a1
p . . . ak

r
, (20)

Π1 =
ak+1

a1
pk+1 . . . ak

rk+1

(21)

Π2 =
ak+2

a1
pk+2 . . . ak

rk+2

(22)

. . . (23)

Πn−k =
an

a1
pn . . . ak

rn

(24)

Expression (15) can be re-written as

Π =
a

a1
p . . . ak

r
=

f(a1, . . . , an)

a1
p . . . ak

r
(25)

=
f(a1, . . . , ak, Π1a1

pk+1 . . . ak
rk+1 , . . . , Πn−ka1

pn . . . ak
rn)

a1
p . . . ak

r
(26)

= F (a1, . . . , ak, Π1, . . . , Πn−k). (27)
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Units of a1, . . . , ak are independent. It means that we can pass to a new unit system in

such a way that any of parameters a1, . . . , ak , e.g., a1, is multiplied by an arbitrary factor,

whereas the remaining ones are unchanged. The first argument of function F is changed

by an arbitrary factor, whereas all the other arguments of F remain unchanged as well

as its value Π. Therefore, F does not depend on a1. Likewise, F does not depend on any

of a1, . . . , ak. In simple words, a dimensionless function cannot have arguments which are

dimensionfull and have independent units. Thus

f(a1, . . . , an) = a1
p . . . ak

rF (Π1, . . . , Πn−k). (28)

This statement is known as the main theorem of dimensionless analysis (not that I know

any other auxiliary theorems).

Example: diffusion from a point source.

n = f(r, t,D) (29)

In this case, n = 3. Out of the three parameters, r, t,D, two, e.g., r, t, have independent

units, whereas the units of D are expressible via that of r and t

[D] = [r]2 [t]−1 . (30)

Thus k = 2. It is more convenient to choose t and D as parameters with independent units

and express units of r via that of t and D

[r] = [D]1/2[t]1/2 (31)

The units of density can be expressed as

[n] = [r]−3 =
[

[D]1/2[t]1/2
]−3

= [D]−3/2[t]−3/2 (32)

Dimensionless parameters

Π =
n

(Dt)−3/2
(33)

Π1 =
r√
Dt

(34)

The main theorem then says that

n = (Dt)−3/2 F

(

r√
Dt

)

. (35)
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The most important case is when there is only one parameter with units expressible via

that of other parameters, i.e., k = n − 1. In this case, F is a function of a single variable,

which makes analysis particular simple. This is not always possible however. For example,

diffusion from a source of finite size is characterized by an additional parameter: the size of

the source, r0. Now

n = f(r, r0, t, D) (36)

There are two parameters with independent units. The units of the remaining two are

expressible through that of those two. The most general statement one can make is that

n = (Dt)−3/2 F1

(

r√
Dt

,
r0√
Dt

)

. (37)

But that would not help us to solve the partial differential equation.

Note that there are no “point sources” or any other idealizations of that kind in Nature.

They can only serve as approximations valid under certain conditions. In particular, the

point-source approximation works if we consider distances much larger that the source size,

or equivalently, times much longer than the diffusion time through the source. That means

that for long times, the dependence of function F1 on its second argument fades out and F1

reduces to F :

F1

(

r√
Dt

,
r0√
Dt

)

|r0≪
√

Dt ≈ F

(

r√
Dt

)

(38)

Dimensional analysis is most effective when the number of relevant parameters is small

(ideally, n = 3), and there is only one parameter of units expressible through the other two.

Thus it is only good for obtaining intermediate asymptotics, that is the forms the solution

converge to for values of the argument larger then one characteristic value but smaller that

the other one. However, every theoretical result is correct only in the sense of intermediate

asymptotics, so the value of dimensional analysis should not be underestimated.

Example: strong explosion. The radius of the shock wave front R at time t after

explosion depends on the energy deposition E0, initial air density ρ0, and t :

R = f(E0, ρ0, t). (39)

In this case all three parameters have independent units: n = k = 3. Therefore function F

of the main theorem does not depend on any parameter, that is, it is a constant

R = Ea
0ρb

0t
c × const (40)
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Equating the units of the left- and right-hand sides of this equation, one gets

a = 1/5, b = −1/5, t = 2/5 (41)

A. Collapse of experimental data.

Dimensional analysis is also useful for simplifying the analysis of experimental data by

collapsing them onto a single curve.

Example: filling of a container.

At the beginning of the century, physical chemists E. Bose, D. Rauert, and M. Bose

published a series of experimental investigations based on the following scheme. They mea-

sured time τ to fill a container of given volume Q due to the flow of various fluids (water,

chloroform, bromoform, mercury, ethyl). The flow of fluids was driven by the pressure drop

P at the ends of the pipe. Each fluid had its own density ρ and viscosity coefficient µ.

The results were represented as series of curves P vs the inverse filling time (on the semi-log

scale). Each curve corresponded to a single fluid. Apart from a rather obvious relation that

large pressure leads to shorter filling times, these curves did not reveal much of important

information. This publication was noticed by subsequently well-know mathematician von

Karman (Born-von Karman boundary conditions in the theory of lattice vibrations). He

noticed that pressure can be represented as a function of the other parameters

P = f(τ,Q, µ, ρ). (42)

[P ] =
F

L2
=

Ma

L2
=

ML/T 2

L2
=

M

LT 2
(43)

[τ ] = T (44)

[Q] = L3 (45)

[ρ] =
M

L3
(46)

Viscosity is a proportionality coefficient between the gradient of the fluid velocity and pres-

sure on the layer parallel to the flow

P ′ = −µ
∂vx

∂x
→ (47)

[P ] =
M

LT 2
= [µ]

L

TL
→ (48)

[µ] =
M

LT
(49)
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We see that τ,Q, and µ have independent units whereas units of ρ can be expressed via that

of those three:

[ρ] = [µ][τ ][Q]−2/3. (50)

Units of pressure can be expressed as

[P ] = [µ][τ ]−1 (51)

Thus, n = 4, k = 3, and n − k = 1.

P = µτ−1F

(

ρ

µτQ−2/3

)

= µτ−1G

(

τ

ρ/µQ−2/3

)

or (52)

P

µτ−1
= G

(

τ

ρ/µQ−2/3

)

(53)

It means that one plots pressure measured in units of µτ−1 vs τ in units of ρ/µQ−2/3

all experimental points should collapse onto a single curve described by the dimensionless

function G(x). This function may or may not be known, but even if it is not known, plotting

in this way allows one to reduce the multitude of experimental data to a single curve. Once

this curve is measured for many fluids and its shape is well-established, one does not have

to re-do the measurement for another fluid: simple re-scaling of the parameters will give the

answer.

Example.

Determine the temperature distribution in the gas in front of a plane flame assuming that

the front is moving at constant speed.

Solution.

The temperature distribution is moving along with the front:

T (x, t) = T (x − v0t) (54)

The equation of heat conduction
∂T

∂t
= χ

∂2T

∂x2

Substituting (54) into this equation, one gets (ξ ≡ x − v0t)

−v0

∂T

∂ξ
= χ

∂2T

∂ξ2
→

T = T∞ + T0 exp [−(v0/χ)(x − v0t)] , x ≥ v0t.
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where T∞ is the temperature at +∞ (away from the front) and T0 is the temperature at the

front. T0 is to be found by matching the solutions inside and outside the front and cannot

be determined at this level.

Sometimes the exponents of power-laws governing the scaling solutions cannot be found

from the dimensional analysis. In those cases they have to be determined as eigenvalues

of differential equation which results from substituting of a scaling Ansatz into the original

equation.

Example: converging shock wave.

One way to produce extremely high magnetic field (known as Bitter’s method in the US

or Sakharov’s method in Russia) is to wrap a metallic cylinder by a layer of explosives. The

explosion compresses the cylinder over a very short time. Faraday’s law

E = −dΦ

dt
= IR

For a well-conducting cylinder, R is small, so in the first approximation R = 0. Then

Φ = const, or B(t) × A(t) = const → B increases with time. (Those of you who are

familiar with superconductivity may notice that in superconductors, where always R = 0,

this phenomeno is known as flux trapping: the amount of flux trapped by a superconducting

cylinder is constant under any deformations of the cylinder. Well, here are just saying that a

good metal is not that different from a superconductor). During the explosion a converging

shock wave is formed.

Question: how can on describe the propagation of the converging shock wave?

At some time t0 the collapse occurs. One can hope to find the scaling solution for times

very close to the collapse time t ≈ t0 and t ≤ t0, so that the radius of the front is much

smaller than the initial radius of the cylinder R0. Assuming that the radius of the front is

of the scaling form

R(t) = A(t0 − t)a,

can one use the dimensional analysis to determine A and a? This problem is similar to that of

a diverging shock wave with an important difference: the initial energy deposition, E0, does

not play any role at the late stages of compression. R thus depends only on two parameters

(initial air density ρ0 and time t). There are not enough variables to determine A and a

just from dimensional analysis. Still, a scaling solution exists. Making scaling Ansatz for

relevant hydrodynamic variables: velocity, density, and the ratio of pressure to density (the
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square of the sound velocity)

v =
r

t
V (ξ), ρ = ρ0R (ξ) , c2 =

p

ρ
=

r2

t2
Z (ξ) ,

ξ ≡ r

R(t)
,

and substituting these expressions into appropriate equations of fluid dynamics, one gets

a system of three ordinary differential equations. This system has a solution satisfying a

number of physically motivated constraints (continuity of certain parameters through the

front, energy conservation, etc) only for a single value of a. Thus a is eigenvalue of these

equations. a can be found only numerically and is, generally speaking, an irrational number.

For example, for a monoatomic gas, a ≈ 0.6884 . . . .Once the value of a is determined, the

dimensions of prefactor A is also known: [A] = L/T a. Note that A is of irrational dimensions!

The value of it however cannot be determined from this approach as for the scaling Ansatz

type, A drops out from the reduced equations for V,R, and Z. Its value can be only found by

matching the scaling solution with the non-scaling one, describing the wave propagation at

distances ∼ R0. This means that the information about the initial conditions is not entirely

lost even at very late stages of the propagation. For more details, see Landau & Lifshits,

Fluid mechanics.

Example: similarity in flows of a viscous fluid. Reynolds number.

Consider a steady flow of some incompressible fluid. This can be, e.g., flow past some

object immersed into this fluid. Suppose that the shape of the body is fixed and its described

by a single parameter of dimensions of length, L. For a sphere, L is the radius, for an

ellipsoid, L can be, e.g., one of the semi-axises (the other semi-axis is then related to L

via a dimensionless parameter and thus does not constitute an independent scale). The

Navier-Stokes equation for an incompressible fluid is

ρ

[

∂v

∂t
+
(

v · ~∇
)

v

]

= −~∇p + µ∇2v,

where ρ is the density of the fluid, p is the pressure, and µ is the viscosity coefficient. The

fluid on its own is characterized by a single parameter µ′ = µ/ρ (“kinematic viscosity”),

which is has the same dimensions (and the same order of magnitude!) as the diffusion

coefficient of molecules which the fluid is made of. The unknown quantities are v and

p/ρ (for an incompressible fluid, the density is constant). Let the velocity of the flow far

away from the object (where we can control it) is u. Then the flow is characterized by three
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parameters

u, L, µ′

of dimensions

L/T, L, L2/T,

respectively. There is only one dimensionless quantity which can be formed out of these

three parameters

R =
uL

µ′ =
uLρ

µ
,

which is called the Reynolds number. The velocity distribution in the flow must then be of

the form

v (r) = u~f
(

r

L
,R
)

,

where ~f is some vector function. The dimensions for the pressure is obtained by forming a

combination ρu2. Thus

p (r) = ρu2g
(

r

L
,R
)

.

Some integral characteristic of the flow, e.g., the force on the body does not depend on r :

F = ρu2L2h (R) .

Thus, two flow systems (formed by two different fluids passing at different speeds two bodies

of the same shape but of different sizes) are similar if

a) the Reynolds numbers for two flows are the same,

and

b) spatial distances are rescaled with L.

This observation is the foundation of modeling in ship construction: before building

an actual-size ship or submarine, engineers first build a model and test it choosing the

laboratory conditions in such a way that after rescaling of L and R they correspond to

real-life conditions. Apparently, this did not work too well for Titanic, but who could think

of putting an iceberg into equation!

Example: interacting Dirac fermions

Consider a system of 1D fermions. Suppose that without interactions the spectrum is

ε = vF (|k| − kF ) .

17



(This is actually an approximate form of of the normal (parabolic) spectrum ε = k2/2m

linearized near two Fermi points ±kF .) In the presence of the electron-electron interactions,

the spectrum change to

ε = u (|k| − kF ) .

Electrons interact via a pair potential U(x− x′). Fourier transform determines the strength

of interaction at momentum transfer q :

Ũ(q) =
∫ ∞

−∞
dxU(x)eiqx.

The simplest model is when only forward scattering is allowed, that is Ũ(q) is finite only for

q = 0. In this case the problem allows for an exact solution and

u = vF

√

√

√

√1 +
Ũ(0)

2πh̄vF

.

Note that in 1D the dimensions of the Fourier transform is

[

Ũ
]

= L [h̄] L−1 [v] = [h̄] [v] ,

therefore the only dimensional combination which can enter the answer is Ũ/h̄vF . Now we

want to solve the problem for the case when backscattering is also allowed: Ũ(2kF ) 6= 0.

For some reasons, the straightforward solution does not give an answer which satisfies all

physical conditions, so we want to see what should be the most general form of u consistent

with all requirements. Let’s formulate those requirements. First of all, dimensional analysis

tells us that

u = vF F

(

Ũ(0)

h̄vF

,
Ũ(2kF )

h̄vF

)

,

where function F (x, y) is such that

F (x, 0) =
√

1 + x/2π. (55)

Another constraint follows from the Pauli principle which (for spinless electrons) states

Ψ(x)Ψ(x′) + Ψ(x′)Ψ(x) = 0,

which means that

Ψ2(x) = 0.
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The Hamiltonian of the four fermion interaction

Hint =
∫

dx
∫

dx′Ψ†(x)Ψ†(x′)U (x − x′) Ψ(x′)Ψ(x).

Suppose that U(x − x′) = U0δ(x − x′). Then

Hint =
∫

dx
[

Ψ†(x)
]2

[Ψ(x)]2 = 0.

Thus spinless electrons interacting via the contact potential do not interact at all! The

Fourier transform of the contact potential does no depend on q

Ũ(q) =
∫ ∞

−∞
dxU0δ(x)eiqx = U0.

Therefore, Ũ(0) = Ũ(2kF ). Effective absence of interactions in this case should mean that

u = vF . Hence one more constraint on F

F (x, x) = 1.

That means that F (x, y) is not really a function of two independent variables, but either

F (x, y) = F (x − y), with F (0) = 1

or

F (x, y) = F (
x

y
), with F (1) = 1.

The latter option is not appropriate as it means that u is singular either at small x or small

y, whereas we should be able to the perturbation theory both for small x (weak forward

scattering) and y (weak backscattering). The former one in combination with condition (55)

gives

F (x, y) =

√

1 +
x − y

2π
,

or coming back to u

u = vF

√

√

√

√1 +
Ũ(0) − Ũ(2kF )

2πh̄vF

.
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