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Using nonequilibrium quantum-statistical mechanics, we study both the equilibrium
behavior and the nonlinear transport in a one-dimensional model of resonant tunneling with
an electron—-phonon interaction at zero temperature. There are several unique features of our
work: (1) We demonstrate the importance of the Hartree-like electron—phonon self-energy
diagram in this problem lacking translational invariance. {2) We identify a new perturbation
parameter in the study of the equilibrium polaron shift. (3) We provide a thorough under-
standing of when the noninteracting current is a poor predictor of the interacting
current-voltage characteristic, which we calculate and explain in detail. Our calculation treats
a weak eclectron—phonon interaction at zero temperature perturbatively in the dimensionless
coupling constant, g, to lowest self-consistent order. Because the system is not translational
invariant, we must retain both a Fock-like and a Hartree-like diagram. Depending of the
filling condition of the resonant level, the model can be in two qualitatively different regimes:
when the resonant level is empty (occupied), the polaron shift of the level with the interaction
is —gf (—3g02), where Q is the frequency of the phonon. The crossover occurs on a scale
set by the noninteracting escape rate, I', and we find that g/I" is an additional perturbation
parameter in the study of the equilibrium polaron shift. We furthermore evaluate typical non-
linear current-voltage characteristics. When the Fermi seas of the leads are much thicker than
2 (and I'), the interaction affects the total current only near the onset of the large resonant
current and in the valley region. However, the interaction modifies the I-V characteristics at
all biases when the Fermi seas are shallow. To interpret our results we separate the current
densities per unit energy for the left and right leads into elastic and inelastic contributions. We
finally show that the qualitative behavior of the inelastic current contributions does not
depend on the filling condition of the resonant level for a system with thick Fermi seas at a
typical bias where a large current flows. € 1994 Academic Press, Inc.

I. INTRODUCTION

1LA. Background

The problem of quantum transport in small semiconductor heterostructures has
received considerable attention, both because of its potential technological applica-
tions and because quantum mechanics is instrumental to understanding the electron
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transport. The original theoretical work focused on noninteracting electrons in the
linear response regime [ 1, 2]. As progress has been made in the understanding of
noninteracting electron transport, theoretical work has increasingly turned to
transport in the presence of many-body interactions such as the electron-phonon
interaction; see, for example, Refs. [3-13]. Since it is easy to drive small hetero-
structures far out of equilibrium, a study of the nonlinear response regime is often
needed to compare with experiments. There has therefore been a growing theoretical
interest in nonequilibrium transport [14-35].

In this paper we consider the problem of resonant tunneling with an electron—
phonon interaction, as a particular example of transport in a nonequilibrium,
interacting quantum system. We study a one-dimensional model and our cal-
culations describe qualitatively the resonant tunneling with an electron—phonon
mteraction observed in Refs. [36,37]. Our calculations does not allow a
quantitative comparison with these experiments performed on a standard double-
barrier semiconductor heterostructures because: (1) We do not allow the electrons
to move in directions that are perpendicular to the current flow. (2) We do
not include the charging effects on the double-barrier potential produced in
the semiconductor heterostructure. While our formal calculations could easily be
generalized to three dimensions to address (1), the numerical evaluations would be
much more involved and we have not attempted to obtain such a quantitative
description. Instead we hope our one-dimensional model calculations serve to
illustrate some qualitative features of resonant tunneling with an electron—phonon
interaction.

In particular, our calculation is relevant for resonant tunneling through localized
states; see Refs. [38-41]. These experiments show both a Coulomb blockade at low
biases (and low temperatures) and evidence of electron-phonon interactions at
higher biases. Our model does not include the electron—electron interaction needed
to model the Coulomb blockade at a low bias. However, we believe that our non-
equilibrium calculation can be used to gain qualitative understanding of resonant
tunneling through such localized states at higher biases (where the Coulomb
blockade can be neglected). In this sense previous studies [17, 18, 23, 25, 30, 34]
of electron—electron interaction in resonant tunneling through a localized state
{Anderson impurity) here are supplemented by a study of the inelastic effects of the
electron-phonon interaction.

A standard semiconductor heterostructure realization of a resonant tunneling
device comprises (for example) an n-doped GaAs lead, a double-barrier region, and
finally another n-doped GaAs lead. The double-barrier region consists of an
undoped AlGaAs barrier, an undoped GaAs central region, followed by a second
undoped AlGaAs barrier. Current flows through these alternating AlGaAs and
GaAs layers in the presence of an applied bias. The electron motion in the current
direction is determined by a double-barrier potential similar to the potential shown
in Fig. 1. This double-barrier potential traps a resonant level of energy E, in the
central GaAs region and this resonant level can result in a significantly enhanced
tunneling current.
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FiG. 1. Schematic of resonant tunneling through a level with an electron—optical phonon interaction
{upper panel) and two different qualitative regimes A (middle panel) and B {lower panel). In regime A
(showing a small negative polaron shift and a satellite peak in resonant-site density of states N(w)=
—~Im g,(w)/n above main peak at E,) the interacting resonant level can be treated as empty, whereas in
regime B (showing a larger negative polaron shift and a satellite peak in density of state below main
peak) the interacting resonant level must be treated as occupied. Consider the schematic of the model
(upper panel). The left and right leads are described by one-dimensional tight-binding models with a
bandwidth of 4W. In equilibrium g is the chemical potential in both leads. At a finite bias V' the left
(right) lead have chemical potential u; g, =yt +( —) eV/2, and the lower band-edge is at ¢z, = —2W +
(—)e""™. The escape rate I, (I'y) connects the central resonant site to the left (right) lead, giving a non-
interacting resonant level E°. The interaction (via matrix element M) at the central site only with a
single phonon mode (of frequency ) renormalizes the resonant level to £,. In equilibrium, regime A
(B) obtains when E, —pu> I'( +I'y (¢~ E, > I'l + I'g). Equally important, as illustrated in the middle
(lower) panel, the chemical potential for the lead most strongly connected to the resonant level (ug (¢.)
in middle (lower) panel) sets the filling condition of the central site: E,» uy (£, <y ) is empty
(occupied) in the middle (lower) panel. Thus regime A (B) also is obtained at a typical finite bias when
o< lg (> R).

Consider a resonant level which in equilibrium is located above the chemical
potential of the leads. As illustrated in Fig. 1, an applied bias raises both the chemi-
cal potential and the conduction-band energies of the left lead, relative to the reso-
nant level, while lowering the chemical potential and energies in the right lead. The
following simple picture of resonant tunneling therefore presents itself in the
absence of interactions. Because electrons will tunnel almost exclusively when their
energy is at E,, the linear response conductivity is typically small. However, when
a finite bias pushes the chemical potential of the left lead above E,, there is a
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dramatic increase in the current. The region of the current-voltage (I-V) charac-
teristic with large resonant currents persists until the bias pushes the lower band-
edge of the left lead above E,. The resonant level is then no longer available for
electrons in the left lead and only a small current flows in the so-called valley region
of the I-V characteristicc. When the system enters this valley region the current
decreases with increasing applied bias, resulting in a region of negative differential
conductance, dl/dV < 0. This feature has potential applications in devices designed
to operate at very high frequencies and has motivated a sustained interest in
resonant tunneling since its first observation in 1974 [44].

In addition to the interest devoted to resonant tunneling in the standard double-
barrier heterostructure, there have been several recent measurements of resonant
tunneling through localized states [38—41] and of the current tunneling through a
narrow metal point contact containing disorder [42, 43]. The experiments reported
in Refs. [38-407 considered transport through thin amorphous Si/SiO, tunnel
structures. Tunneling across the SiO, barriers can occur either directly or via
impurity states (forming the resonant levels) in the SiO, barrier. In the experiment
reported in Ref [41], resonant tunneling occurs between two gold wires via
intermediate atoms. Because the resonant tunneling occur via localized states in
Refs. [38-41], the electrons are restricted in these experiments to move only in the
direction of the current. This restriction of the electron motion perpendicular to the
current flow separates the resonant tunneling in Refs. [38-41] from the resonant
tunneling in the standard double-barrier heterostructures where the electrons are
free to move in the two perpendicular directions. The distinction is irrelevant in the
absence of interactions and impurity scattering: The double-barrier potential with
resonant level £, shown in Fig. 1 fully describes the noninteracting resonant
tunneling through localized states as well as the noninteracting resonant tunneling
in the standard semiconductor heterostructure. However, the difference is important
when one considers resonant tunneling in the presence of impurity scattering
because of the potential momentum transfer between the directions parallel and
perpendicular to the current [19, 20]. Similarly, interacting resonant tunneling in
the standard three-dimensional double-barrier heterostructure must in principle
also be studied within a three-dimensional model as in Refs. [13,35]. In contrast,
interacting resonant tunneling through a localized state remains a one-dimensional
problem.

A study of tunneling in the presence of interactions is well motivated both for the
standard double-barrier semiconductor heterostructures and for the measurements
of resonant tunneling through localized states. The coupling to optical phonons is
strong in GaAs and AlGaAs semiconductors, and there is direct experimental
evidence for electron—phonon interactions in the standard double-barrier
heterostructure: A current shoulder observed in the valley region is attributed to
electrons which emit an optical phonon while tunneling [36, 37].

Inelastic scattering is also important when treating resonant tunneling through
localized states [38-41]. In the experiment reported in Ref. [41] the tunneling
between two gold wires via intermediate atoms shows not only a Coulomb
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blockade effect at low biases, but also at higher biases the vibrational modes of
these atoms. In the experiments reported in Refs. [38-40] the resonant tunneling
was suppressed at low biases, and this suppression has been interpreted as a
Coulomb blockade effect [39]. At a large bias, however, transport occurs as
tunneling through a single impurity state (resonant tunneling) or at still higher
biases as tunneling through a sequence of states (hopping) [40]. This hopping
regime is possible because electron—phonon scattering allows the tunneling electron
to make transitions between localized states of different energy [67]. As in Ref. [41],
the tunneling experiments reported in Refs. [38-40] therefore show evidence of a
Coulomb blockade effect at low biases and of an electron—phonon interaction at
larger biases. Thus, transport in resonant tunneling systems must in general be
understood in the presence of inelastic scattering and, in particular, the electron—
phonon scattering.

As stated above, here we consider the problem of resonant tunneling with an
electron—phonon interaction within a one-dimensional model. We have not
attempted to provide a quantitative description of the interacting resonant
tunneling in the standard double-barrier heterostructure (which would require a
study of a three-dimensional model). Instead we hope that our one-dimensional
model calculations serve to illustrate qualitative features of resonant tunneling with
an electron—phonon interaction by studying both the equilibrium and the non-
equilibrium transport at zero temperature. In addition to qualitatively describing
resonant tunneling with an electron-phonon interaction in the standard double-
barrier heterostructures, our calculations are relevant for experiments on interacting
resonant tunneling through localized states; see Refs. [38—417.

Glazman and Shekhter [4] and Wingreen et a/ {5] gained a qualitative under-
standing of resonant tunneling with an electron—-phonon interaction by evaluating
the single-electron transmission coefficient, 7' (), which is the probability for
tunneling of an electron with incoming energy w. Consider the case of electrons
interacting with a single optical mode of frequency Q at zero temperature. The
transmission coefficient, 7, ,(w), then has a main peak at the resonant level, E,,
and satellite peaks at E, + Q, E, + 2%, ... The satellite peak in the transmission
probability at E,+ Q corresponds to electrons which enter the resonant level
at E,+ @, but which decay via a phonon-emission process into the resonant
level. When the resonant tunneling system is in the valley region and the lower
band-edge of the left lead is above the resonant level, these inelastic tunneling
processes result in an increased tunneling probability compared to the noninter-
acting case. This explains the experimentally observed shoulder in the current
[36, 37, 5].

An explanation of the current shoulder based on a single-electron treatment is
justified because the shoulder occurs in the valley region where: (1) The applied
bias is large enough that the electrons of the right lead can be ignored. (2) The
filling condition of the resonant level is empty, and the tunneling of any one
electron is not influenced by other electrons at the resonant level. However, the
single-electron treatment is not valid under general conditions. For example, if the
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applied bias is less than the characteristic phonon-frequency, then electrons in the
right lead will inhibit the decay of the tunneling electron via phonon emission due
to the Pauli exclusion principle. Also, if we permit electrons of both spins to occupy
the resonant level, the electron—phonon interaction can mediate an effective
electron—electron interaction between the electrons of opposite spin at the resonant
level; see Section 1.C below.

To describe resonant tunneling with an electron—-phonon interaction under
general filling conditions one must leave the single-electron description. In this
paper we apply nonequilibrium quantum-statistical mechanics [45-47] to the one-
dimensional model of a resonant tunneling system, consisting of left and right leads
without any interactions, and a central resonant level, where electrons interact with
a single phonon mode of frequency Q2. We follow a procedure first introduced by
Caroli et al. [14] and do perturbation simultaneously in the electron—phonon inter-
action and in a tunneling term connecting the resonant level to the two leads. An
advantage of this approach is that it is only necessary to calculate the Green func-
tions self-consistently at the resonant level, making the numerical calculations
simple. Because the electron—phonon interaction is assumed to be small, we treat
the interaction in the self-consistent Born approximation, where only the lowest
order self-energies are kept.

This paper is an outgrowth of a study of Hershfield et al. [25, 30] on resonant
tunneling through an Anderson impurity. Our paper is similar to the recent calcula-
tion by Anda and Flores [24] of resonant tunneling with an electron—phonon inter-
action. However, although both papers use nonequilibrium quantum-statistical
mechanics within the self-consistent Born approximation, there are some differences
between our work and that of Ref. [247]. The self-energies were evaluated also at a
finite temperature in Ref. [24], while we study the model at zero temperature only.
We have furthermore restricted the interaction to the resonant site, while in
Ref. [24] the interaction was also extended to a finite central region. On the other
hand, we find it essential to include a Hartree-like electron—-phonon diagram in this
system that is lacking translational invariance [48]. Only then do we obtain the
correct polaron shift in the limit where the resonant level is occupied. The self-
consistent Born approximation treats the interaction to lowest order in the obvious
perturbation parameter, g = M ?/Q?, where M denotes the electron—phonon matrix
element. However, for some properties, such as the equilibrium polaron shift at zero
temperature, we find that there is an additional perturbation parameter, gQ/I,
where I is the (noninteracting) escape rate from the resonant level. This second
perturbation parameter is important in the physically relevant case that the optical
mode frequency is greater than the escape rate, /"> 1.

The current can be approximated by an integral of a function 7, (w), from the
chemical potential of the right lead, ug, to the chemical potential of the left lead,
U When the escape rates for tunneling of the resonant level to either lead are con-
stant this approximation is exact. There is, however, a correction term when the
escape rates depend on the energy [25, 28, 30, 32]. We demonstrate that for the
case of resonant tunneling with an electron—phonon interaction this correction can
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become significant in the valley region. We also find that T, (w) does not describe
the current density per unit energy at the resonant level, even when the escape rates
are constant, and it is not possible to interpret 7,(w) as an effective transmission
coefficient for the interacting problem. Instead we consider the current densities
for the left and right leads. By separating these current densities into elastic
and inelastic contributions based on the principles discussed in an earlier paper
[32], we can follow the transfer of energy at the resonant level from the electrons
to the phonon system. We finally show that the qualitative form of the inelastic
current contributions does not depend on the filling condition of the resonant
level, for a typical tunneling system at a bias where a large resonant current
flows.

A problem with our calculation is that the interaction is restricted to the resonant
level only. There is no scattering in the barriers or in the leads. A recent study [35]
included electron—phonon interactions in the barriers, and scattering was included
everywhere in two other recent calculations [22,26]. A complete quantitative
description of resonant tunneling must include scattering everywhere, but omitting
the interaction with optical phonon modes in the leads is a reasonable approxima-
tion here because the emission of optical phonons is only important in regions
with a finite potential drop, and the emission processes are therefore limited
to the double-barrier region and surrounding areas. In our model we assume
that voltage drop occurs exclusively across the two barriers, and we restrict the
interaction to the central resonant level, neglecting the weaker interaction in the
barriers.

The rest of this paper is organized as follows. In the next two subsections we
introduce the model and identify its qualitatively different regimes. In Section 11 we
define the nonequilibrium Green functions and evaluate them numerically in the
self-consistent Born approximation and analytically in the first Born approxima-
tion. The equilibrium interacting density of states is calculated in different regimes,
and we identify an additional perturbation parameter by studying the equilibrium
polaron shift. We also discuss the exact position of the satellite peak in the density
of state. In Section III we verify that current is conserved and report the calcula-
tions of the nonlinear I-V characteristics. We evaluate the current density per unit
energy at the resonant site and for the left and right leads. We finally separate the
current densities for the left and right leads into elastic and inelastic contributions.
The results are summarized in Section IV.

1.B. Mode! Hamiltonian

The model Hamiltonian has four terms: H,, describing the disconnected two
leads and noninteracting central resonant level; Hr, the tunneling processes; H ,
the optical phonon and H,,, its interaction with electrons. A schematic of the reso-
nant tunneling model is shown in the upper panel of Fig. 1. The Hamiltonian H,
models the three disconnected subsystems: the left lead (L), the right lead (R), and
a central resonant level (C). The left lead (sites j< —1) and the right lead (j= 1)
are described by one-dimensional tight-binding models of bandwidth 4W and
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site-energies E; and Ey, respectively. The single central resonant state (at j=0)
have site energy E.. Thus

=—W Z (Cj—lx j\+C;s I—lﬁ)_'_EL Z CJ:CJZS
1, Jj< —1l.s
-W Z /+lscjs+cl_scj+1s)+ER Z Js ]a
jzls Jj=1.s
+ECZC(;T.\~C0,S’ (IJ
where the spin index s is summed over s=1, |. A tunneling term,
Hy=-W, Z (C(Ixcq,s + Ct],_\‘c(),x) — Wk Z (ij-co‘x + C(Iscl,s)a (2)

links the central region C to the left/right lead with escape rate /', and
renormalizes the isolated site energy E. to the noninteracting resonant level E?
[497. Finally there is an optical phonon mode (b) of energy €2, which interacts with
electrons at the resonant site

H,, =Qb"b, {3)
He,=M(cg cor+cq o NbT +5). (4)
The dimensionless coupling constant g = (M ?/Q?) is set to 0.1 in this paper.

When the three regions are disconnected, the left (right) lead is in equilibrium at
chemical potential y; r, and hence is described by the Fermi distribution function

1
fL(R)(w)ze[f(wfuL(R))_,_ 1’ (5)

where 1/8 is the temperature. The difference in the chemical potentials g; and pg
is set by the applied bias eV’ = u; — uz. The common equilibrium chemical potential
is denoted u. For equal carrier-densities in the left and right leads, we have

—E =pugp—Eyg, (6)

and we choose the zero point of the energy so that E; = Ex =0 in equilibrium.
Assuming that the voltage drop occurs symmetrically we then have
E ry=+(—)eV/2, and py z,=p+(—)eV/2. We denote the lower band-edge of
the left (right) lead by ¢y r,= +(—)eV/2—2W. Table I summarizes the model
parameters and the specific choice of these parameters in the perturbation calcula-
tions reported in Sections IT and IIL

I.C. Regimes of the Model

The density of states or the spectral function at the interacting central site for
spin s is defined

(@) =5 [ d—1) O 1), 0 (0. (7



TABLE 1

Model Parameters Used in the Equilibrium Study and in the Calculation of the Nonlinear Transport

Equilibrium study, I-V characteristic, 1-V characernistic,
Physical quantity Symbol high-doping (Figs. 3,4, 5) high-doping (Figs. 6, 8,9)  low-doping (Fig. 7}
Bandwith of left/right lead — 4w 4w aw
Tunnel matrix elements in H W, =Wy 01w 01w 0.15W
Isolated resonance level Eq 0 —0.7W —1.1W
Noninteracting resonance level E? 0 —-0.71W -~ 113w
Equilibrium chemical potential U —0.16Wto 0.08 W —09w —1L.5SW
Phonon frequency Q 02W 02w 0.7W
Band-with in fixed Q 4w 2002 20Q 5TIW
Depth of equilibrium Fermi sea u+2W > 102 5.5Q 0.7

Note. The unit energy is the overlap-integral W of the tight-binding model for the two leads. In the study of the equilibrium resonant-site density
of states, of the equilibrium polaron shift and of the position of the satellite peaks [ see Figs. 3-5], we consider a high-doping (and wide-band) situa-
tion, where the varying depth of the equilibrium Fermi sea, u + 2W (and the bandwidth of the leads. 4W), is large compared to the phonon frequency
Q. The same high-doping situation is considered in the I-V characteristic shown in Fig. 6. In the nonequilibrium calculations at the finite applied
bias V, the left (right) lead have site-energy Ey,z,= +(—) eV/2 and chemical potential s, r, =g + ( —) eV/2, where x is the corresponding equilibrium
(¥ =0) chemical potential. Figure 6 shows the I-V characteristic for the high-doping situation with u +2W=15.5Q2. We also calculate a low-doping
1I-V characteristic shown in Fig. 7, where the depth of the {(corresponding) equilibrium Fermi sea, u +2W, is comparable to Q. and where the
bandwidth, 4 W, is reduced to approximately 612. In Fig. 6 the high-doping system has Wi/W= W3/W=0.05%, but in Fig. 8 we compare that situa-
tion to one where Wi/W=0012 and W3/W=0.092 (while maintaining the other parameters). In Fig. 9 the high-doping situation with W < Wy
is investigated further. The values of the noninteracting resonant level E? applies when E? is still within both bands and when W, = Wy see Ref.
{49]). We assume that the temperature is zero (1/8 =0) and that the dimensionless coupling constant, g~ M 2/Q2%, is set to g =0.1. At a finite bias
V the lower band-edge of the left (right) lead is given by ¢, x,= +(—)eV/2-2W.

NOILDVYALNI HLIA ONITINNNL INVNOSTA
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The shape of the resonant-site density of states determines the qualitative behavior
of the model. The noninteracting density of states has a single peak at E? (the non-
interacting resonant level). In the interacting system, the density of states has a
main peak at E, (the interacting resonant level), but it also has additional satellite
peaks.

We find two different regimes A and B of the interacting system, depending on
the filling condition of the resonant level. In regime A the interaction shifts the reso-
nant level to E,=E?— gQ and the density of states acquires a satellite peak
situated approximately 2 above the main peak at E,. In regime B the resonant level
is shifted to E,=FE%-—3gQ, and the density of states has a satellite peak
approximately €2 below E,. Regime A occurs when the resonant level is empty
(u<E,), while B occurs when the resonant level is occupied (u> E,). Equally
important, as illustrated in Fig. 1, both regime A and regime B also are obtained
at a typical finite bias, with a large current flowing through the resonant tunneling
system. The resonant level E, is then above up (and above ¢, ), but below g . If
in this situation /'y € I; then the resonant level is mostly empty (regime A), but
if I'y » Iy the resonant level is mostly occupied (regime B).

We refer, by the phrase polaron shift, to the small (large) negative shift of the
resonant level in regime A (B). In the polaron problem the energy of a single elec-
tron is shifted with the electron—phonon interaction. Here, because the two regimes
have different filling conditions, different polaron shifts are observed. Consider the
isolated central site in the presence of an electron-phonon interaction within
second-order perturbation theory. The model Hamiltonian is

Hi=Ec) cg,co,+R2b%b+ M(ci cor+ g co,) (b +b). (8)

Let E, be the energy of having n=0, 1, 2 electrons at the level. These energies are
to second order in M,

E,=0,
M2
FI—Ecr=—+"————= —gQ, 9
1 C Ee—(Ec Q) g 9)
M+ M)?
E,-2FE.= (M + M) —4gQ,

2Ec— (E-+Q)

where we have used g=(M?/Q?). For E, the matrix element between the inter-
mediate state (with a single phonon) and the unperturbed ground state obtains a
contribution from both spins in the interaction term of Hamiltonian H; (Eq. (8)).
In regime A, where the level is empty, the expectation value in Eq. (7) reduces to

Heg (), co (1)) =e BB, (10)
while in regime B, where the level is (doubly) occupied, it reduces to

Hegylt) cau(t)} ) =em B0, (11)
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Without loss of generality we can put E- =0, and within second-order perturbation
theory, we therefore find a small negative polaron shift of £, — E, = —gQ in regime
A, but a Jarge negative polaron shift of E,— E, = —3gQ in regime B.

The difference in the polaron shift is a consequence of the effective electron—
electron interaction resulting from the electron—phonon interaction. The canonical
transformation [50] H;=e He %, where S=(M/Q)(c; ¢y + ¢ ¢ )(b™ —b), yields

H = —gQcg co— 8¢5 Co,y —28Qcq cq1Co1Co + b7 . (12)

Thus, due to the electron—phonon interaction there is an effective atractive elec-
tron—electron interaction. Subsequently the excitation energy of a particle is smaller
than that of a hole, and the polaron shift in regime A is smaller than the polaron
shift in regime B.

II. INTERACTING RESONANT TUNNELING IN THE BORN APPROXIMATION

In this section we study the nonequilibrium problem of resonant tunneling at
zero temperature using perturbation theory. We assume a weak electron—-phonon
coupling and describe the interaction within the self-consistent Born approximation.
We characterize the two regimes A and B of the model by the polaron shift and by
the shape of the interacting, resonant-site density of states or spectral function. By
studying the equilibrium, zero-temperature polaron shift, both numerically and
analytically within the first Born approximation, we find a new perturbation
parameter in the problem, g&2/I’, where I is the escape rate from the resonant level.
This parameter is important in the physically relevant case of an optical phonon
frequency Q greater than I

II.A. Nonequilibrium Green Functions

To study resonant tunneling we wuse nonequilibrium quantum-statistical
mechanics as introduced by Kadanoff and Baym [45] and by Keldysh [46]. In this
approach one starts at some initial time ¢, with an equilibrium system and then
turns on a perturbation to drive the system out of equilibrium. Here we start with
the equilibrium system of the three isolated subsystems contained in H,. At time
to — —oc, both the tunneling term H; and the electron—phonon interaction term
H,, are adiabatically turned on. If the two leads originally are at a different chemi-
cal potentials, this perturbation drives the system out of equilibrium, and a current
flows through the resonant level.

Following Langreth [47] we introduce a redundant set of four Green functions
with different time-orderings,

g<(js I,j’, tl)=<cj+‘—,s’(t,) Cj,s(t)>’ (13)
g-Ut, J5 1) =L (1) et (1)), (14)
gr(j’ f j,s f’)= —l@(t_ t')<{cj.s(1)’ Cjﬁs'(tl)} >’ (14)

8o, 1, 7' 1) =10t — 1){{c; (1), ¢ 7 o (1)} (14)
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The brackets indicate a thermal average at ¢, » —oo. The time-dependent operators
¢;(t) are in the Heisenberg representation. We have omitted the spin index on the
Green functions, because they are independent of spin. The four Green functions
are related via

i(g,—ga)=g<+g>, (15)
gt j ) =gt J 1) (16)

To evaluate the Green functions we solve the Dyson equations as described in
Refs. [25, 30, 32]. Several simplifications are possible in this problem. Since we are
interested in the steady state solution of the interacting Hamiltonian, H= H, +
Hy+ H, + H,, all Green functions depend on (z— ) only, and the Dyson equa-
tions can be Fourier transformed in time. Furthermore, because the self-energies are
restricted to the central resonant site only (o, _(j, j'; @)=0,,9; 00, (w)), the
general form of the Green functions can be expressed in terms of the resonant-site
Green functions g, . (w)=g, . (/j=0, ;" =0; w).

To simplify the expressions for the Green functions we introduce the scaled

energies,
w—FE,
ELr= (—2WL/R>, (17)

and the dimensionless factor,

—e+. /¥ -1, if e>1,
Cle)=< —e+iJ1—¢, if |el<], (18)

—e—. /et —1, if e< —1.

The escape rates I’ z,(w) for tunneling off the resonant level to the left (right) lead
are

Tr)(0)=60(1 — ey g))) “‘\/1 £ r)- (19)

Note that the escape rate for going to the left (right) lead vanishes when the energy
o approaches the lower band-edge of the left (right) lead, ¢, x,. The resonant-sites
retarded and less-than Green functions are [25, 30]

1
B = B (WYW) Clog) + (W) Clen) — o (@)

g < (@) = |g(0)|* [2fL(w) I'(®) + 2(®) M) + 0 _(0)]. (21)

(20)

The resonant-site density of states or spectral function is related to the retarded
Green function by

2nN(w) = =2 1Im g(w) = |g,(@))* [2I (0} + 2 k(0) ~2Im o ()],  (22)
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TABLE 11

The Resonant-Site Green Functions and the Zero-Temperature Self-Energies in the Self-Consistent Born Approximation

Resonant-site Green function:
(8(0))'=w—Ec-+(W/W) Cle) + (Wi/W) Cleg) —a,(w),
g (o)= g )] [2f (o) I'(0) + 2fxlw) [lw)+0_ ()]

Self-energies:
alw) de'gdw’) do' (g (0 —Q)+g (' +Q2)) .1
= —4|-= ry Y > - < .
M w e Pl w—w iF(e-lo=-Q)+ g (0t Q)
a;yf)=g<(w+0).
Using:

fo—Eig
fR=\"Tow )

[—e+./e8-1], if e>1, T(w)=6(1— ey gl) R 16 x,
Cley={[—e+i/1—¢%], if Je] <1, 1
[—e— /& —1], il e< —1. fL/n(w)=e—ﬁm‘l‘-
Note. The four functions g {w), g .{w), o,(w), and 6 _(w) are solved for simultaneously (using g .(w)= —2Im g (w)— g .(w)). The first energy-

independent term in Re o,(w) is the contribution from the Hartree diagram shown in Fig. 2a. It is essential in describing correctly the polaron shift
in regime B, where the resonant level is completely occupied.

3|
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where we have, of course, dropped the spin subscript on the density of states. In
Table II we summarize the results for the interacting resonant-site Green functions.
The noninteracting Green functions g°w) and g°(w), corresponding to
Hamiltonian Hy= H,+ H, are obtained from Egs. (20) and (21) by setting
o(w)=0_(w)=0.

The self-energies 0,(w) and ¢ _(w) in Egs. (20) and (21) are expressed in terms
of the electron and phonon Green functions. The Green functions of the (free)
phonon mode b (living only at the central site) are defined

d_(1—1)= =(b)+ b7 (')Nb()+ b7 (1)), (23)
d.(1=1)= (b)) +bT(NBE)+ 57 (1)), (24)
d(t—1)= —iO(t— 1) {[(b(1) + b (1)), (b(+) + b (D], (25)
d(t—1)=i0(" — LB + b7 (1)), () + 67 (') 1) (26)

The free phonon mode is assumed to remain in equilibrium despite the interaction
and to be described by the Bose—Einstein distribution function

So( @)= (27)

The energy of an optical phonon is large, compared with typical experimental tem-
perature, 2> 1. We have, furthermore, chosen to study the model in the limit
where the temperature is small, not only compared to  but also on an energy-scale
set by the escape rates I'y z(w). We therefore evaluate the Green functions and self-
energies at zero temperature (1/8=0).

IL.B. The Self-Consistent Born Approximation

In this paper we assume that the electron—-phonon interaction is small, i.e.,
g=0.1. In a perturbative approach it is then necessary to keep only the lowest-

(a) (b)

FiG. 2. The self-energy diagrams for the (self-consistent) Born approximation, which consist of the
diagrams to lowest order in the dimensionless coupling constant g. The wavy lines represent free phonon
Green functions. The straight lines represent either the noninteracting or the interacting electron Green
functions, corresponding to either the first or the self-consistent Born approximation, respectively. In this
problem lacking translational invariance, both the Hartree-like diagram (panel a) and the Fock-like
diagram (panel b) must be retained. In the study of the polaron shift we found the Hartree diagram
essential to correctly describe the behavior in regime B, where the resonant level is occupied.
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order diagrams. Figure 2 shows the two first-order diagrams in g= (M %/Q?%). We
refer to the diagram in Fig. 2a as the the Hartree diagram and to the diagram in
Fig. 2b as the Fock diagram, by analogy to the treatment of the electron—electron
interaction [51]. In order to construct a current-conserving approximation [52]
the self-energy diagrams are evaluated using self-consistent expressions for the elec-
tron Green functions. Because the system lacks translational invariance [481], it is
essential to retain the Hartree diagram to correctly describe the model in regime B.

We denote the self-consistent approximation, based on the diagrams of Fig. 2,
the self-consistent Born approximation. The contribution ¢’ from the Hartree
diagram is independent of time,

c®=n M4 _(0,t=0,0,=0)d(w=0)
(28)

=M ),

where d,(w’ =0)= —2/Q is the integral of the retarded phonon Green function (see
Eq. (25)) and where the spin-degeneracy is n, = 2. The effect of the Hartree diagram
is therefore similar to that of an (electron density-dependent) single-particle poten-
tial and can formally be described as an energy-independent contribution to the real
part of the self-energy:

do’
M= 4 — @ —, 29
0-r 4 Q 2 g<((0 ) a<,> ( )

Hence, the Hartree and Fock diagrams yield at zero temperature

os(w)=Mg (0t Q), (30)
_ ﬂz do’ , 2p (A0 (g (0 —2)+ g _(0'+R2)
o(w)= —4= [T g (@) + M szn( o )
M2
—iT(g>(w—Q)+g<(w+Q))- (31)

The greater-than (less-than) self-energies o . (. ,(w) describe the scattering out (in)
of electrons at energy w. The perturbation calculation presented here consists of the
self-consistent solution of the resonant-site Green functions g,.(w), g .{w) and the
self-energies o,(w), o _(w) (using that the greater-than Green function is given by
g-(w)= —2Im g,(w)— g_.(w); see Eq.(15)). The expressions for these four func-
tions are collected in Table II.

II.C. The First Born Approximation

In this subsection we calculate analytically the self-energies shown in Fig. 2 to
first order in g = M?/Q? which corresponds to the first Born approximation. The
escape rates I} g are taken to be independent of energy. The analytical results for
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the self-energies are used to discuss the qualitative behavior of the density of states,
which with energy-independent escape rate I'= Iy + 'y becomes

20-2Im o, (w)) ]
(w—E°—Re g, (@) + (I —1Ima,(w))*

2nN(w) = (32)
see Egs. (20) and (22). In particular, the analytical expressions for the first-order
self-energies allows the characterization of the two regimes A and B, both by the
magnitude of the polaron shift, as well as by the (approximate) position of the
satellite peaks. The study of the equilibrium polaron shift leads to the determination
of the additional perturbation parameter, g@2/I, in Section ILE. The exact position
of the satellite peak in the density of states is discussed further in Section ILF.

We consider resonant tunneling in the presence of an optical mode, and we shali
consequently only discuss the case where the phonon frequency @ is much greater
than the total escape rate I'=I"; + I'y. Thus both here and throughout the paper
we assume that Q> 1. We evaluate the self-energies within the first Born
approximation under the assumption of energy-independent escape rates, and the
analytical expression obtained below is only correct if I’ (w) and I'g(w) do not
vary with energy for jo — E,| <2Q.

The noninteracting Green functions g% ) and g° (w) are given by Eqs. (20) and
(21) with the self-energies set to zero: g,{w) =0 _(w)=0. With constant escape rate
I'=1I", + 'y, they can be written

1

() =
g,(w)—w_E?HF, (33)
. ar

g<(w)=(_a—)___E§)2—+ITzfefr(w)s (34)

2r

gi(w)= — fen(@)], (35)

— 1
(w—E9)2+r2[

where we have introduced the effective distribution function f(w) for the
noninteracting problem

fer(@)=g%(@)/(—2Im g)(w))= [T fu(w)+ e fr(@)]/T. (36)

To evaluate the first-order self-energies we substitute the noninteracting Green
functions g% (@) and g°(w) for the self-consistent functions g _(w) and g,(w) in Egs.
(30) and (31). The integrals, which involve Lorentzians, are readily done at zero
temperature, and the analytical expressions for the first-order self-energies, ¢! (w),
are listed in Table III.

Consider first the polaron shift E, —E®=Re o (w=E,) (see Eq. (32)) of the
resonant level. The first-order expression Reo!(w), listed in Table III, has
logarithmic singularities at =y, + 2 and at w = ug + £ arising from the sharp-
ness of the Fermi sea in the left and right leads. The contribution from these
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singular terms are, however, not important for |w — u x + 2| > I'. Hence, except at
the special chemical potentials and biases, where E,=pu; 1+, we can
approximate the polaron shift by

2 2

Q
or 2 Do = 8 i Fa

Q emp? (37)

Re ! (E%) =~ —4gQP2 + gQ

where the noninteracting probabilities for having an empty (occupied) resonant
level are

emp(occ) J go>(<] (38)

The polaron shift is therefore Re ¢!"(E?)~ —gQ (—3gfQ) in regime A (B), where

Pl.=1 (P} =1), assuming that I'< Q. These limits for the polaron shift are in
agreement with the predictions of second-order perturbation theory (see Section
1.C), but note that the contribution from the Hartree diagram, —4gQP% i
Eq. (37), is essential to obtain the correct behavior in regime B.

The noninteracting occupation probability for the resonant level, P2 listed in
Table III, describes the filling condition of the resonant level. In equilibrium where
pr = Mg =, the filling condition P® _ is set by (u— E,)/I’, and the level is half
occupied when u = E,. Out of equilibrium the filling condition, P_, is set by 1" /T,
and, as illustrated in Fig. 1, at a finite bias, where y;, — E, 27 and E, —ug 2 I,
regime A (B) is obtained if /| « 'y (/'L I'g). At such biases the level is half
occupied if I'| is equal to [g.

Within the first Born approximation it is possible to obtain analytically the func-
tional form of the crossover between the two regimes A and B of different polaron
shifts in equilibrium. Using again Table III with y; =g =g, we find in the limit
of I"< £ that

1 [ L #—E?
Reo('(E7)~ —g2—2gQ | S +arctan ——) |. (39)

Note that the transition occurs on a scale of I” about u=E?. In particular at
p=E? the slope is
d(Rea,”(E}))
ou

_ 289 (40)

]
p=E° n I

Next consider the position of the satellite peaks in the resonant-site spectral func-
tion or the density of states. Besides the main peak at w = E,, the density of states
will show satellite peaks arising from peaks in the inelastic scattering rate
~2Imo(w)=0_(w)+0o.(w) The exact locations of these satellite peaks in the
density of states are determined both by the inelastic scattering rate —2 Im o, (w)
and by the corresponding real part Re g,(w) of the self-energy (see Eq. (32)). This
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is explained further in Section ILF. Here we use the analytical result for the first-
order inelastic scattering rate, —2 Im ¢'"(w), to discuss the approximate position of
the satellite peaks under different filling conditions of the resonant level.

Assuming constant escape rates, /', the first Born approximation for the
scattering-in, 0 \(w), and scattering-out, ¢'!(w), self-energies are

2 f (0w + Q)
(w+Q—-E®?+ 1%

2 2T =Sl =2)]
(- Q—E°+T%

o D(w)=M? (41)

e w)=M

(42)

see Table IIl. In regime A, f.;(w) is small for energies |w—E,|<T, so
—2Ime‘M(w) is given by the scattering-out self-energy ¢‘!'(w), which has a peak
at E°+ Q. Similarly in regime B, f,p(w) is large for |w—E,|<S 7T, and
—2Im o' w) is given by the scattering-in self-energy ¢'!)(w), with a peak at
E°— Q. In the self-consistent Born approximation the inelastic scattering rate
—2Im o, (w) will have a peak at w=FE,+Q (E,— Q) in regime A (B). The reso-
nant-site spectral function or density of states will therefore show a satellite peak
approximately at E, + Q (E, — ) in regime A (B) due to scattering-out (scattering-
in) processes occurring when the resonant level is almost completely empty
(occupied). When the resonant level is half occupied there will be two satellite
peaks: one at approximately E, + Q, corresponding to scattering-out processes, and
one at approximately E, — Q, corresponding to scattering-in processes.

ILD. The Equilibrium Resonant-Site Density of State

Figure 3 shows the dependence of the equilibrium resonant-site density of states
N(w)= —Im g,(w)/m on the filling condition. We set E°=0 as indicated by the
dotted line; the parameters are listed in Table I. As expected the interacting density
of states in regime A (upper panel) shows a small negative polaron shift £, = —g@2
and has a satellite peak above the resonant level at w= E, 4+ Q, arising from
scattering-out processes with final energy E,. Note that the position of the satellite
peak is located slightly above E, + 2, as explained in Section HLF below. In regime
B, the interacting density of states (solid curve on lower panel) has larger negative
polaron shift E, = —3g€Q and a satellite peak at w ~ E, — 2, arising from scattering-
in processes with initial energy E,. The position of the satellite peak is now located
slightly below E,—Q, as also explained in Section ILF. Note that already at u=
E?=0 we are in regime B. Also shown in the lower panel for reference is the nonin-
teracting, resonant-site density of states N°w)= —Im g°w)/n (dashed-dotted
curve). The middle panel shows the interacting density of states N(w) when u=F,
and the resonant level is half occupied. Here the interacting density of states has an
intermediate negative polaron shift E,= —2gQ and two satellite peaks at w=
E, + Q. The satellite peak at w = E, + (— )2 for the equilibrium density of states has
a distorted shape since only half of the resonant level at E, =y is available for
scattering-out (scattering-in) processes: no scattering-out (scattering-in) can occur
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FiG. 3. Dependence of the equilibrium resonant-site density of states N(w)= —Im g,(w)/n on the
filling condition (set by u— E,). In the upper (lower) panel regime A (B) is obtained since the resonant
level is nearly empty (occupied). The density of states in regime A (shown in the upper panel) has a
small negative polaron shift £, = —gQ (g=0.1; £°=0) and a satellite peak slightly above w=E, + Q
(see also Fig. 5 and Section IL.F) arising from scattering-out processes with final energy E,. The density
of states in regime B (solid curve in lower panel) has a larger negative polaron shift £, = —3g€ and a
satellite peak slightly below w = E, —  (see Section IL.F) arising from scattering-in processes with initial
energy E,. Note that regime B is obtained already when y= E%=0 (see also Fig. 4). The noninteracting
density of states N%w)= —Im g%w)/r (dash-dotted curve in the lower panel) is shown for reference.
When p = E,, the resonant site is half occupied and the interacting density of states N{w) (shown in the
middle panel) has an intermediate negative shift E, = —2g£2 and (wo satellite peaks. The distorted shape
of the satellite peak at w~ E,+ (— )£ is due to only half the resonant level being available for the
scattering-out (scattering-in) processes: no scattering-out (scattering-in) can occur at energies @ <y + 2
(w>p— Q) because the final (initial) states are occupied (empty). The scattering-out (scattering-in)
satellite peak above (below) the resonance rises (drops) dramatically exactly at o =p+Q (w=p— )
because of the large density of final (initial) states for scattering-out (scattering-in) processes at y=E,.
The parameters used in this equilibrium study are listed in Table I.

at energies w <u+ 2 (w>u— Q) because the final (initial) states are occupied
(empty). The scattering-in (scattering-out) satellite peak above (below) E, rises
(drops) dramatically exactly at o =u+ 2 (w =u — Q) because of the large density
of final (initial) states at u=E, [53].

ILE. The Equilibrium Polaron Shift and the Perturbation Parameter

The set of crosses in the upper panel of Fig. 4 shows the equilibrium polaron shift
E(u)(=E.(u)—E°; parameters are the same as in Fig 3) calculated in the
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FiG. 4. The equilibrium polaron shift E,(u) (=E,(u)— E®; parameters are the same as in Fig. 3)
versus the filling condition set by chemical potential 4. The energy scale of the abscissa is I'=1" + I'g,
where I' g =TIy x{ E?=0). In the self-consistent calculation (crosses) the polaron shift E,(u) changes
from approximately —g2= —~0.102 for u— E, < —T, to approximately —3gQ = —03Q for u—E,> I,
consistent with second-order perturbation theory. The solid curve shows the first-order estimate Re g!"
(E?=0) for the polaron shift, evaluated for constant escape rates I g. The crossover between the two
regimes of different polaron shifts occurs in the first-order estimate at u =0 with slope — (2gQ)/(nl"). In
the self-consistent Born approximation {crosses) the crossover occurs at p,=E,(u,), with slope
(PE, /op), - ., = —(2/n)(gR/T)/[1 — (2/n)(gR2/T)], as indicated by the dotted line. Note that this slope
of the polaron shift becomes singular at u=pu, when (2gQ)/(nl")— 1, and the self-consistent Born
approximation is limited to small values of gQ/I. Thus, while the Born approximation treats the
interaction to lowest order in g, there is an additional perturbation parameter gQ/r.

self-consistent Born approximation versus chemical potential u. As expected the
polaron shift interpolates between a small shift of —gQ for u— E, <« —I" to a larger
negative shift of —3gQ for u— E,> I'. The solid curve on the upper panel of
Fig. 4 shows the first-order estimate Eq.(39) for the polaron shift E{(u)
(=EM(u)— E?), which also interpolates between these limits, but more gradually.
This is surprising because for g <1 one expects the first-order result to be a good
approximation to the self-consistent calculation.

To understand this discrepancy let us try to estimate the self-consistent polaron
shift near the point where the equilibrium chemical potential is at the resonant
level, u, = E,(u, ). The position of the resonant level E (u) is determined by

E(u)—E}—Reo (p,0=E/(n))=0. (43)

To approximate the value of Reo, (u, E,(u)) in the self-consistent calcula-
tion, we substitute E,(u) for E° in the expression for Rea'V (w=E,(u)); see
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Table I11. We neglect the logarithmic terms in estimating the resonant level E,(u)
by

E,(u)— E°+2gQ + 2‘5’? [2 - (IF/Q)z] arc tan (”—_f—f—("—)) =0. (44)

The slope of the polaron shift at u, = E (u,) is obtained by differentiating with
respect to p. To lowest order in I/©2 we obtain

OE,(p)
ou

. _—(28Q)/(nl)

a ; 45
1= 2g2)/(xl) (43)

r=p,

The estimate Eq. (45) for the slope of the polaron shift at u, is indicated by the
dotted curve on Fig. 4 and agrees well with the result of self-consistent calculation.
Thus, the discrepancy between the first-order calculation and the self-consistent
calculation results because the dimensionless parameter, g2/7, is large (gQ/I'~ 1).
When (2gQ)/(nI") — 1, the estimate Eq. (45) for the slope of the polaron shift at g,
becomes singular.

The quantity gQ/I" is a new perturbation parameter in the study of the equi-
librium, zero-temperature polaron shift, in addition to the obvious parameter g.
The parameter gQ/I" is the ratio of the difference in polaron shifts in the two
regimes A and B to the width I” of the resonance peak of the density of states N(w).
When the ratio gQ2/I" becomes comparable to 1, the spectral weight of N(w) can be
polaron shifted from being mostly above the chemical potential ¢ to being mostly
below u when the chemical potential is increased past u, = E,(u, ). Hence the dif-
ference in polaron shift between regime A and B causes the system to change
rapidly between the two regimes, and for large values of gQ/I" the equilibrium
polaron shift becomes singular at p, = E (u,).

We also note that the same perturbation parameter, gQ/I’, enters in the evalua-
tion of the resonant-site density of states N(w)= —Im g,(w)/x; to lowest order in
g the density of states actually becomes negative at w=E°+ I' if gQ/I"> 1. This
additional perturbation parameter is important in the physically relevant case of
Q» I' that we consider here.

We have chosen to show calculations for gQ/I'~ 1. We find qualitatively the
same behavior in the reported self-consistent calculations as found in calculations
for smaller, and more appropriate, values of g€2/I". However, the effects of the inter-
action are more clearly visible for the larger value gQ/I"~ 1 that we have used.

IL.F. The Position of the Satellite Peak

The position of the satellite peak in the resonant-site spectral function or density
of states N(w)= —Im o,(w)/m calculated within the self-consistent Born approxima-
tion (shown in Fig. 3} is shifted in regime A (B) up (down) from the peak position
E, + Q (E,— Q) of the inelastic scattering rate, Im ¢,(w). Note that 2 =107, and
the upward (downward) shift in regime A (B) is approximately I
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FiG. 5. Energy dependence of Re[g,(w)~'] and Im[ g,(w)~'] (upper panel) in equilibrium regime
A explaining the position of the satellite peak in the density of states N(w)= —Im g (w)/n (see Fig. 3);
and the lowest order renormalization, M? Re IT%((; u), of the phonon frequency (lower panel) versus
the chemical potential u (=u— E?; parameters are the same as in Fig. 3). The energy scale of
the ordinate is I'=1I"| + I'y, where I'i g = I x(E®=0). The free phonon frequency is €= 105" The
upper panel shows the energy dependence of Re{g(w) ']Jrw—E®—Reos (w) (solid curve) and
Im[g,(w)"']~I—1Im o (w) (dashed curve) at chemical potential p corresponding to upper panel of
Fig. 3. The self-energies Re o,(w) and Im o (w) are evaluated assuming constant escape rates I’  within
the first Born approximation (see Table III), however, with the interacting resonant level E, substituted
for E? (and neglecting the logarithmic contributions). In regime A the satellite peak in the density of states
is shifted up from the peak position, w = E, + Q (indicated by dotted line), of the inelastic scattering rate
(—21Im o,(w)) towards @ = E, + £ + I" because of the dramatic energy dependence of w — E®— Re o,(w)
at o~ E, + Q. In regime B (not shown) the energy dependence of w—E%~Re o (w) at wx E, —Q
similarly shifts the satellite peak from w = E, — Q down towards w = E, — Q2 — I. The lower panel shows
the renormalization, M2 Re /7% (w=Q; ), of the phonon frequency in equilibrium as a function of
chemical potential p. This renormalization is determined by calculating the lowest order retarded
polarization insertion /71%w; ) (with the diagram shown in the insert), assuming constant escape rates
I'ix (see Table 1V). Note that the phonon renormalization is at most about 1% of the free phonon
frequency Q= 10I". Also note that the phonon renormalization is at (at least) an order of magnitude
smaller than the upwards or downwards shifts (of the satellite peak position) which result from the Born
approximation self-energy effect illustrated for regime A in the upper panel.
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To understand this shift it is necessary to consider both the real and imaginary
parts of the retarded self-energy, o, (w). The upper panel of Fig. 5 shows the
approximations Re(g,(w))~' ~w—E?—Re o,(w) (solid curve) and Im(g,(w)) '~
I'—Im o, (w) (dashed curve), for the case corresponding to the upper panel of
Fig. 3. The constant escape rate ['=17I"| + I'y (with FL/R=FL/R(E‘,’)) have been
assumed, and the self-energies are evaluated using the first Born approximations
(see Table I11), with E, substituted for E° (and neglecting the logarithmic contribu-
tions). The nominator, 2(/"—Im o,(w)), of the approximation equation (32) for
the density of state, is of course (like the regime A inelastic scattering rate)
peaked at o = E, + Q. However, the dramatic energy dependence of Re(g,(w)) ™'~
»— E°—Re g,(w) (entering in the denominator) shifts the position of the regime A
satellite peak up towards w=E,+Q+ I In regime B (not shown) the energy
dependence of w— E, —Re g,(w) at w =~ E, — 2 similarly shifts the position of the
satellite peak down from w=FE,—Q (peak position of the regime B inelastic
scattering rate) towards w=F,-Q— I

In both regimes we therefore find that the separation between the main peak and
the satellite peak of the density of state is approximately Q + I', where 2=107"is
the free phonon frequency. However, to determine the exact position of the satellite
peak we must also consider the possible renormalization of the phonon frequency.
The self-consistent Born approximation used in this paper assumes that the phonon
mode retains the free phonon frequency @, and remains in equilibrium. The elec-
tron—-phonon interaction will, however, renormalize the phonon frequency to an
interacting value Q'. If this renormalization is significant it would result in a dif-
ferent separation between the main and satellite peaks of the density of state than
the value, 2 + I', obtained within the Born approximation. Below we verify that the
lowest order renormalization of the phonon frequency can in fact be neglected and
that this renormalization does not significantly modify the above discussion of the
satellite peak position.

To calculate the renormalization of the phonon frequency we consider the
retarded polarization insertion [54]

H(1—1')= —i0(1—1'){[cg (1) co(t), 5 (1) co(') ] (46)

In the noninteracting case this correlation function can be represented by the
diagram shown in the insert of Fig. 5 (lower panel). Upon Fourier transforming in
t—t the result for the noninteracting retarded polarization insertion I7%(w)
becomes

dw’
(@) = [ 5= (22’ +©) g%(@) + g% (@ + ) g3()], (47)
If constant escape rates /' g can be assumed, this integral, involving Lorentzians,

can casily be done at zero temperature and the analytical expressions for the real
and imaginary parts of /7% ®) are listed in Table IV.
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TABLE IV

The Lowest-Order Polarization Insertion /7°%w) Evaluated Assuming Constant
Escape Rates I g and Zero Temperature, 1/§=0

(u—E°+w)2+ 172 (p—E—w)r+ 17
2 4r~2 0, — r r
(@ + A7) Re M (0) =1, [m( (u —E%*+T? +in (u,—E®? + 17

_E® 2, 2 CE0_)ag?
+ | (#r tt;)) +2 o [ = ,Oc;)) +2
(ug—E.)+T (ug—EDY'+ T
4r u—E+ow w—E'—w
—;[‘Ll:arctan< T —arc tan T
4r ur—E%+w —E'—w
—— gl arctan{ ———— | —arctan{ ————— | |,
w r r

—E° —E%—
—2n(w?+4r%) Im 1%w)=2I [arc tan (#—L—r'—w> —arc tan (&‘—r—'g):l

_E® _E°_
+21"R|:arctan (b——r'—ﬂu—)—arctan (un—r'9>:|
ar (o —E°+w)>+ 172 (u,—E’—w)*+ 172
—r |1 d 1 s
t e L[“( (i —E 4T )T\ T B+

ar (ur— E°+w)*+1? (g —E®~w)*+17?
+wr“[‘“( =17 )T\ B ) |

INe=lia(EY, I'=r, +rIy.

Using:

Note. The value of M2 Re I1° (w = Q) determines the renormalization of the phonon frequency from
the free value, Q. For the equilibrium high-doping situation the renormalization, M2 Re I7° (0 = ©2; u)
(shown for I'=1I| + 'y with I"L’,R=I‘,_,R(E9) and g=0.1 on lower panel of Fig. S as a function of
chemical potential u) is at most about | % of the free phonon frequency. The renormalization of the
phonon frequency can in general be neglected for g =0.1 when 2> I'.

The renormalization, £’ —Q, of the phonon frequency is to lowest order in
g= M?/Q? given by
Q' —-QxM?*Rell? (0= Q). (48)

The lower panel of Fig. 5 shows this renormalization in equilibrium (using I'=
'L+ g with I g =T g(EY); parameters same as in Fig. 3) as a function of the
chemical potential p. Note that the renormalization is at most about 1% of the free
phonon frequency = 10/. The renormalization is in general (also with a finite
applied bias) insignificant for g =0.1 when Q > I'. In particular, the renormalization
of the phonon frequency is (at least) an order of magnitude smaller than the shift
of the satellite peak position resulting from the Born-approximation self-energy
effect illustrated for regime A in the upper panel of Fig. 5.
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III. THE NONLINEAR CURRENT

In this section, we study the nonlinear transport using the nonequilibrium Green
functions evaluated within the self-consistent Born approximation. We demonstrate
that current is conserved and calculate the nonlinear current-voltage characteristic.
We furthermore study the current density per unit energy at the resonant site and
in the left and right leads. Finally, we separate the current densities for the leads
into elastic and inelastic contributions, which we study in a typical example.

[ILA. General Expressions for the Current

The number-currents running from the left lead to the resonance level, I, and
from the resonance level to the right lead, I, are

I =2iW [{cge_ ) —<cT 0], (49)
IR=2iWR[<C1+CO>"<C()+C1>]- (50)

There is a factor of 2 for spin. These currents can be expressed in terms of the
resonant-site Green functions as [25, 28, 30, 32]

*  d
ha=2] o) (51)
11(0) = 27 (@) [22N(0) £i(0) - ()], (52)
Ie(@) = 2T3(@)[ - (@) = 28N (0) falo)] (53)

I (w) (Ix(w)) is the current density per unit energy and per spin, which flows
through the left (right) barrier into (out from) the resonant level. It is
straightforward to show, using the general expressions for the Green function listed
in Ref. [30], that I, (w) (Ix(w)) is also the current density anywhere in the left
(right) lead. In the steady state situation considered here, the continuity equation
becomes

©  dw
0=l ~I=2] 37 [0.()g(0)-0(w)g.(@)] (54)
The factor 0. (w) g (w)(o.(w) g.(w)) can be interpreted as the scattering-out
(scattering-in) rate, and the integrand of Eq. (54} is thus the ner scattering-out rate.
The self-consistent Born approximation satisfies the continuity equation, ie.,
conserves current, because

0'>(a))g<(a))=M2g>(w—Q)g<(a)), (55)
a<(w)g>(a))=M2g<(w+.Q)g>(w), (56)

and the two contributions in Eq. (54) cancel upon integration.
The noninteracting current [, is given by the Tsu-Esaki formula [15], an
example of a Landauer—Biittiker formula [1, 2]. Because there are no interactions,
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the tunneling of each electron is independent and the tunneling probability for a
single electron is given by a noninteracting transmission coefficient To(w), obtained
by simple wave mechanics. It is related to the noninteracting resonant-site density
of states N°(w)= —Im g%w)/r by

2l (o) I'v(w)

0
T(@)+ Ta(@) 2aN(w). (57)

To(w)=

In the Tsu-Esaki formula the noninteracting current is then calculated by simply
summing up the contribution Ty(w) from energy w

n do 2071 (@) Ta(o)

Iy=2 LR
0 T 2n M(w) + (o)

N(@)[ frlw)— frl@)]. (58)

Note that the integration is restricted to the range from ug to y;, as indicated in
Eq. (58), because we discuss a system at zero temperature.

A natural question to ask is whether the interacting current =1, = Iy can be
written in a form similar to Eq. (58). As shown by Hershfield et al. [25], Meir and
Wingreen [28], and in an earlier paper [32], the interacting current can be written
as a sum of two terms,

I=I,+1., (59)

where the leading term, 7, is indeed formally similar to Eq. (58). We refer to 7, as
the density-of-states term, and to the other term, 7., as the correction term

m dw 20 () Fg(w)
I,=2| ——F————=-2aN — , 6
=2 T+ Tatey TN @Ui(@) — fa(o)] (60)

% dw 1 I (w)—Tg(w
I.=2 —_— —

| R RS @ @@ @] 61)

Often it is possible to neglect the energy-dependence of I') (w) and I'g(w) for all
relevant energies, (o — £,| < 2€2. The integrand in Eq. (61),

() = L (@) = T (@)

2 Te (@) F Tule) L7 (@) 8<(@) =0 (@) g2 ()], (62)

is then given by the net scattering out rate ¢ (w) g_.(®w)— o _(w) g..(w), and the
correction term /. is zero, because of current conservation, Eq.(54). Also with
constant escape rates we have

I~ o« f“ N(w) do. (63)
#R
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Thus in this case the shape of the resonant-site density of states N(w)=
—Im g,(w)/n determines the current. Note finally that if the escape rates are energy
independent and if we are in a high-bias limit with y;, — E, > £ and E, — ug > Q,
the current becomes insensitive to the interaction, because the total spectral weight
of N(w)= —Im g,(w)/m is 1, irrespective of the strength and type of interaction

[32].
HI1.B. The Nonlinear Current—Voltage Characteristic

In this subsection we study the current—voltage (I-V) characteristic in two exam-
ples, which we call the high-doping and the low-doping cases. In the high-doping
case, where the Fermi seas of the two leads are thick, the current is insensitive to
the interaction at typical biases. In contrast, for the low-doping case, where the
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F1G. 6. The [-V characteristic in the high-doping case, where the depth of the Fermi sea, u+2W, is
large compared to . The escape rates are equal in equilibrium; the parameters are listed in Table I. The
density-of-states term [/, (dotted curve) (see Eq. (60)) is in general an excellent approximation to the
interacting current (solid curve). The correction /. =I—1, (see Eq.(61)) is only significant when a
shoulder in the current is observed for 132 < eV < 15Q. The interacting current ! (solid curve) and the
noninteracting current I, (dash-dotted curve) are also very similar. They both show an onset of a large
resonant current at bias eV’ = 20, which persist until the valley region at bias el > 13€2, where the lower
band-edge of the left lead, ¢, is pushed above E,. Major differences are: (1) The small suppression of
the interacting current / at biases eV ~2Q2 to e}/ = 48, which arises because the full weight of the inter-
acting, resonant-site density of states N(w)= —Im g,(w)/n is not yet included in the integral Eq. (63)
proportional to /,~ 1. At biases from eV =2Q to eV =12, the escape rates are approximately equal,
and the resonant level is half occupied. As illustrated in the insert for bias eV =68 (indicated by the
arrow) the density of states therefore has two satellite peaks, and for biases in the range of 2Q2 <elV <402
the upper satellite peak is not included, leading to a small reduction of 1. (2) A shoulder in the inter-
acting current at biases from eV =13Q to eV~ 15Q, which results from electrons tunneling inelastically
via the emission of a phonon. The shoulder is observed in the valley region, where ¢, > E,, and there
is only a very small noninteracting current. In the presence of interactions, however, electrons can enter
at energy £, + 2, emit a phonon, and thus tunnel inelastically. Note that the shoulder persist until at
bias eV =152, ¢, is pushed above E,+ .
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thickness of the Fermi sea is comparable to the phonon frequency, the interacting
and noninteracting currents differ significantly. We have also reduced the
bandwidth in the low-doping case to cause the escape rates to be more energy
dependent and to make the correction term /. more important in the valley region.
In both cases we have 2> I'| (0) + I'g(w).

High-Doping Case. Figure 6 shows the nonlinear current-voltage (I-V) charac-
teristic in the high-doping case. The thickness of the equilibrium Fermi sea is
M+ 2W =558, the bandwidth is 4W =200 and the escape rates are equal in equi-
librium; the parameters are listed in Table 1. The I-V characteristic shows an onset
of a large resonant current when the resonant level enters the Fermi sea of the left
lead at eV & 202. The large resonant current slowly decreases until at e} =~ 130 the
system enters the valley region, where the lower band-edge ¢, is pushed above reso-
nant level E,. The slow decrease of the resonant current as the bias approaches the
valley region is a consequence of I'| (E,)/I'r(E,), decreasing when ¢, — E,.

As expected from Section IILA, when the energy dependence of the escape rates
is weak, the density-of-states term I, (dotted curve) is an excellent approximation
to the interacting current 7 (solid curve). The correction I, =1I—1, is significant
only when a shoulder in the current is observed (132 < el < 1542). Also, the inter-
acting current / (solid curve) and the noninteracting current /, (dash-dotted curve)
are approximately equal, but not as close as 7 and /,. The onset of the large reso-
nant current occurs at a lower applied bias for 7 than for I, because of the polaron
shift with the interaction, but at peak value they agree to within a few percent.
However, there are two places where the interacting current / differs significantly
from the noninteracting current I;: (1) a small suppression of I (2Q <eV <4Q)
right after the onset of the resonant current and (2) a shoulder in the interacting
current in the valley region. These differences are discussed below.

(1) The small suppression of the current at biases between 22 and 4£2 arises
because the limit of integration from ug to u; in Eq. (60) does not yet include the
upper satellite peak of the nonequilibrium density of states N{w). At biases where
there is a large resonant current, 2Q < eV < 120, the escape rates are approximately
equal for |w—E,| S(F(E,)+ I'k(E,)), and the resonant level is half occupied.
Thus the density of states N(w)= —Im g,(w)/mr has two satellite peaks, as
illustrated in the insert, which shows N(w) at bias eV ~ 68 (bias indicated by
arrow). At biases from 20 to 40 the spectral weight of N(w) in the upper satellite
peak is not yet included in the integral Eq. (60) for /,. The noninteracting current
I, is given by a similar integral Eq. (58) over the noninteracting density of states
N%w)= —~Im g%w)/n, but for 22 < eV < 1382 nearly all the noninteracting spectral
weight is included. Consequently, the approximation 7, and thus 7, is suppressed,
compared to I,. This suppression disappears at eV =40, resulting in a step of
approximate height 0.5g times the noninteracting current. The prefactor, 0.5g, is the
approximate fraction of spectral weight of N(w) in the upper satellite peak, because
the resonant level is half occupied. We note that this prefactor depends on the filling

§95:236,/1-3
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condition of the resonant level, and the step corresponds to that predicted at the
bias eV =2(Q2 + (E, — 1))~ 42 in Ref. [4].

(2} The shoulder in the interacting current arises from electrons tunneling
inelastically via phonon emission. In the noninteracting case there is only a very
small current, because E, is below ¢, . For the interacting case, if E,+ Q2 > ¢, , an
electron can enter the resonant site from the left at energy E, + Q, decay via emis-
sion of a phonon to energy E,, and subsequently tunnel to the right lead. The large
density of states at energy E, therefore leads to an enhanced inelastic tunneling,
which persists until the lower band-edge ¢, of the left lead is pushed above E, + Q
at eV =~ 150Q.
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FiG. 7. The I-V characteristic in a low-doping case, where the depth of the Fermi sea i+ 2W is com-
parable to 2, and the bandwidth is reduced to 4 W = 6£2. Again the escape rates are equal in equilibrium;
the parameters are listed in Table 1. In the region of large resonant currents, Q < el <2.502, the escape
rates can be regarded as energy independent, and the term 7, (dotted curve) is still a very good
approximation to interacting current / (solid curve), but the correction I, =7—1, is important in the
valley region, at biases el > 2.5Q2. Differences from the high-doping case are: (1) The noninteracting
current I, (dash-dotted curve) differ significantly from the interacting current / (solid curve), because the
spectral weight of N(w)= —Im g,{w)/n is always only partially included in the integral Eq. (63) propor-
tional to /,. The peak noninteracting current is larger than the peak noninteracting current, because
more weight of the noninteracting density of state is included. (2) In the valley region, the current shows
a satellite peak not just a shoulder, at biases 3Q <el < 4.502, because when ¢, is pushed above E,, at
bias eV~ 2.5Q, u, is not yet above E, + Q. Not until u, > E, + £, at bias eV~ 32, can electrons tunnel
inelastically. (3) The correction term /.= 7— I, is of greater relative significance in the valley region. The
energy dependence of I'; (w) can nct be neglected at biases where the satellite peak is observed, because
I (E,) is zero, whereas '\ (E,) is nonzero. The correction term 7, therefore becomes significant in the
valley region. /. is more important in the valley region in this case compared to the high-doping case,
because I. depends on the ratio I (£, + Q)/T'g(E, + £2) at the shoulder/satellite peak, and this ratio is
made larger by the reduced bandwidth. Consider finally the insert, which shows the current I (solid
curve), and the approximation 7, (dotted curve) scaled by a factor of 30, in the region of extreme bias,
eV > 4W ~ 652. Here the left and right bands are not aligned and I, =0, but there is still a nonvanishing
current carried exclusively by 7, #0.
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Low-Doping Case. The I-V characteristic in the low-doping case, shown in
Fig. 7, is qualitatively different from the I-V characteristic in the high-doping case.
To study a low-doping case, we have reduced the thickness of the equilibrium
Fermi sea to u+2W~0.7Q2. We have also reduced the bandwidth to 4W ~ 60,
which, as explained below, increases the differences between the noninteracting and
interacting current in the valley region. The escape rates are equal in equilibrium;
the parameters are listed in Table I. Despite the reduced bandwidth, the escape
rates /' {w) and I'g(w) can still be regarded as energy independent in the region of
large resonant currents Q <eV <2.5Q. Thus the density-of-states term 7, (dotted
curve) is still an excellent approximation to the interacting current (solid curve), for
biases 2 < eV < 2.5€2. As in the high-doping case the correction term /.= 17— 1, only
becomes significant in the valley region at biases e} > 2.5Q.

The reduced depth of the Fermi sea, u +2W =0.7Q2, and the reduced bandwidth
4 = 602 results in the following differences from the high-doping case: (1) The
interacting current [ (solid curve) is significantly different from the noninteracting
current I, (dash-dotted curve) everywhere, even in the region of large resonant
current. (2) In the valley region the shoulder is replaced by a clearly observable
satellite peak in the interacting current at biases 302 <el <4.5Q. (3) While I,
(dotted curve} is still a very good approximation to / (solid curve) in the region of
large resonant currents, the correction I_.=7—1I, becomes comparable to I, at
biases where the satellite peak in I is observed. These differences between the high-
doping and low-doping cases are discussed below.

(1) In this low-doping case the spectral weight of N(w)= —Im g,(w)/n is
only partially included in the integral Eq. (60) yielding I, at all biases, because 2
is larger than the depth of the Fermi sea pu+ 2W. When evaluating the noninter-
acting current, at the bias of peak value, more of the noninteracting spectral weight
is included. The peak value of the noninteracting current is therefore larger than the
peak value of the interacting current.

(2) In the valley region, where E, < ¢, , the current shows a clearly distinctive
satellite peak because an electron can enter at E, + £, emit a phonon, and thereby
exploit the large density of states at E,. A satellite peak, not just a shoulder, is
observed because at the bias where ¢, is pushed above F,, the Fermi surface of the
left lead, y;, 1s not yet above E, + Q. Not until y; > E, + Q can electrons use the
high density of states at E, to tunnel inelastically.

{(3) As in the high-doping case the correction I.=I—1, to I, is of relative
importance in the region where the shoulder/satellite peak in the interacting current
I is observed. In that region the energy dependence of 'y (w) cannot be neglected,
because I (£,) is identically zero, but /[ (£, + €2) is nonzero. The net scattering-
out rate o (w) g _(w)— o .(w) g. (w) has a positive (negative) peak at w =FE, + Q2
(w = E,) from electrons scattering out (in). The prefactor in 7 (w) (see Eq. (62)) to
the net scattering-out rate is — 1 at w = E,, since I'L(E,) is zero, but it has a smaller
negative value at w = E, + Q because ' (E, + ) is finite. Thus we obtain a positive
peak in I (w) at w=E,, which is only partially offset by a smaller negative peak
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at o= E, + Q. Decreasing the ratio 4W/Q makes '} (E,+ Q)/I'R(E, + ) larger
when £, <¢,, and the correction term /, is therefore relatively more important in
the low-doping case than in the high-doping case.

Finally consider the insert of Fig. 7, which shows the interacting current / (solid
curve) and the density-of-states term [/, (dotted curve) enlarged in the region of
extreme biases, eV >4 W ~ 6Q. In this region ¢, is above the upper band-edge of the
right lead, but there is still a small but nonzero current. This current is carried
exclusively by I, because T, (w) is zero at all energies and, in the limit of extreme
biases, the density-of-states term /, thus fails to describe the small but nonvanishing
current resulting from inelastic tunneling.

III.C. Discussion of the Current Terms 1, and I,

In Section III.LA we expressed the current /= (I +13)/2 as a sum I=1,+1_,
where the expression Eq. (60) for the density-of-states term 7, is very similar in form
to the expression Eq.(58) for the noninteracting current. Here we discuss that
separation further. The noninteracting current is given as an integral (see Eq. (58))
from pgy to up over the noninteracting transmission coefficient 7(w) expressed in
Eq. (57). The density-of-states term 7, is given by a similar integral Eq. (60) from

Mg to py of
2N (w) k(o)

o T () 2aN(w). (64)

T,(w)

Because the correction term I, can often be neglected, it is tempting to view T ,(w)
as a generalization of the noninteracting transmission coefficient, To(w). However,
to interpret T, (w) as an effective interacting transmission coefficient, it must
describe the current density per unit energy. We note that the current density at the
resonant site is given by

WD) _ 1) fuf0) ~ fu(@)1+ L), (65)

and we discuss below the problems with the interpretation of T,(®) as an transmis-
sion coefficient for the interacting problem.

A key point is that while I, = | I .(w) dw/n does vanish when the escape rates can
be treated as constants, /' x = ' r(w), the function I (w) (see Eq. (62)) vanishes
only when I} is equal to I'y. For constant escape rates the energy dependence of
I (w) 1s given by the net scattering-out rate, o.(w) g .(w)—0o .(w)} g. (w), which
can have a rich energy dependence, even if its integral must vanish. Figure 8 shows
the contributions T ,(w) and 7 .(w) at a fixed bias eV =68 (indicated by the arrow
in Fig. 6) for two different ratios of the escape rates. The contribution T,(w) is
integrated from p; ¥ —4Q to ug~2Q, whereas I (w) is integrated over all the
energies. The dotted curves show T, (w) and /.(w) when the escape rates are
approzimately equal, I'y (w) = 'z (w), with parameters of the high-doping case as in
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Fig. 6. Then /.(w) is approximately zero, and it might appear reasonable to inter-
pret T (w) as an effective probability for tunneling of electrons at energy w.
However, when 7' (@) is much less than /'z(w) with other parameters unchanged
(solid curve), I.(w) has a significant energy dependence and at some energies /.(w)
can be comparable or even larger than T,(w). The same is true for the opposite
limit, I'; (w) > I'g(w). Thus in general there is significant energy dependence of the
current density of the resonant level, Eq. (65), which is not included in T, (w).
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FiG. 8. The separation of the current into a density-of-states term /, and a correction /_ in a high-
doping calculation at bias eV = 68 for different ratios of I'| (w) to Fz(w). The dotted curves displays the
case when I (@)= Tg(w) (W/W=W2/W=00502; the same situation as in Fig. 6 at bias indicated by
arrow), and the resonant level is half occupied. The solid curves show the case when ' {w) < I'g(w)
(W1 /W =001Q, Wi/ /W =009Q; the parameters otherwise are identical), and the system is in regime A.
All the curves are scaled by the peak noninteracting transmission coefficient, To(E®) =4I (E°) 'y (E®Y
(FL(E®) + I'r(E®))%. The density-of-states term 1, is given by an integral from pg — E%~ —4Q to p; —
E%22Q of T (w) (see EQ. {64)) shown in the upper panel. The escape rates I, ()} and I'y(w) depend
only weakly on energy for eV x 602 at energies | — E,| <2Q and T, () o N(w)= ~Im g,(w)/n. Thus
T,(w) reflects the behavior of the density of states N(w): small (intermediate) polaron shift E, — E%x
—0.12 (—1.282), and one (two) satellite peak(s) at E, + (£ ) for I' {(w) < 'g(w) (I (@)~ 'g(w}). The
correction-term /, is given by an integral over 7 (w) (see Eq. (62)) shown in the lower panel. The con-
tribution 7 (w) is small for I' (w)= I'x(w) (dotted curve), but have significant energy-dependence for
I'i(w) < My(e) (solid curve) and for I' (w)» Fk(w) (regime B, not shown), even if I, = | I (w) dw/n ~ 0.
Thus T,(w) does not in general correctly describe the current density of the resonant site,
T w) fi(w)— fr(w))+ I (w), and T,(w) cannot be interpreted as an effective transmission coefficient
for the interacting problem.
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A second problem with the interpretation of 7, (w) as an effective transmission
coefficient is to identify to what electrons the energy w corresponds. When we are
in regime A, where the satellite peak is at E, + £2 above the main peak, that satellite
peak results from electrons scattering out from energy w= E,+ 2 (see Section
I1.D). However, when we are in regime B, and the resonant-site density of states
have a satellite peak at E, — Q, that peak is due to electrons scattering in at energies
o~ E —Q.

II1.D. Elastic and Inelastic Current Contributions

Another possible separation of the current density is into an elastic and inelastic
contribution. We expect some electrons to tunnel elastically, i.e., without change of
energy, but other electrons will experience inelastic scattering while at the resonant
level. A separation of the current density into the elastic and inelastic contributions,
which are sometimes also called the coherent and incoherent contributions, can
provide some intuitive understanding of the scattering. In an earlier paper [32] we
made such a separation into two contributions which we interpreted as the elastic
and inelastic contribution to the current density (I, (w)+ Ix(®))/2 of the resonant
site. As discussed in the previous subsections, working with the current density of
the resonant site, (I (w)+ Ix(w))/2, is useful because the current /= (I, + Iz)/2 is
then approximated by an integral over T,(w) oc N(w), where the correction 7, typi-
cally vanishes. When discussing the effect of the interaction upon the total current,
which was the primary motivation in Ref. [32], the current density of the resonant
site, (I (w)+ Ix(w))/2, is thus the natural starting point. For understanding other
properties of the system, it is more helpful to retain the information contained in
the current densities of the left and right leads, /7 (w) and I(w). Below we separate
these current densities into an elastic and inelastic contribution, following the prin-
ciples introduced in Ref. [32]. These elastic and inelastic current contributions have
simple interpretations, which are discussed below. They show very directly the
effects of the inelastic scattering and are useful in studying the energy transfer from
the electrons to the phonon system. A similar separation and interpretation of the
current has also recently been discussed by Lake er al. [33].

To make a separation into elastic and inelastic contributions, we insert the results
for 2zN(w)= —2Im g,(w) (see Eq. (22)) and for g _(w) (Eq. 21)) into the current
densities of the left and right leads

I((w)=2I"(w) |g()|* [2Tr(w)(fL(®) = fr(®))]

+20 (0) [g0)? [fuw) o, (@)~ (1 - fi(w)) o ()], (66)
Ix(@) = 2Tk (w) [g@)* (2 (@) (fu(®) - fa(®))]

+20R(@) [g o) [(1 - fr(w)) 0 (@)~ fr(w) 0. ()] (67)

The underlying principle used in the separation into elastic and inelastic contribu-
tions rest upon the explicit presence of a less-than (¢ _(w)), or a greater-than self-
energy (0. (w)) in the above expressions for the current densities [32]. Because the
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terms with an explicit presence of o (w) or ¢ _(w) corresponds to contributions
from electrons which are scattered out or in, we keep only the first terms of
Eqgs. (66) and (67) in the elastic contributions,

Iy (0) = Ir(0) = Ty(w)[ frl®) - fr(w)], (68)
where we have introduced
Ty(w) =4I (0) Ig(w) | g, (w)|?

_ 2 (w) Ir(w)

- FL(OJ) + I'y(w) 'g’(w)lz [2FL(w) +2FR(¢0)]. (69)

Note that T (w) is formally very similar to Ty(w) and T, (w). We interpret T,(w)
as the probability that an electron at w tunnels through the system elastically,
i.e., without a change in energy [32]. As expected the elastic contribution is the
same for both leads. Note, however, that T, (w) implicitly, via |g,(w)|? includes -
scattering processes.

The inelastic current contribution consist of the terms of Egs. (66) and (67) with
an explicit presence of a less-than or a greater-than self-energy

L () =20 () fL(o) |g.(@)]? 0. (0) = 2T (0)[1 - fu(w)] |g(w)]* o _(w), (70)
Tinr(@) = 2 g(@)[1 = fr(@)] |g,(0)1? 6 (@) = 2T R () fr(®) |g(@)]* 6. (w). (71)
The current densities of the left (right) lead is thus given by

I g)(@) = Ty(@)[ fulw) — felw)] + L gy @), (72)

and by current conservation, we have

|7 22 Uto) ~ Fel)] =0 (73)
—o0 4T

Because of Eq. (72) we see that the change in the current distribution before and
after the electron—phonon interaction at the resonant site is given by comparing
I (o) and I, g(w). These inelastic current contributions therefore provide informa-
tion about the energy transfer due to inelastic scattering at the resonant level.

To simplify the discussion of /,,; (w) and I,z (w) we restrict ourselves to the zero-
temperature case. Here we find that the second term of Eq. (70) vanishes,

—2I'(w)[1 - fu()] g w)]* 6 (@) =0, (74)

because ¢ _(w) o« g (w0 + 2) is zero for w > pu; — Q, whereas [1-f;(w)] is zero for
o < pg. Thus none of the electrons which are scattered-in (from a higher energy)
return to the left, and 7,,; (w) reduces to

IinL(w)=2rL(w)fL(w)|gr(w)|20>(w)- (75)
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Similarly, the second term of Eq. (71) vanishes,
—2I() fr(w) g (@) 6. (w) =0, (76)

because o, (w) is zero for w < ug + 2, but fr(w) is zero for w > ug. Consequently
no electrons enter from the right and are scattered out, and I,z (w) reduces to

Lipr(@) = 2Tk (@)1 — fa(w)] gA@)* 0 -(w). (77)

Based on Egs. (75) and (77) we now interpret:

(1) 1I,.(w) as the density of electrons entering the resonance from the left at
energy w, but scatter out to lower energy o — Q. Because of Eq. (76), we see that
all electrons which are scattered out contribute to 7,,; (w).

(2) [Ii,r(w) as the current density of electrons that scatter in from higher
energy w + Q, and leave the resonant level for the right lead at energy w. Because
of Eq. (74) we find that all electrons that are scattered in contribute to fjg(w).

The upper panel of Fig. 9 shows the elastic contribution T, (w) (solid curve),
compared to the noninteracting transmission coefficient 7T(w) (dash-dotted curve),
in the case of I' (w) < I'g(w) at bias el = 6£2 (same situation as shown by the solid
curves in Fig. 8). The resonant level is still within both bands, and the energy
dependence of I'j (@) and I'g(w) can be ignored. At this bias, T,(w) for the inter-
acting current, and Ty(w) in the noninteracting case, must be integrated from
Ur ~ —4Q to u; ~ 20 . The peak of the elastic contribution T, (w) at E,, is shifted
from the peak of the noninteracting transmission coefficient To(w) at E? by
approximately g2 =0.1€2. That is expected because /' (w) </ g(w) and the system
is in regime A. However, T, (w) is not merely a (shifted) damped version of Ty(w).
As shown more clearly in the insert, T,(w) exhibit a resonant structure at E, + Q.
It is first smaller than Ty(w) for w < E, + Q, but runs through a resonance and
becomes larger than T,(w) for w > E, + Q. This behavior corresponds to a Fano
line shape [557 of positive g-value. In the same situation, but with ' (w) > I'g(w)
(not shown), a similar structure in T, (w) is observed at w~ E, — Q. In that case
T4(w) is first greater than Ty(w) for w < E, — 2, but becomes smaller than Ty(w)
for w > E, — 2 corresponding to a Fano line shape of negative g-value. In the case
of I' (w) =~ 'g(w) (also not shown), two such structures are observed in 7, (@), one
at £, — Q and the other at £, + Q.

The middle panel of Fig. 9 shows the inelastic current contribution for the left
lead, I,,; {w), while the lower panel of Fig. 9 shows I, z(«). Both contributions are
scaled by the peak noninteracting transmission coefficient, To(E°) =45 I'y/T?,
where [ p=1r(E 9. IL,(w) (I.r(w)) is the contribution from electrons
scattering-out from energy « (scattering-in at energy w). I, (w) therefore has a
peak at E, + €2 because of the large density of final states at F, for scattering-out
processes and a peak at E, because of the large density of initial states. Similarly,
L.r(w) has a peak at E, because of the large density of final states at E, for
scattering-in processes and at E, — 2 because of the large density initial states.
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Fi1G. 9. The division of the current into elastic and inelastic contributions for the same situation
shown by the solid curves in Fig. 8. The upper panel shows the noninteracting transmission coefficient
To{w) (dash-dotted curve) (see Eq. (57)), and the interacting elastic contribution T,(w) (solid curve)
(see Eq. {69})). Both must be integrated from pug— E, ~ —4Q to p, — E, ~20Q. The upper panel also
shows T (w)— Ty(w) (dotted curve). The current density in the left and right leads is T (w)[f (w)—
Jr(@))+ Iy () and Ty(w)[ fi(w) — fr(w)] + Li,r(w), respectively. I, (@) (dashed curve in the middle
panel) (see Eq. (70)) can be interpreted as the density of electrons entering the resonance at energy w
from the left lead and are scattered out to lower energy » — Q. It therefore has a peak at E, + € (large
density of final states) and at E, (large density of initial states). [, ,z(w) (alternating long/short dashed
curve in lower panel) (see Eq. (71)) can be interpreted as the density of electrons scattering in at energy
o from energy @ + © and leave for the right. It therefore has a peak at E, (large density of final states)
and at E,—Q (large density of initial states). The insert shows the elastic contribution T,(w) (solid
curve), and the noninteracting transmission coefficient T(w) (dash-dotted curve) around E, + 2, where
the density of state N(w)= —Im g,(w)/n has a satellite peak because the system is in regime A. Note
that T,(w) is first smaller than Ty(w) for o — E, < Q. At @ — E, ~ 2 it runs through a resonance and
becomes larger than Ty{w).

The structure in [, (w— E,)/To(E®) and [.z(w— E,)/To(E®) is independent of
the filling condition when the escape rates are constant, I'| g = I'| g(w=E,), and
we are in a high-bias limit with fg(w) =0, fi(w) =1, and fq(w)= ' /T, where I'=
I'y + I'g. For the case displayed in Fig. 9 these conditions are met even though
ur—E, =20 and E,—pugp~4Q. Figure 9 thus shows the qualitative form of
La(w — E,)/To(E®) and of I, g (o — E,)/T,(E") for general filling conditions. To see
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this analytically, we examine I,,; g(w) to first order in g for constant escape rates.
We denote these estimates for the inelastic contributions 7} ¢ (w).

The key observation is that the scattering-out rate (Eq. (55)) and scattering-in
rate (Eq. (56)) scales with T,(E?), but does not otherwise depend on I", /Iy to first
order in g, when f.;(w) can be approximated by I\ /I for energies |w — E,| <2Q.
In this case the first-order estimates for the non-equilibrium less-than and greater-
than self-energies are

M,
(w+Q—ES+T?
2M2Ty

m”(w)z(w-g—E")?’JrF” (79)

g ()= (78)

and the first-order expressions for the inelastic current contributions become

Il(w) =2 fi(o) [g/(w)]? (o)

N 4gQ°r Iy (80)
THw—EN+ I [o—Q—E+ 17

I w)=2I[1 - fr(w)] [g)(@)] 6 V(w)
4gQ%r I'y

“lo—EV I [(w+Q—EP2+17] (81)

Thus 7{})(w) (I{}k(w)) has two peaks, one at E°+ Q (£°) and one at E? (E°— Q).

mn

The ratios 7{!) (w)/To(E?) and I} (w)/To(E®) at the two peaks are
2
=S
2

Q>+ r¥

IO (ED + Q) To(E) =T (E7)TH(E?) (82)

LoR(ENYTO(ED) =T p(E7 — Q) T(E])=¢ (83)
Note that the filling condition, set by I, /[, does not enter in either the position
of the peaks, or in the estimates Eqs. (82) and (83) for the scaled peak heights. In
the self-consistent case the resonant level will, of course, depend on the filling condi-
tion, and this will result in a shift of the peaks of 7, r(w). However, the qualitative
behavior of I, g(w — E,)/To(E?) is independent of the filling condition, when the
escape rates can be treated as energy independent and when in a high-bias limit,
where f(w)~ (/I for energies |w — E,| <2Q.

We note that the elastic contribution T (w — E,) scales with the same overall
factor, To(E?), under these typical conditions (see Eq.(69)). Hence, the elastic,
T.(w— E,), and inelastic contribution, /i, x(w — E,), to the total current density
I x(w — E,) have the same relative weight at all filling conditions. The shape of the
inelastic contribution [, gx(w — E,) is, furthermore, also independent of the filling
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condition, unlike the shape of the elastic contribution, where a resonant structure
is observed at w = E, + Q when the system is in regime A, but at w = E, — Q when
the system is in regime B.

1V. CoNCLUSION

In this paper we used nonequilibrium quantum-statistical mechanics to study the
equilibrium behavior and the nonlinear transport in a one-dimensional resonant-
tunneling system with an electron-phonon interaction at zero temperature. The for-
mal derivations can easily be generalized to three dimensions, but the correspond-
ing numerical calculations are more involved. The purpose of our one-dimensional
model calculation has not been a quantitative description of the standard semi-
conductor heterostructure resonant tunneling devices (for which a three-dimen-
sional treatment is needed). Instead, we have attempted to illustrate some
qualitative features of resonant tunneling with an electron—phonon interaction. In
particular, our calculation is relevant to resonant tunneling through localized states,
such as, for example, impurities located in a tunnel barrier.

We have assumed a weak electron—phonon coupling and have therefore treated
the interaction in the self-consistent Born approximation, that is, to lowest order in
the dimensionless coupling constant g. Because the system lacks translational
invariance both the Fock-like and the Hartree-like diagrams must be retained.

By studying the equilibrium, resonant-site density of states we identified two
qualitatively different regimes of the system, which depend on the filling condition
of the resonant level. Regime A (empty resonant level) is characterized by a small
negative polaron shift of the resonant level, —gQ, and by a satellite peak in the
interacting resonant-site density of states above the main peak at E,. Regime B
(occupied resonant level) is characterized by a larger negative polaron shift, —3gQ,
and by a satellite peak in the density of state below the resonant level. The inclusion
of the Hartree diagram is essential to obtain the correct polaron shift in regime B.
These two regimes also exist out of equilibrium at biases where a large resonant
current flows. In that situation regime A (B) occurs when I'y <« Iy ('L > I'R),
where I'| ; is the escape rate for tunneling from the resonant level to the left/right
lead.

We studied the equilibrium polaron shift both numerically and analytically in the
first Born approximation. We found a second perturbation parameter, g//€, in
addition to the dimensionless coupling constant g. This new parameter must be
small to study the equilibrium, zero-temperature polaron shift and to ensure that
the interacting, resonant-site density of states remains positive to lowest order in g.
This second perturbation parameter is important when the phonon frequency is
larger than the escape rate, which is relevant for electrons interacting with optical
phonon modes.

For the nonlinear transport, we verified explicitly that current is conserved, and
we calculated the nonlinear -V characteristics in both high-doping and low-doping
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cases. The depth of the equilibrium Fermi sea is large compared to W in the high-
doping case, while it is comparable to @ in the low-doping case. In both cases we
find that the density-of-states term, Iu———jﬁ; T, (w) dw/n, is an excellent approxima-
tion to the interacting current at biases where a large resonant current flows. In the
high-doping case the interacting current differs significantly from the noninteracting
current in two places: (1) A small suppression of the interacting current, relative to
the noninteracting current. This suppression arises because just after the onset of
the large resonant current the upper satellite peak of the density of states is not yet
included in the range of integration in /,. (2) A shoulder in the interacting current
is observed in the valley region. This shoulder results from electrons tunneling
inelastically through the resonant level via phonon emission.

In the low-doping case with reduced thickness of the Fermi sea and reduced
bandwidth, we observed the following differences from the high-doping case:
(1) The interacting current differs significantly from the noninteracting current
everywhere, since the integral 7, never includes the entire weight of the density of
states. (2) A satellite peak, not just a shoulder, is observed in the valley region of
the I-V characteristic. (3) The correction term I, =17 — I, is of greater significance in
the valley region, because the energy dependence of the escape rates are greater
with the reduced bandwidth.

While the density-of-states term, /7, = _fﬁf T (w) dw/m, is typically the leading con-
tribution to the current /, we have demonstrated that T,(w) cannot be interpreted
as an effective transmission coefficient for the interacting problem. There is a correc-
tion term I, =7—1,, which is significant in the valley region. Furthermore, the
function T,(w) does not in general describe the current density per unit energy at
the resonant level, even when 7, equals 1.

Finally, the current densities for the left and right leads were separated into
elastic and inelastic contributions. The elastic contribution to the current density of
the leads are identical, while the inelastic contributions are different. We studied the
elastic and inelastic contributions in a typical example, where we can assume that
the escape rates are constant, and at a bias where |y, g — E,| > 2. We found that
the elastic contribution T,(w — E,) depends on the filling condition of the resonant
level: T, (w— E,) has a peak at w=E, and a smaller resonant structure at energy
w=E, +Q (v=E,—Q), ie., above (below) the main resonant peak in regime A
(regime B). In the same example, we found that the ratio of the inelastic contribu-
tion I,; r)(w — E,) to the current density I, z,(w — E,) is independent of the filling
condition and that /;,; (w — E,)({;,r(w — E,)) has two peaks of equal height at w =
E +Qand at w=F, (at w=E, and at o=F, — Q).

In summary we have found it essential to retain a Hartree-like electron—phonon
self-energy diagram in this problem lacking translational invariance. We have iden-
tified qualitatively different regimes of the model, depending on the filling condition
of the resonant level. These regimes have different polaron shifts, and we have
found an important new perturbation parameter in the study of the equilibrium,
zero-temperature polaron shift. We have provided a detailed understanding of when
the noninteracting current is a poor predictor for the nonlinear, interacting
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current-voltage characteristics, which we have calculated and explained in detail in
typical cases. We have, furthermore, demonstrated that a natural candidate, T, (w),
for an effective interacting transmission coefficient does not in general describe the
current density per unit energy at the resonant level, and thus it fails. Finally, we
have separated the current densities for the left and right leads into elastic and
inelastic contributions, which we have studied in a typical example.
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