Review for the Final Exam

Below you will find a list of topics that you will be responsible for knowing for the Final as well as a list of topics that will not be covered. Remember that you are allowed <u>two</u> formula sheets for the test!

Although I've tried to cover everything, anything not explicitly mentioned is your responsibility

Everything listed on the Review Sheet for Exam 1

Everything listed on the Review Sheet for Exam 2

Chapter 8

Classical Statistics*

- Boltzmann distribution
- Density of states, g(E)
- Maxwell distribution of molecular speeds
- Maxwell distribution of kinetic energy
- Heat capacities of gases and solids

Quantum Statistics

- Bose-Einstein and Fermi-Dirac distribution functions
- Finding the density of states

Properties of a Fermion gas

Not included: Bose-Einstein condensation, photon gas, quantization of energy states of matter, understanding specific heats of gases

*Note: even though I will give the integrals on the exam, the math is sufficiently dense that you should spend the time you need to understand it.

Chapter 13

Particles and anti-particles

- positron and Dirac interpretation
- Feynman diagrams
 - Rules for construction

Fundamental interactions and the classification of particles

- four fundamental forces
 - strong, electromagnetic, weak, gravitational (be familiar with what Table 13-2 is about)
 - coupling strengths
- hadrons

• baryons and mesons (be familiar with what Table 13-1 is about)

Conservation laws and symmetries

- Baryon number, B (Table 13-4)
- Lepton number, L (Table 13-3)
 - o L_e

- \circ L_{μ}
- \circ L_{τ}
- Conserved independently
- Strangeness, S
- Isospin, \mathbf{T} and T_3
- Hypercharge, Y
- Relationships between Q, T₃, B, S, and Y
- Parity, P
- Know what is conserved in what interaction (Table 13-5)

The Standard Model

- quarks and anti-quarks
 - \circ charge and spin properties

Not covered: J/ψ puzzle, quantum chromodynamics, beyond the Standard Model

Chapter 14

The Sun

- Solar luminosity, solar constant
- Effective temperature, T_E
- Proton-proton cycle

Stellar evolution

- Hertzsprung-Russell diagram
- Relationships between stellar mass, luminosity, radius, and lifetime

Cataclysmic events

- Novae
- Supernovae

Final states of stars

- white dwarfs
- neutron stars and pulsars
- black holes

Not included: Active sun, stars, parallax method, galaxies, Hubble's Law, gravitation and cosmology, cosmogenesis