
11 Complex numbers

Read: Boas Ch. 2
Represent an arb. complex number z ∈ C in one of two ways:

z = x + iy ; x, y ∈ R “rectangular” or ”Cartesian” form”

z = reiθ ; r, θ ∈ R “polar” form. (1)

Here i is
√−1, engineers call it j (ychh! The height of bad taste.). If z1 = z2, both

real and imaginary parts are equal, x1 = x2 and y1 = y2. This implies of course
that “0” ∈ C” is the complex number with both real and imaginary parts 0.

Defs.: The complex conjugate of z = x + iy is defined to be z∗ = x − iy (Boas
sometimes calls the same thing z). Note zz∗ = x2 + y2, a real number ≥ 0. The
modulus or magnitude of z is then defined to be |z| = √

zz∗ =
√

x2 + y2, has obvious
analogies to the distance function in Euclidean space. Some useful relations you
can easily work out are

Rez =
z + z∗

2
; Imz =

z − z∗

2i
; (z1z2)

∗ = z∗1z
∗
2. (2)

You should practice simplifying complex numbers which are not given explicitly
in the form x + iy. For example,

√
2 + i

1− i
=

√
2 + i

1− i

(
1 + i

1 + i

)
=

(
√

2 + i)(1 + i)

2
=

√
2− 1

2
+ i

√
2 + 1

2
(3)

Polar form:
Just as all real numbers can be represented as points on a line, complex numbers

can be represented and manipulated as points in a 2D space spanned by the real
and imaginary parts x and y.

Euler theorem

Recall the expansion of the exponential function ex =
∑

n xn/n!, which converges
for arbitrary size of x. Let’s define a complex exponential ez in the same way, and
choose in particular z = iθ. Then

eiθ =
∞∑

n=0

(iθ)n

n!
=

∞∑
n=0

(−1)n(θ)2n

(2n)!
︸ ︷︷ ︸

+i

∞∑
n=0

(−1)n(θ)2n+1

(2n + 1)!
︸ ︷︷ ︸

even terms, cos θ odd terms, sin θ

= cos θ + i sin θ, (4)
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Figure 1: Representation of a complex number z and its conjugate z∗.

where I used i2 = −1, i3 = −i, i4 = 1, etc. and identified the series for sin and
cos of a real variable! Then going back and forth between rectangular and polar
form is as easy as

z = x + iy = r[
x

r
+ i

y

r
] = r[cos θ + i sin θ] = reiθ (5)

Note

cos θ = Re eiθ =
eiθ + eiθ

2
; sin θ = Im eiθ =

eiθ − eiθ

2i
. (6)

Now we can see an interesting relationship between these functions and their hy-
perbolic analogs,

cosh θ =
eθ + eθ

2
; sinh θ =

eθ − eθ

2
. (7)

11.1 Roots and powers of complex variable

Powers:

z = a + ib = reiθ ; zn = rneinθ (8)

Ex.: (1 + i)3 = (
√

2eiπ/4)4 = 4eiπ = −4

Roots require a bit more care since they are fractional powers:

n
√

z =
n
√

reiθ = r1/nei(θ+2mπ)/n m = 0,±1,±2, ... (9)

This seems a little paradoxical. Adding 2mπ to the argument of the exponential
doesn’t change z. Nevertheless it has different nth roots according to how you
choose n. Any of eiθ/n · ei2πm/n are perfectly acceptable nth roots of z. These are
called the branches of the complex root function.

2



Figure 2: Roots of 3
√−2 + 2i. Note there are precisely 3 distinct roots in the complex plane.

Ex.:

3
√−2 + 2i = (

√
8ei 3π

4 )1/3 = 81/6ei(π
4 + 2πm

3 ) m = 0, 1, 2 (10)

m = 0 :
√

2eiπ/4 (11)

m = 1 :
√

2ei(π
4 + 2π

3 ) (12)

m = 2 :
√

2ei(π
4 + 4π

3 ) (13)

m = 3 : same as m = 1 (14)

m = 4 : same as m = 2 (15)
... (16)

Q: How about 3
√

1?

11.2 Complex power series, functions of complex variable

General:
∑

n anz
n

Ex.:

1− z + z2/2− z3/3 + . . . (17)

Ratio test for absolute convergence (remember before we require that ratio of
successive terms be less than 1, if limit exists):

ρ = lim
n→∞

∣∣∣∣
an+1z

an

∣∣∣∣ : converges if ρ < 1 (18)
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so series in our example above converges if |z| < 1. This determines a disk of radius
ρ in complex plane, the “disk of convergence”. The exponential series

ez =
∞∑

n=0

zn

n!
(19)

has an infinite radius of convergence since

ρ =

∣∣∣∣
n!z

(n + 1)!

∣∣∣∣ →
|z|

n + 1
→ 0 (20)

for any z. Similarly we define other complex functions by their power series, e.g.

sinh z ≡ ez − e−z

2
; cosh z ≡ ez + e−z

2
(21)

sin z ≡ eiz − e−iz

2i
; cos z ≡ eiz + e−iz

2
. (22)

Note cos2 z+sin2 z = 1 remains valid for complex z, as do all trig relations you know
for real z. Now we see relations between hyperbolic and ordinary trig functions:

sin iz = i sinh z ; sinh iz = i sin z (23)

cos iz = cosh z ; cosh iz = cos z (24)

Log function:

ln(1 + z) ≡
∞∑
1

(−1)n+1

n
zn, (25)

and we have eln z = z as for real nos. However, consider z = reiθ:

ln z = ln(reiθ) = Ln r + i(θ + 2πn), (26)

i.e. infinitely many values. The Ln written with large L is the natural log for real
argument. n = 0 gives what is called the “principal value” of the log function:

ln z = Ln r + iθ, (27)

but don’t forget that the other values, or “branches” are also allowed. Ex:

ln(−1) = ln eiπ = Ln1 + i(π + 2nπ) = ±iπ,±3iπ, . . . , (28)

but the principal value is iπ.

Note:

z1/n = e
1
n ln z = e

1
n [Ln r+i(θ+2mπ)] = r1/nei( θ

n+ 2mπ
n ) (29)
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11.3 Complex exponents and roots

Ex.:

(2i)1+i = e(1+i) ln 2i = e(1+i)[ln 2+ln i] (30)

Now i itself may be written i = ei(π
2±2πn), so ln i = i(π

2 ± 2πn) ≡ iα. So

e(1+i)[ln 2+ln i] = eln 2−α+i(ln 2+α) = 2e−αei(ln 2+α). (31)

11.4 Applications of complex numbers in physics

Here I just give a few random examples where these concepts are useful:

• Adding harmonic waves with fixed phase. Suppose you want to know what
the sum of a bunch of waves is (I’ll leave out the physical dimensions, but you
can imagine electric field, height of a water wave, ... it doesn’t matter much).

S = sin x0 + sin(x + x0) + sin(2x + x0) + sin(3x + x0) . . . sin(Nx + x0) (32)

This is hard to get a closed form for because there are many terms and one
can’t combine terms without using trig identities, which are messy. How about
this, let’s write S = ImS1, where

S1 = eix0 + ei(x+x0) + ei(2x+x0) + · · ·+ ei(Nx+x0)

= eix0[1 + z + z2 + z3 + · · ·+ zN ], (33)

where z = eix. The terms in square brackets are just a geometric series, with
sum (1− zN+1)/(1− z). So we could obtain a closed form expression

S = Im

(
eix0

1− eiNx

1− eix

)
. (34)

• Circular motion in complex plane and its uses. If we take a function of time
z(t) = reiωt, it is clear that z is following a circle of radius r in the complex
plane, starting at (r,0) at t=0, and going counterclockwise. The speed of
“rotation” is |dz/dt| = ωr, etc. So we can use eiωt to represent an object
going in a circle at angular frequency ω, or Reeiωt to represent an object
oscillating back and forth with position x = r cos ωt, etc. This has important
technical uses in physics. If something is oscillating with time with sinusoidal
or cosinusoidal form, we represent the “signal” as the real or imaginary part
of a complex exponential. Often the resulting equations are much simpler to
solve due to the nice mathematical properties of exponentials, and we can
always take the real part of the solution at the end of the calculation to obtain
the physical observable desired. Here’s an example.
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• Consider a series LRC circuit as shown. The voltage drop across the resistor is
IR (where I is the current through the resistor), across the capacitor is Q/C

(where Q is the charge on the capacitor), and across the inductor is (dI/dt)L
(due to Faraday’s law). Since the current leading to the capacitor has nowhere
else to go, it must be that I = dQ/dt. We can therefore express Kirchoff’s
law for the sum of the voltage drops around the circuit (including the voltage
source V (t) equaling zero as

L
d2Q

dt2
+ R

dQ

dt
+

Q

C
= V0 cos ωt, (35)

We assumed a cosinusoidal form for the driving voltage for simplicity, but this
is not essential.

Figure 3: Series circuit with inductor (L), resistor (R), and capacitor (C).

You probably solved a circuit like this in elementary E&M, but let’s review.
First consider a simple case with no capacitance or inductance, so only a loop
with the single element R. Then from Ohm’s law we know that the current
and the voltage are proportional,

I = V/R (36)

=
V0

R
cos ωt. (37)

Note both the current and the voltage have the same cosine form. Second,
consider the case R = 0, i.e. only L and C present. Guess1 Q = Q0 cos ωt,
and substitute into (35). We get

L(−ω2)Q0 cos ωt +
Q0

C
cos ωt = V0 cos ωt (38)

1note this way the differential equation is converted to an algebraic equation with parameters (Q0 here) to be
determined by substitution–very useful strategy.
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which has the solution

Q0 =
V0

−ω2L + C
. (39)

Note in this case the charge and voltage have the cosine form.

General case. Now if all 3 circuit elements are present, Q = Q0 cos ωt is not a
solution, and neither is Q0 sin ωt. We can make a linear combination of the two
and get the right answer, but it’s tedious. Another way is to free our minds
a bit, and imagine that the voltage is complex oscillatory, i.e. V = V0e

iωt.
We will simply remember that the real voltage applied is the Re part of this
expression, and use the fact that the mathematics becomes much simpler,
remembering always to take the Re part of all quantities at the end of the
calculation. So then let’s make the ansatz Q = Q0e

iωt, and substitute into the
differential equation. We obtain

[−ω2L + iωR +
1

C
]Q0e

iωt = V0e
iωt ⇒ Q0 =

V0

−ω2L + iωR + 1
C

, (40)

so we can write

Q(t) =
V0e

iωt

−ω2L + iωR + 1
C

(41)

I(t) =
dQ

dt
=

V0e
iωt

iωL + R + 1
iωC

≡ V0e
iωt

Z
=

V (t)

Z
, (42)

so the current (the “complex current”, not the physical one) looks just like
our Ohm’s law expression for the pure resistive case (R only), but with an
“effective resistance” Z which we call the total impedance of the circuit. We
notice that it consists of three terms Z = ZR + ZL + ZC , one associated with
each of the circuit elements

ZR = R ; ZC =
1

iωC
; ZL = iωL. (43)

Now don’t forget that the physical current is the real part of the result we
obtained! So the physical current is (I’ll be sloppy with notation and keep the
same symbol):

I(t) = Re
V0e

iωt

Z
. (44)

It’s easier to take the real part if we put the impedance in polar form:

Z = |Z|eiφ

|Z| =
√

R2 + (ωL− 1/ωC)2 ; φ = tan−1 ωL− 1/ωC

R
. (45)

7



So

I(t) =
V0

|Z|Re ei(ωt−φ) =
V0

|Z| cos(ωt− φ) (46)

So the current lags the driving voltage by a phase φ which depends on the
impedance of the circuit.

Figure 4: Parallel circuit with inductors (L1 and L2), resistors (R1 and R2), and capacitors (C1 and
C2).

Now we could have guessed a form I ∝ cos(ωt + φ), plugged it into (35) and
solved for φ without all the complex number nonsense. But it gets progres-
sively harder to make such guesses as the circuits become more complicated.
By contrast, the complex voltage method is easily systematized. Consider a
circuit element consisting of two impedence branches in parallel, as in Fig. 4.
In the complex voltage approach, we note that the voltage across both legs is
the same, and the current is the sum of the current in both legs. Therefore
for the complex currents

I1 = V/Z1 ; I2 = V/Z2 ⇒ I = I1 + I2 = V (
1

Z1
+

1

Z2
), (47)

so parallel impedances add just like resistances in parallel,

1

Ztot
=

1

Z1
+

1

Z2
parallel circuits. (48)

The impedance of each leg is ZL + ZR + ZC in the example shown, since the
3 elements are in series with each other as before. Looking at general series
circuits it’s also easy to show

Ztot = Z1 + Z2 series circuits. (49)
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