3 More applications of derivatives

3.1 Exact \& inexact differentials in thermodynamics

So far we have been discussing total or "exact" differentials

$$
\begin{equation*}
d u=\left(\frac{\partial u}{\partial x}\right)_{y} d x+\left(\frac{\partial u}{\partial y}\right)_{x} d y \tag{1}
\end{equation*}
$$

but we could imagine a more general situation

$$
\begin{equation*}
d u=M(x, y) d x+N(x, y) d y . \tag{2}
\end{equation*}
$$

If the differential is exact, $M=\left(\frac{\partial u}{\partial x}\right)_{y}$ and $N=\left(\frac{\partial u}{\partial y}\right)_{x}$. By the identity of mixed partial derivatives, we have

$$
\begin{equation*}
\left(\frac{\partial M}{\partial y}\right)_{x}=\left(\frac{\partial^{2} u}{\partial x \partial y}\right)=\left(\frac{\partial N}{\partial x}\right)_{y} \tag{3}
\end{equation*}
$$

Ex: Ideal gas $p V=R T$ (for 1 mole), take $V=V(T, p)$, so

$$
\begin{equation*}
d V=\left(\frac{\partial V}{\partial T}\right)_{p} d T+\left(\frac{\partial V}{\partial p}\right)_{T} d p=\frac{R}{p} d T-\frac{R T}{p^{2}} d p \tag{4}
\end{equation*}
$$

Now the work done in changing the volume of a gas is

$$
\begin{equation*}
d W=p d V=R d T-\frac{R T}{p} d p \tag{5}
\end{equation*}
$$

Let's calculate the total change in volume and work done in changing the system between two points A and C in p, T space, along paths $A C$ or $A B C$.

1. Path AC:

$$
\begin{align*}
\frac{d T}{d p} & =\frac{T_{2}-T_{1}}{p_{2}-p_{1}} \equiv \frac{\Delta T}{\Delta p} \quad \text { so } d T=\frac{\Delta T}{\Delta p} d p \tag{6}\\
\& \frac{T-T_{1}}{p-p_{1}} & =\frac{\Delta T}{\Delta p} \quad \Rightarrow \quad T-T_{1}=\frac{\Delta T}{\Delta p}\left(p-p_{1}\right) \tag{7}\\
\text { so } & \tag{8}\\
d V & =\frac{R}{p} \frac{\Delta T}{\Delta p} d p-\frac{R}{p^{2}}\left[T_{1}+\frac{\Delta T}{\Delta p}\left(p-p_{1}\right)\right] d p=-\frac{R}{p^{2}}\left(T_{1}-\frac{\Delta T}{\Delta p} p_{1}\right) d p \tag{9}\\
d W & =-\frac{R}{p}\left(T_{1}-\frac{\Delta T}{\Delta p} p_{1}\right) d p \tag{10}
\end{align*}
$$

Figure 1: Path in p, T plane for thermodynamic process.

Now we can calculate the change in volume and the work done in the process:

$$
\begin{align*}
V_{2}-V_{1} & =\int_{A C} d V=\left.R\left(T_{1}-\frac{\Delta T}{\Delta p} p_{1}\right) \frac{1}{p}\right|_{p_{1}} ^{p_{2}}=R \frac{T_{2} p_{1}-T_{1} p_{2}}{p_{1} p_{2}} \tag{11}\\
W_{1}-W_{2} & =\int_{A C} p d V=\left.R\left(T_{1}-\frac{\Delta T}{\Delta p} p_{1}\right) \ln p\right|_{p_{1}} ^{p_{2}}=R \frac{T_{2} p_{1}-T_{1} p_{2}}{p_{2}-p_{1}} \ln \frac{p_{2}}{p_{1}}(\tag{12}
\end{align*}
$$

2. Path ABC : Note along $\mathrm{AB} d T=0$, while along $\mathrm{BC} d p=0$.

$$
\begin{align*}
V_{2}-V_{1} & =\int_{A B C}\left(\frac{\partial V}{\partial T}\right)_{p} d T+\left(\frac{\partial V}{\partial p}\right)_{T} d p=\int_{p_{1}}^{p_{2}}\left(\frac{\partial V}{\partial p}\right)_{T} d p+\int_{T_{1}}^{T_{2}}\left(\frac{\partial V}{\partial T}\right)_{p} d T \\
& =\int_{p_{1}}^{p_{2}} \frac{-R T_{1}}{p^{2}} d p+\int_{T_{1}}^{T_{2}} \frac{R}{p_{2}} d T=R \frac{T_{2} p_{1}-T_{1} p_{2}}{p_{1} p_{2}} \tag{13}\\
W_{2}-W_{1} & =\int_{p_{1}}^{p_{2}} p\left(\frac{\partial V}{\partial p}\right)_{T} d p+\int_{T_{1}}^{T_{2}} \frac{R T}{V}\left(\frac{\partial V}{\partial T}\right)_{p} d T=-R T_{1} \ln \frac{p_{2}}{p_{1}}+R\left(T_{2}-T_{1}\right)
\end{align*}
$$

Note the change in V is independent of the path - the volume is characteristic of a point (p, T) in equilibrium - but the work done in the process is not! What's the difference? In the system with p, T as independent variables, $d V$ is an exact differential, while $d W$ is not. How can you see the difference? Go back and examine the forms we had for $d V$ and $d W$ in (4) and (5). In the case of $d V$, we had

$$
\begin{array}{r}
d V=M d p+N d T, \quad \text { with } M=\frac{R}{p} \text { and } N=-\frac{R T}{p^{2}} \\
\frac{\partial M}{\partial p}=-\frac{R}{p^{2}} \quad \frac{\partial N}{\partial T}=-\frac{R}{p^{2}} \tag{15}
\end{array}
$$

which is indeed exact, whereas

$$
\begin{array}{rlrl}
d W=M^{\prime} d p+N^{\prime} d T \quad M^{\prime} & =R \quad ; \quad N^{\prime} & =-\frac{R T}{p} \\
\frac{\partial M^{\prime}}{\partial p} & =0 & \frac{\partial N^{\prime}}{\partial T} & =-\frac{R}{p}, \tag{17}
\end{array}
$$

is not. This is a demonstration (we won't use the word proof) that for a for a thermodynamic process involving changes in the $p-T$ plane, the volume of the system is a "state variable", i.e. (for 1 mole of gas) it simply depends on what p and T are; if you have specified p, T, you know the volume of the system. The change in volume between two points will therefore always be $V_{2}-V_{1}$ independent of which path is chosen. The work done in the same process is however not independent of the path of integration.

3.2 Maxima/minima problems with constraints (Lagrange multipliers)

I'm going to make a mathematical detour before coming back to thermodynamics, in order to give you some tools you need to solve homework problems. In physics we often need to find the extrema of a function of several variables subject to a constraint of some kind. In math, a simple example would be the distance function in 3 -space, $d=\sqrt{x^{2}+y^{2}+z^{2}}$. Of course the minimum of this function over all 3 -space is just 0 , achieved at $x=y=z=0$. But suppose we were to look for the minimum of d over the "constrained" set of points defined by the plane $x-2 y-2 z=3$? The usual way to proceed is often the simplest, if it works: express $y=y(x)$, then set $d y / d x=0$ and solve. But sometimes one can't solve for $y(x)$ explicitly, so one can try the method of implicit differentials (see Boas ch. 4), or use an elegant technique called the method of Lagrange multipliers (Joseph Lagrange (1736-1813) was a French mathematical physicist).

The idea is, if you can express the problem in terms of the minimization of a function $f(x, y, \ldots)$, together with a constraint $g(x, y, \ldots)=0$, to imagine you are solving the unconstrained problem of finding the minimum of $F(x, y, \ldots ; \lambda)=$ $f(x, y, \ldots)+\lambda g(x, y, \ldots)$. Then you can simply treat λ as an additional variable, and minimize with respect to it as well. In the process of solving the problem, you eliminate λ from the solution.

Ex: Coming back to our problem with the plane, let's first make our life a bit easier by recalling that if we minimize $d^{\prime}=x^{2}+y^{2}+z^{2}$, the square root will also
be a minimum. So define

$$
\begin{equation*}
F=x^{2}+y^{2}+z^{2}+\lambda(x-2 y-2 z-3) \tag{18}
\end{equation*}
$$

and set all the derivatives equal to zero:

$$
\begin{align*}
& \frac{\partial F}{\partial x}=2 x+\lambda=0 \tag{19}\\
& \frac{\partial F}{\partial y}=2 y-2 \lambda=0 \tag{20}\\
& \frac{\partial F}{\partial z}=2 z-2 \lambda=0 \tag{21}\\
& \frac{\partial F}{\partial \lambda}=x-2 y-2 z-3=0 . \tag{22}
\end{align*}
$$

Note the equation $\partial F / \partial \lambda=0$ is always just the constraint equation itself. Now we have a problem with 4 equations and 4 unknowns, and it can be solved. The usual idea is to eliminate the constraint as quickly as possible. The first eqn. tells us that $\lambda=-2 x$, so

$$
\begin{align*}
2 y+4 x & =0 \tag{23}\\
2 z+4 x & =0 \tag{24}\\
x-2 y-2 z-3 & =0 \tag{25}
\end{align*}
$$

which we can solve to find $(x, y, z)=(1 / 3,-2 / 3,-2 / 3)$.

3.3 Differentiation of integrals

Leibnitz' rule for differentiating integrals:

$$
\begin{equation*}
\frac{d}{d x} \int_{u(x)}^{v(x)} f(x, t) d t=f(x, v) \frac{d v}{d x}-f(x, u) \frac{d u}{d x}+\int_{u(x)}^{v(x)}\left(\frac{\partial f}{\partial x}\right) d t \tag{26}
\end{equation*}
$$

Ex :

$$
\begin{align*}
I & =\int_{x}^{2 x} \frac{e^{x t}}{t} d t \tag{27}\\
\frac{d I}{d x} & =\frac{e^{x \cdot 2 x}}{2 x} \cdot 2-\frac{e^{x \cdot x}}{x} \cdot 1+\int_{x}^{2 x} e^{x t} d t \tag{28}\\
& =\frac{2}{x}\left(e^{2 x^{2}}-e^{x^{2}}\right) \tag{29}
\end{align*}
$$

3.4 Laws of thermodynamics

Let's come back to the idea of exact and inexact differentials in thermodynamics. Here's another example of an inexact differential:

$$
\begin{equation*}
\underbrace{d Q}_{\text {heat absorbed }}=\underbrace{c_{p} d T}_{\text {heat capacity const. } p}+\underbrace{\Lambda_{p}}_{\text {latent heat. }} d p \tag{30}
\end{equation*}
$$

We showed already that the work done is also not an exact differential, however the combination of the two is:

$$
\begin{align*}
d U & \equiv d Q-d W \tag{32}\\
& =\left[c_{p}-p\left(\frac{\partial V}{\partial T}\right)_{p}\right] d T+\left[\Lambda_{p}-p\left(\frac{\partial V}{\partial p}\right)_{T}\right] d p \tag{33}
\end{align*}
$$

This is called the internal energy, and this equation is sometimes referred to as the 1st law of thermodynamics, expressing energy conservation, i.e. the change in internal energy of a gas in a thermodynamic cycle goes either into heating the system ($d Q$ is the infinitesimal heat absorbed by the system is the or into doing work (done by the system).

Another exact differential is $d S=d Q / T$.
Remark 1: sometimes you will see the notation $d Q$ and $d W$ for infinitesimal heat absorbed and work done. This is just a more careful notation to remind you that they are inexact differentials.

Remark 2: since the work done in a thermodynamic process depends on the path, it is really nonsense what I wrote above " $W_{2}-W_{1}$ ". You are to think of this as the work performed by the system in the process of going $1 \rightarrow 2$, but W_{2} and W_{1} have no independent meaning, since they are not characteristic of a macrostate.

3.5 Legendre transformation

If for a function $f(x, y)$ we have the differential $d f=p d x+q d y$, where p and q are equal to $\partial f / \partial x$ and $\partial f / \partial y$, respectively, we might ask the question, how do we make a simple change of variables to a new function $g(x, q)$ with q one of the the independent variables? We simply make use of the fact that

$$
\begin{equation*}
d(f-q y)=d f-d q y-q d y=p d x+q d y-d q y-q d y=p d x-y d q . \tag{34}
\end{equation*}
$$

This function is by definition associated with an exact differential $d g$. You explored this on the HW for various thermodynamic quantities.

