Review for Exam 2

Below you will find a list of topics that you will be responsible for knowing for Exam 2 as well as a list of topics that will not be covered. Remember that you are allowed a formula sheet for the test!

Although I've tried to cover everything, anything not explicitly mentioned is your responsibility

Chapter 5

- De Broglie hypothesis (wave particle duality), De Broglie wavelength
- Measurement of particle wavelengths,
 - relativistic vs. non-relativistic (λ/λ_c)
- Wave packets
 - waves in general (period, frequency, wave number, phase and group velocity)
 - uncertainty: $\Delta x \Delta k \sim 1$, $\Delta \omega \Delta t \sim 1$
 - particle wave packets
- Probabilistic interpretation of wave packets
 - $-P(x) dx = |\Psi(x)|^2 dx \qquad \int |\Psi(x)|^2 dx = 1$
- The uncertainty principle
 - $\Delta x \Delta p \ge \hbar/2$, $\Delta E \Delta t \ge \hbar/2$

Not covered: Davisson-Germer experiment, consequences of the uncertainty

Chapter 6

- Schrodinger equation in one dimension
 - time dependent solutions
 - time independent solutions
- Infinite square well
 - solutions
 - energies
 - o ground state energy
 - probabilities
 - sketching wave functions
- Expectation values and operators
 - computation of expectation values
 - representation of operators
- Simple Harmonic Oscillator
 - potential
 - classical turning points
 - solutions (will give specific solutions on test if needed)
 - energies
 - o ground state energy
 - selection rules: $\Delta n = \pm 1$
- reflection and transmission of waves
 - step potential

- o solutions, wavenumbers
 - sketches of wave functions
- o reflection and transmission coefficients

Not covered: finite square well, barrier potentials

Chapter 7

- Schrodinger equation in three dimensions
 - solutions
 - energies
 - o degeneracy
- Schrodinger equation in spherical coordinates
 - central potentials
 - separation of variables
 - solutions to spherical equation of the 3DSE
 - o spherical harmonics (note: I will give specific solutions on the test)
 - quantization of angular momentum
 - o angular momentum operator
 - o quantum numbers l,m
 - o vector representation of angular momentum
 - solution to the radial equation
 - o radial functions (note: I will give specific solutions on the test)
 - o energies
 - o principle quantum number n
 - o degeneracy
 - selection rules
- Hydrogen atom wave functions
 - normalization
 - probabilities $P(r)dr = |\Psi|^2 4\pi r^2 dr$
 - ground and excited states, continuum states
- electron spin
 - spin quantum number
- total angular momentum
 - addition of angular momentum: $\mathbf{J} = \mathbf{L} + \mathbf{S}$
- Pauli exclusion principle

Not covered: magnetic moments, Stern-Gerlach experiment, spin-orbit coupling, Schrodinger equation for two or more particles, ground states of atoms, excited states of atoms