PHY4324-Electromagnetism II

Fall 2011

Test $2-55$ minutes

Nov. 7, 2011

No other materials except calculators and one review sheet allowed. If you can't do one part of a problem, solve subsequent parts in terms of unknown answer-define clearly. Do 2 of 4 problems, CLEARLY indicating which you want graded by circling the problem number!. Each problem is worth 15 pts., for maximum of 30 points.

Figure 1: Plane wave in medium 1 traveling along z incident from left on interface to medium 2.

1. Plane wave. Suppose the $x y$-plane forms the boundary between two linear media with indices n_{1} (take $\mu=\mu_{0}$ for both media), n_{2}. A plane wave $\mathbf{E}_{I}(z, t)=\mathbf{E}_{0} e^{i k_{1} z-\omega t} \hat{y}$ traveling in the z direction and polarized in the \hat{y} direction approaches the interface from the left (figure above).
(a) (4 pts.) Calculate $\mathbf{B}_{I}(z, t)$ and indicate its direction in the figure.
(b) (4 pts.) Write down the form of the reflected electric and magnetic field, $\mathbf{E}_{R}(z, t), \mathbf{B}_{R}(z, t)$ and the transmitted electric and magnetic fields, $\mathbf{E}_{T}(z, t)$, $\mathbf{B}_{T}(z, t)$ respectively.
(c) (4 pts.) Write down boundary conditions for the fields at $\mathrm{z}=0$ and use them to calculate the reflected and transmitted \mathbf{E} fields in terms of incident field, indicating the directions of these fields in the figure.
(d) (3 pts.) If medium 2 is a conductor with conductivity σ and permeability μ_{0}, permittivity ϵ instead of a dielectric, what is the new form of the tranmitted electric field? (For full credit give the mathematical form, the amplitude of the electric field in region 2 in terms of the incident amplitude, and the dispersion relation.)
2. Parallel-plate waveguide. A waveguide consists of two infinite parallel plates, as shown. Consider TM waves propagating in the $+z$ direction, and assume that the fields are uniform along the x direction.

Figure 2: Infinite parallel-plate waveguide
(a) (4 pts.) State the boundary conditions on the electric and magnetic fields at the inner surfaces of the plates.
(b) (4 pts.) Write the equation for the z component of the electric field amplitude $E_{z}^{0}(y)$, and state the solution, consistent with the boundary conditions you found in (a). (Hint: even if you don't know the equation, you should be able to guess the solution.)
(c) (4 pts.) Using Maxwell's equations, find the transverse components $B_{x}^{0}(y)$ and $E_{y}^{0}(y)$.
(d) (3 pts.) Find the dispersion of the TM modes $\mathbf{k}(\omega)$ and state the cutoff frequency.
3. Point charge. The electric field of a moving point charge q moving at constant velocity $v \hat{x}$ has the form

$$
\begin{equation*}
\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{R^{2}} \frac{1-(v / c)^{2}}{\left(1-(v / c)^{2} \sin ^{2} \theta\right)^{3 / 2}} \hat{R} \tag{1}
\end{equation*}
$$

where θ is the angle between the vector \mathbf{r} and the x axis, and \mathbf{R} is the vector from the particle to the field point \mathbf{r} at the present time.
(a) (4 pts.) Sketch the electric field lines for the case v close to c.
(b) (4 pts.) Find the magnetic field.
(c) (4 pts.) Use the result (1) to derive the expression for the electric field of an infinite line charge: assume there are infinitely many charge elements $d q=\lambda d x$, each moving with velocity v, and integrate the charge densities to find the total electric field a distance s from the axis. Hint: You may need $\int_{0}^{\pi} d \theta \sin \theta /\left(1-b^{2} \sin ^{2} \theta\right)$.
(d) (3 pts.) Go back to pt. charge moving with velocity v. At $t=0$ the charge is located at the origin $x=0$. How much energy from the point charge is passing through the plane \perp to the x-axis at $x=a$? Set up in terms of a θ-integral which you need not evaluate. Hint: you may need $\mathbf{A} \times(\mathbf{B} \times \mathbf{C})$ $=\mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B})$.

4. Wire loop.

(a) (4 pts.) Using the identities
i. $\nabla \rho=-\frac{1}{c} \dot{\rho} \hat{\varepsilon}\left(\right.$ here $\left.\rho=\rho\left(\mathbf{r}^{\prime}, t_{r}\right)\right)$
ii. $\nabla \cdot(\hat{z} / \hat{z})=1 / \imath^{2}$
iii. $\nabla(1 / \hat{z})=-\hat{z} / \boldsymbol{z}^{2}$
iv. $\nabla \cdot\left(\hat{z} / \hat{z}^{2}\right)=4 \pi \delta^{3}(\overrightarrow{\boldsymbol{z}})$,
and the retarded form of the potential

$$
\begin{equation*}
V(\mathbf{r}, t)=\frac{1}{4 \pi \epsilon_{0}} \int d \tau^{\prime} \frac{\rho\left(\mathbf{r}^{\prime}, t_{r}\right)}{\imath} \tag{2}
\end{equation*}
$$

show explicitly that $\square^{2} V=-\frac{1}{\epsilon_{0}} \rho$.

Figure 3: Wire loop with current $I(t)$ as shown.

The next questions are based on the figure, where a wire is bent into a loop as shown in the figure. Label the two arcs and two segments clearly with numbers 1-4. The goal is to calculate the potentials and fields at $\vec{r}=0$ (center of arcs) for a current increasing as $I=k t$, where k is a constant. There is no net charge on the wire.
(b) (4 pts.) Calculate $\mathbf{A}(\mathbf{r}=0, t)$ and $V(\mathbf{r}=0, t)$.
(c) (4 pts.) Calculate $\mathbf{E}(\mathbf{r}=0, t)$.
(d) (3 pts.) Explain how you would go about calculating $\mathbf{B}(\mathbf{r}=0, t)$, but do not do it!

