Review for Exam 2

Below you will find a list of topics that you will be responsible for knowing for Exam 2 as well as a list of topics that will not be covered. Remember that you are allowed a formula sheet for the test!

Although I've tried to cover everything, anything not explicitly mentioned is your responsibility

Chapter 4

- Atomic Spectra, Rydberg-Ritz series
- Rutherford's nuclear model
 - impact parameter, α particle scattering
- Bohr's nuclear model
 - quantization of angular momentum, orbital radius, energy
 - explanation of hydrogen atom spectrum; relation to Rydberg-Rtiz
- Correspondence principle

Chapter 5

- De Broglie hypothesis (wave particle duality), De Broglie wavelength
- Measurement of particle wavelengths,
 - relativistic, non-relativistic, general (λ/λ_c)
- Wave packets
 - waves in general (period, frequency, wave number, phase and group velocity)
 - uncertainty: $\Delta x \Delta k \sim 1$, $\Delta \omega \Delta t \sim 1$
 - particle wave packets
- Probabilistic interpretation of wave packets
 - $-P(x) dx = |\Psi(x)|^2 dx \qquad \int |\Psi(x)|^2 dx = 1$
- The uncertainty principle
 - $\Delta x \Delta p \ge \hbar/2$, $\Delta E \Delta t \ge \hbar/2$

Not covered: Davisson-Germer experiment, consequences of the uncertainty

Chapter 6

- Schrodinger equation in one dimension
 - time dependent solutions
 - time independent solutions
- Infinite square well
 - solutions
 - energies
 - o ground state energy
 - probabilities
 - sketching wave functions
- Expectation values and operators
 - computation of expectation values

- representation of operators
- Simple Harmonic Oscillator
 - potential
 - classical turning points
 - solutions (will give specific solutions on test if needed)
 - energies
 - o ground state energy
 - selection rules: $\Delta n = \pm 1$
- reflection and transmission of waves
 - step potential
 - o solutions, wavenumbers
 - sketches of wave functions
 - o reflection and transmission coefficients

Not covered: finite square well, barrier potentials