
13 Definite integrals

Read: Boas Ch. 14.

13.1 Laurent series:

Def.: Laurent series (LS). If f(z) is analytic in a region R, then

f(z) =
∞∑

n=0

an(z − z0)
n +

∞∑
n=1

bn

(z − z0)n
(1)

converges in R, with

an =
1

2πi

∮

C

f(z)dz

(z − z0)n+1 ; bn =
1

2πi

∮

C

f(z)dz

(z − z0)−n+1 (2)

If you recall, for an ordinary power series we need x < const. ≡ |an+1

an| , by the ratio

test, for convergence. Analog for complex numbers is |z| < const2. This applies
then to the first part of the series. But a function may have some singularities
outside the region R, so we need to account for them as well; hence the second
part of the series. Here there may be a region of space where 1/|z| < const1 is
required for convergence. The figure shows that these regions can overlap, giving
the annulus R where the function is analytic and both parts of the series converge.
This depends of course on what the an and bn are. How do you find them? Well,

Figure 1: A Laurent series might converge only in an annulus R around a given point z0, here
between circles C1 and C2 in complex plane, because the “a-series” converges inside C2 and the
“b-series” converges outside C1.

you can use Eq. (2), but this might involve doing rather a lot of integrals :-). In
practice, we can often use “partial fraction” tricks, like the following.
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Ex.:

1

z(z − 1)
=

1

z − 1
− 1

z
= −1

z
− (1− z)−1 = −1

z
− 1− z − z3 . . . , (3)

so you can just read off the coefficients. Note only one of the bn is nonzero for this
case.

If f(z) is regular in the annulus, no matter how small we make C1, and yet
f(z) is not regular everywhere inside C2, we have a special situation of an isolated
singularity. There are three subpossibilities:

1. LS may have all bn = 0

f(z) =
∞∑

n=0

(z − z0)
n, z 6= z0 (4)

This is called a removable singularity. You may think in fact it’s not a singu-
larity at all, but take the example

f(z) =

{ sin z
z z 6= 0
2 z = 0

(5)

The function is certainly not analytic at z0 = 0. However we can “remove”
the singularity by redefining the function to have the value 1 at z = 0
(limz→0 sin z/z = 1). Not a very interesting case, anyway.

2. LS may have bn 6= 0 for n < m ; bn = 0 for n ≥ m. This is called a pole of
order m.

f(z) =
z + 3

z2(z − 1)3(z + 1)
. (6)

This function has poles of order 1 at z = −1, of order 2 at z = 0, and of order
3 at z = 1.

N.B. If f(z) has a pole of order m at z0, then (z− z0)
mf(z) is regular around

z0.

3. If there are an infinite number of nonzero bn’s, the point z0 is called an essential
singularity. Example is e

1
z = 1 + 1

z + 1
2!z2 + . . . at z = 0.
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13.2 Residues

The coefficient b1, coefficient of 1
z−z0

is special, and given the special name “the
residue R(z0) of f(z) at z0”. From our formula we have

b1 = R(z0) =
1

2πi

∮

c

f(z)dz (7)

We can “prove” or check this, by integrating f(z) around a closed contour

∮

C

f(z)dz =

∮ [ ∞∑
n=0

an(z − z0)
n +

∞∑
n=1

bn

(z − z0)n

]
dz

=
∞∑

n=0

an

∮
(z − z0)

ndz
︸ ︷︷ ︸

+
∞∑

n=1

bn

∮
dz

(z − z0)n
︸ ︷︷ ︸

0 0 if m 6= 1, (8)

where the first term vanishes because the function is analytic everywhere inside
and on the closed contour C, and the second term you proved in the HW.

If there are several isolated singularities at z0, z1,...then Cauchy’s theorem says
that the line integral on a closed contour enclosing them is related to the sum of
the residues:

∮

C

f(z)dz = 2πi
∑

i

R(zi) (9)

where zi are the singularities of f inside C.

Figure 2: If there are many isolated singularities, the line integral about all of them is 2πi the sum
of the residues at each.
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13.2.1 Finding residues

• If f(z) has a simple pole at z = z0:

R(z0) = (z − z0)f(z)|z→z0
(10)

Ex. 1:

f(z) =
z

(2z + 1)(5− z)
(11)

R(−1

2
) = (z +

1

2
)f(z)

∣∣∣∣
z→− 1

2

= − 1

22

R(5) = (z − 5)f(z)|z→0 = 1 (12)

Ex. 2:

f(z) = cot z , R(0) = z
cos z

sin z

∣∣∣
z→0

= 1 (13)

• Quotient rule: If f(z) = g(z)/h(z), with g(z) and h(z) analytic, g(z0) 6= 0 and
h(z0) = 0 (isolated sing. pt.), as well as h′(z0) 6= 0. Then

R(z0) =
g(z0)

h′(z0)
(14)

Ex. :

f(z) =
sin z

1− z4 (15)

R(i) =
sin z

−4z3

∣∣∣∣
z=i

=
sin i

4i
=

1

4
sinh 1 (16)

• If z0 is pole of f(z) of order n,

R(z0) =
1

(n− 1)!

{(
d

dz

)n−1

[(z − z0)
nf(z)]

}

z→z0

(17)

Ex. :

f(z) =
z sin z

(z − π)3 (18)

R(π) =
1

2!

d2

dz2 (z sin z)|z→π = −1 (19)

• If z0 is an essential singularity, there is no general trick to find the residue
other than constructing the LS expansion explicitly.
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13.3 Definite integrals

This is simply a series of examples meant to illustrate the use of the rules listed
above. If you do enough of these, including exercises in the text, you’ll start to
get a feel of how to use the residue theorem to evaluate various kinds of definite
integrals.

1.

I =

∫ 2π

0

dθ

5 + 4 cos θ
(20)

Let’s use the same trick here we used in the pf. of Cauchy’s integral: take z

to lie on a unit circle, such that z = eiθ, dz = idθeiθ. Therefore

dθ =
dz

iz
; cos θ =

eiθ + e−iθ

2
=

z + 1
z

2
. (21)

Since θ runs from 0 → π, the integral
∫ 2π

0 we have is equivalent to z running
around the unit circle contour in the complex plane, see figure. Now our

Figure 3: z runs in contour around unit circle, enclosing pole at -1/2.

integral can be represented as

I =

∫

C

dz

iz

1

5 + 4
(

z+ 1
z

2

) =
1

i

∫

C

dz

5z + 2z2 + 2

=
1

i

∫

C

dz

(2z + 1)(z + 2)
=

1

2i

∫

C

dz

(z + 1
2)(z + 2)

. (22)
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Note in the last step I factored out a factor of 2 in order to put the integral
in “standard form”, displaying explicitly that the integrand has a pole at
z = −1/2 and one at z = −2. Only the −1/2 pole is inside the contour we
chose, however, so we may apply the residue theorem to this pole directly and
write I = 1

2i · 2πi ·R(−1/2), where

R(−1/2) = lim
z→−1/2

(z +
1

2
)

1

(z + 1
2)(z + 2)

=
2

3
, so

I =
2π

3
(23)

Note if we had wanted to find
∫ π

0

dθ

4 + 5 cos θ
(24)

instead of
∫ 2π

0 , you might thing we couldn’t use the same trick, since we
couldn’t close the circle. The problem just requires a little preliminary refor-
mulation, however. Since cos θ is even in θ, the integral of our function

∫ π

0 is

equal to
∫ 2π

π , so we may write

∫ π

0

dθ

4 + 5 cos θ
=

1

2

∫ 2π

0

dθ

4 + 5 cos θ
, (25)

and indeed use the same trick after all.

2.

I =

∫ ∞

−∞

dx

1 + x2 = tan−1 x|∞−∞ = π, (26)

which is obviously doable by elementary means. However we could do it with
a contour integral as well, First define an integral which looks suspiciously
similar, but is in the complex plane rather than on the real axis,

I ′ =
∫

C

dz

1 + z2 = 2πiR(i) = 2πi · 1

2i
= π, (27)

where the contour C runs on the real axis from−ρ to ρ, and then gets continued
to close the contour in an arc in the upper half plane as shown. The result,
obtained above from the residue of the pole at i (the one enclosed by the
contour), is the same as I. The idea now is to show that the contribution from
the arc vanishes as ρ → ∞, whereas the contribution on the real axis will be
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just the I we want (so if we hadn’t been able to do I by elementary means we
could have used the residue theorem).

The first conclusion–arc integral vanishing as ρ → 0 follows from putting the
integrand in polar coordinates along the arc, where z = ρeiθ again. Then the
part along the arc may be written∫

arc

dz

1 + z2 =

∫ π

0

dθρeiθ

1 + ρ2e2iθ

→
ρ→∞

0, (28)

in other words the integrand gets very small as ρ → ∞, and the measure of
integration doesn’t change (just the polar angle integration, which is indepen-
dent of ρ.

Figure 4: z runs in contour C around semicircle of radius ρ in upper half-plane, and then along real
axis, enclosing pole at z = i.

The next point is simply that the part of C along the real axis, once we let
ρ →∞, will just be the integral we want, since along this path z = x. So we
have shown that

I = I ′ = π, (29)

as we found by elementary means. On the HW you will have to do several
examples which are not so easy by elementary means, but can be done quickly
by complex contour integration.

3.

I =

∫ ∞

−∞

sin x

x
dx (30)
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Now this is a tricky integral. If you plot the function, it oscillates rapidly but
has a limiting value of 1 as x → 0. What we want to do, as usual, is to find
an analogous integral in the complex plane, where the integrand reduces to
our integrand on the real axis. Unlike the last time, however, if we choose the
obvious choice

I ′ =
∮

C

eiz

z
dz, (31)

with contour C left unspecified for the moment, we have a problem, because
the numerator eiz is analytic everywhere, whereas 1/z has a pole at z = 0.
Where do we run our contour? If we run it straight through the singularity,
we are not really allowed to use Cauchy’s theorem. So we have to take a little
detour in a carefully controlled way. The figure shown shows one such solution:
we will compute

I ′ =
∮

C=C1+C2+C3+C4

eiz

z
dz, (32)

where the segments of the contour Ci are shown in the figure. As someone
pointed out in class, we could have taken a detour in the lower half plane
as well. However this would then have the effect of enclosing the singularity
at zero, so we would have to calculate its residue. The contour shown has
the benefit that the integral around it is manifestly zero, since there are no
singularities inside!

Figure 5: z runs in contour C around semicircle of radius ρ in upper half-plane, and then along real
axis, enclosing pole at z = i.
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How then does it help us? Let’s consider the contributions from the various
paths, keeping in mind that we want to take the limit eventually R →∞ and
r → 0. Then the arc at infinity C4 will contribute nothing as before (think
a little about why–it’s a bit subtle, but true). The two contours on the real
axis, C1 and C3, will be extended to as to occupy the entire real axis, and
the integral will in fact reduce to exactly what we want. Finally, there’s the
integral around the singularity C2. This will give us some answer. So the
strategy is to use the fact that

I ′ ≡
∮

C=C1+C2+C3+C4

eiz

z
dz = 0 =

∫

C1+C3

eix

x
dx + lim

r→0

∫

C2

eiz

z
dz. (33)

But the C2 part is quite similar to those circular path integrals we did before.
Write z = reiθ, dz = ridθeiθ, so

∫

C2

eiz

z
dz =

∫

C2

eizidθ (34)

Now when you take the limit r → 0, eiz is completely regular at z → 0, so we
may replace it by its limiting value 1. So

∫

C2

eiz

z
dz =

∫ 0

π

idθ = −iπ. (35)

So finally the equation for the contour integral reads

I ′ =
∫ ∞

−∞

eix

x
− iπ = 0, (36)

or taking real and imaginary parts,
∫ ∞

−∞

cos x

x
= 0 ;

∫ ∞

−∞

sin x

x
= π (37)

This answers our question, but it raises another. It is perhaps no surprise
that

∫∞
−∞

cos x
x = 0, since the integrand is odd in x. However the integrand

diverges at x = 0 also; the singularities to the left and right of 0 cancel each
other. Since the singularities are individually not integrable (if we were to
integrate

∫∞
0 for example, we would get ∞) we know the value we get is

sensitive to exactly how we take the limit. If one takes it symmetrically (see
text), the result is well-defined even thought the integral is improper, and is
called the Cauchy principal value of the integral. See Boas for more discussion
and another example.
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