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Abstract. Tunnel diode oscillator-based technique has been used for quantum oscillations spectra deter-
mination of a quasi-two dimensional organic metal in pulsed high magnetic fields of up to 55 T. It is
demonstrated that reliable field-dependent quantitative data can be obtained in the case of complex oscil-
latory spectra provided adequate data processing is conducted.

1 Introduction

Radio frequency measurement technique based on tunnel
diode oscillator (TDO) is very useful for the investiga-
tion of transport properties of metals for which samples
have small resistance or (and) in the case where good
contact-resistance are difficult to achieve. This technique
has been successfully used for the study of Shubnikov-
de Haas (SdH) oscillations in metals submitted to pulsed
magnetic fields for many years. As examples, it al-
lowed the observation of four Fourier components, includ-
ing frequency combinations, in the oscillations spectrum
of the quasi-two dimensional organic metal κ-(BEDT-
TTF)2Cu(NCS)2 (where BEDT-TTF stands for bis-
ethylenedithia-tetrathiofulvalene) [1]. More recently, effec-
tive mass determinations deduced from thermal damping
of the oscillations amplitude, have been reported in heavy
fermions systems [2] and high-Tc superconductors [3,4].

Magnetic field-dependent behaviour of SdH oscilla-
tions involves important physical parameters such as the
magnetic breakdown (MB) field and scattering rate. For
example, the scattering rate is a key parameter for the
widely discussed problem of phase coherence between ad-
jacent conducting layers in quasi two-dimensional met-
als [5] while the MB field is an essential ingredient for a
clear understanding of the oscillatory behaviour of multi-
band metals [6,7]. These parameters can be reliably de-
termined from the field-dependent quantum oscillations
amplitude provided oscillations are detected in a large
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enough field range. In the present paper, which focuses
on this problematic, it is demonstrated that TDO-based
technique allows for the determination of reliable field-
dependent quantitative data down to magnetic fields as
low as few teslas, even in the case of complex oscillatory
spectra measured in pulsed high magnetic fields. As de-
veloped below, specific data processing is required to that
purpose.

We have considered the organic metal (BEDT-TTF)8
Hg4Cl12(C6H5Br)2 whose SdH oscillations spectrum has
been widely studied in the past [8–11]. Indeed, this com-
pound can be regarded as a model system for the study of
quantum oscillations in compensated multiband systems
that achieve two-dimensional networks of orbits coupled
by magnetic breakdown. The observed spectra are com-
posed of numerous Fourier components that are linear
combinations of the frequencies linked to the basic orbits
labelled a in Figure 1 and to the Δ and δ pieces of the
Fermi surface. In addition to MB orbits (such as 2a + δ)
that are accounted for by the coupled network model [12]
and quantum interference [13] (in particular, the b oscilla-
tions), other frequency combinations due to chemical po-
tential oscillations [6] and (or) the formation of Landau
bands (instead of discrete levels) [7] are observed.

2 Experimental details and data processing

The device is a LC-tank circuit powered by a tunnel diode
biased in the negative resistance region of the current-
voltage characteristic (see Fig. 2), as reported in refer-
ences [1,14–16]. Briefly, a 22 pF mica chip capacitor con-
nected by a semi rigid 50 Ω coaxial cable to a pair of
counter-wound coils is used. Coils are made with copper
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Fig. 1. (Color online) (a) Time dependence of the TDO fre-
quency, for magnetic field perpendicular to the conducting
plane, at 2 K and 4.2 K and of the pulsed field related to data
at 2 K. The inset displays the corresponding magnetic field
dependence of the TDO frequency during the decreasing part
of the pulsed field, after subtraction of a smooth background.
(b) Fourier analysis of the data in the magnetic field range 15–
55.3 T. Marks are calculated with Fδ = 138 T, Fa = 240 T
and FΔ = 1601 T. The Fermi surface [11] making explicit the
labels a, δ and Δ is displayed in the inset. Dotted lines mark
the magnetic breakdown gaps delimiting the δ and Δ pieces
located in-between the compensated a orbits.

wire (100 μm in diameter) wound around a kapton tube
with a diameter of 1.3 mm. Resulting inductance is L ∼ 1–
2 μH. After signal amplification, mixing with a refer-
ence signal and demodulation, the resulting oscillator fre-
quency, which can be approximated as f = 1/2π

√
LC,

lies in the MHz range. The skin depth of a metallic sam-
ple placed in one of the coils is given by δ =

√
ρ/πμ0f ,

where ρ is the sample resistivity and μ0 is the permittivity
of free space. Therefore, resistivity variation leads, at first
order, through skin depth variation (Δδ), to coil induc-
tance change δL/L � 2rsΔδ/R2, where rs and R are the
sample mean diameter and the coil diameter, respectively.
The resulting variation of the oscillator frequency can be
regarded, still at first order, as proportional to resistivity
variations.

Since SdH oscillations are periodic in 1/B, their period
in a given field range can be written ΔB � B2/F where
F is the oscillations frequency and B the mean magnetic

Fig. 2. (Color online) Schematic representation of (a) tunnel
diode oscillator (TDO) circuit and (b) demodulation system.
Parts inside the rectangle in dotted lines are at liquid helium
temperatures.

field. One oscillation period is covered during a time in-
terval Δt which depends on the time derivative (dB/dt)
of the pulsed field and can be approximated as:

Δt � B2/F |dB/dt|. (1)

An analytical approximation of the field dependence of
Δt can be derived taking into account that the decreasing
part of the pulsed field, which is on interest for the mea-
surements, can be approximated by an exponential decay
[B(t) = Bmax exp(−t/t0), where t0 = 52 ms in the present
case] with an accuracy better than 1% in the range 2 to
20 T in the case of the pulse of Figure 1 (as discussed
below, this field range is relevant for the following discus-
sion). This leads to:

Δt � Bt0/F. (2)

As a consequence, despite |dB/dt| is an increasing function
of the magnetic field in the considered range, the SdH
oscillations period decreases linearly as the magnetic field
decreases which can hamper reliable determination of the
oscillations amplitude at low field.

The time evolution of the TDO frequency (f) is de-
duced from successive short-term fast Fourier transforms
(FFT) of the raw signal. Zero padding, which consists of
appending zeroes to the time interval considered for the
FFT, can be included to improve resolution, as discussed
below. Since the only quantity of interest is the funda-
mental frequency f , not any windowing is used in order
to reduce the FFT peak width and to save processing time.
Each FFT is calculated over a time interval δt which must
be much lower than Δt. As developed in the next section,
a violation of this requirement may lead to important er-
rors in the determination of physical parameters such as
the scattering rate and lead to inconsistencies between the
various Fourier components observed in Figure 1 which is
obtained with δt = 40 μs.

As for organic metals, it should be kept in mind that,
owing to the small magnetic susceptibility of these com-
pounds, the observed behaviour is mostly dominated by
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SdH oscillations rather than de Haas-van Alphen (dHvA)
effect [1,16]. Furthermore, since the studied compound is
strongly 2D, as it is the case of most of the BEDT-TTF-
based organic metals, the oscillator frequency variation
is dominated by the in-plane resistivity [16]. This is at
variance with four-point measurements of references [8–11]
where interlayer resistance is considered. However, it must
be kept in mind that, even in the case of interlayer mea-
surements, quantum oscillations behaviour is only related
to the in-plane electron transport which involves in par-
ticular effective mass, MB field and scattering time.

The studied crystal was synthesized by electrocrys-
tallization technique as reported in reference [17]. It is
an irregular shaped platelet with approximate cross sec-
tion (1 × 0.6 × 0.02) mm3, the largest face being parallel
to the conducting bc-plane. Pulsed magnetic fields of up
to 55.3 T with a decay duration of 0.32 s were applied
perpendicular to the conducting plane. Discrete Fourier
analysis of the SdH oscillations data were performed us-
ing Blackman-type window. This windowing leads to rel-
atively large Fourier peaks but avoid secondary lobes, the
presence of which could be misleading in the case of com-
plex oscillatory spectra.

3 Results and discussion

Magnetic field dependence of the TDO frequency is calcu-
lated after suppression of a smoothly varying background
(see the inset of Fig. 1a). Corresponding Fourier analy-
sis are displayed in Figure 1b. As it is the case of in-
terlayer magnetoresistance oscillations, numerous Fourier
components are observed. They are linear combinations of
the frequencies linked to the compensated orbits a (Fa =
240 T) and of the Fermi surface pieces Δ (FΔ = 1601 T)
and δ (Fδ = 138 T) located in-between. These frequency
combinations have been extensively discussed in refer-
ences [9–11], with which a good agreement is observed.

In the following we concentrate on the components Fa,
which is the SdH frequency linked to the closed orbits a,
and Fb = 2Fa + FΔ + Fδ which corresponds to a quan-
tum interferometer with an area equal to that of the first
Brillouin zone. The former component has the highest am-
plitude and can be observed down to low field while the
second one is detected in the high field range, only.

According to references [9–11], the Lifshits-Kosevich
formalism accounts for the SdH oscillations deduced from
interlayer magnetoresistance data, at least in the low
field range. Within this framework, the amplitude of the
Fourier component with frequency Fj is given by Aj(B) ∝
RTjRDjRMBjRSj where the spin damping factor (RSj),
only depends on the field direction. The thermal (for a
two-dimensional FS), Dingle and MB damping factors are
respectively given by [18]:

RTj =
αTm∗

j

B sinh[αTm∗
j/B]

(3)

RDj = exp[−αTDm∗
j/B] (4)

RMBj = exp
(
− tjBMB

2B

)[
1 − exp

(
−BMB

B

)]bj/2

(5)

where α = 2π2mekB/e� (�14.69 T/K), m∗
j is the effec-

tive mass normalized to the free electron mass me, TD

is the Dingle temperature (TD = �/2kBτ where τ is the
scattering time) and BMB is the MB field. Integers tj and
bj are respectively the number of tunnelings and Bragg
reflections involved in the MB orbit.

Recall first the main results relevant to the a and b
components. The reported values of the effective mass
linked to the a orbits are m∗

a = 1.15 ± 0.13 [9] and
m∗

a = 1.23 ± 0.12 [10]. The b component amplitude is
temperature-independent (m∗

b = 0) which is in line with a
symmetric quantum interference path [9,11], as expected
from Fermi surface topology of Figure 1. Contrary to
dHvA data [10], the field dependence of the SdH oscil-
lations amplitude linked to a orbits exhibits discrepancy
with the LK formalism at high field which hamper reli-
able determination of the MB field (since MB phenomenon
becomes important in the high field range). Oppositely,
dHvA data for a and SdH data for b allow to determine
values of BMB, although with a large uncertainty, in the
range 25 ∼ 45 T. Finally, small Dingle temperatures (TD

below 1 K) are consistently deduced from the field de-
pendence of the a oscillations at low field and of the b
oscillations in the whole field range covered by the exper-
iments. Regarding this latter component, it must be kept
in mind that the effective mass entering equation (4) for a
quantum interferometer is the sum of the partial effective
masses of each of its arms, namely m′

b = 2m∗
a [9] (instead

of m∗
b = 0 which holds for Eq. (3)).

Coming back to the TDO data, we first examine the
influence of the time interval δt over which FFT’s of the
raw signal are performed for the determination of the os-
cillator frequency. The parameter of interest is the value
of the time interval Δt (see Eqs. (1) and (2)) at the lowest
field where a given Fourier component is observed. Ac-
cording to data in Figure 1, Δt = 1.0 ms at Bmin = 4.5 T
and 0.4 ms at Bmin = 16 T for the a and b oscillations,
respectively. The latter component (for which Δt is the
lowest) is considered in the insert of Figure 3 which dis-
plays the field dependence of the b oscillations amplitude
obtained for δt values ranging between 20 and 400 μs.
Below ∼40 μs, no influence of δt is noticed. Oppositely,
a significant damping is observed at low field for high δt
values and, as a result, the LK formalism only poorly ac-
counts for the data in this case. As an example, we can
consider the dashed line in the insert of Figure 3 which
is the best fit for δt = 400 μs. In addition, the scatter-
ing time entering the fittings is by about a factor of two
larger than its actual value obtained for δt = 40 μs (see
the discussion below). Similarly, a δt value below ∼100 μs
is required for the a oscillations which suggests that the
maximum value of δt required to derive reliable data can
be expressed as Δt/nt, where Δt is given by equation (1)
and nt � 10. Dingle plots of data at 2 K and 4.2 K are
obtained with δt = 40 μs (see Fig. 3). Effective masses
are m∗

a = 1.23 and m∗
b = 0 (i.e. RT = 1) which are
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Fig. 3. (Color online) Dingle plots for the a and b Fourier
components at 2 K and 4.2 K (full and empty symbols, respec-
tively) obtained with δt = 40 μs. The inset displays Dingle
plots of the data related to b oscillations, for various δt values.
Solid lines are the best fits of equations (4), (5) with a MB field
BMB = 31 T and a Dingle temperature TD = 0.7 K for both
components. The thermal damping factor (RT , see Eq. (3)) is
calculated with m∗

a = 1.23 for closed orbits a. A zero effective
mass is assumed for the quantum interferometer b (RT = 1),
consistently with the observed temperature-independent am-
plitude. Dashed line in the insert is the best fit of of equa-
tions (4), (5) for δt = 400 μs, obtained with TD = 1.3 K.

values in good agreement with interlayer magnetoresis-
tance data [9–11]. Best fits of equations (4), (5) to Dingle
plots are obtained with BMB = 31 T and TD = 0.7 K
(τ = 1.7 ps) for both components, which are in good
agreement with previous studies, as well. Deviation of the
fittings from experimental data relevant to a can be no-
ticed at high field. Such discrepancy is not surprising since
similar behaviour has already been observed for interlayer
magnetoresistance data [9,10]. As a consequence, the field-
dependent data deduced from TDO-based measurements
are in very good agreement with previously reported inter-
layer magnetoresistance data.

Finally, we can consider a posteriori the requirements
for adequate data processing. Namely, the time interval
over which FFT of the raw signal are performed (δt =
Δt/nt) in view of the sought oscillator frequency resolu-
tion (δf). As discussed above, the former parameter is ob-
tained through equation (1) while δf can be expressed as
a fraction of the SdH oscillation amplitude: A(B) = nfδf .

Otherwise, the frequency estimator obtained by FFT
can be enhanced by zero padding such as δt is multiplied
by the zero padding factor nz. In such a case, the frequency
resolution is given by δfz = 1/nzδt which must be lower
than δf = A(B)/nf . This leads, still through equation (1),
to the condition:

A(B) >
nfnt

nz
× 1

B2/F |dB/dt| . (6)

Solid symbols in Figure 4 are plots of the a and b oscil-
lations amplitude at 2 K deduced from data in Figure 1.

Fig. 4. (Color online) Plots of the a and b oscillations ampli-
tude at 2 K versus B2/F |dB/dt|. This parameter can be re-
garded as the pseudo period of the oscillations with frequency
F (see Eq. (1)). Solid straight lines are deduced from equa-
tion (6) with various values of nz/nf nt (see text).

Lines in this figure are plots of equation (6) for various val-
ues of nz/nfnt. Intersected points between experimental
data and solid lines can be regarded as the lower detec-
tion limit of the measurements for a given set of values
(nt, nf , nz). As an example, for nz/nfnt = 102.4, all the
experimental data of Figure 4 (solid symbols) lies above
equation (6) indicating that the above set of values of nt,
nf and nz is convenient for the collected data. In short,
data in Figure 4 can be regarded as abacus giving the
lowest acceptable value of nz/nfnt. For a matter of fact,
we have checked that higher values do not provide any
improvement in the data.

4 Conclusion

In conclusion, physical parameters relevant to Shubnikov-
de Haas oscillations data can be reliably derived from
measurements based on TDO technique in pulsed high
magnetic fields. Not only frequencies of complex oscilla-
tory spectra can be determined but also parameters rele-
vant for both thermal damping (effective masses) and field
damping (magnetic breakdown field and scattering time)
of the oscillations amplitude can be derived. A necessary
condition for the reliability of the data analysis is that
the time interval over which fast Fourier transform of the
raw signal is performed for the determination of the field-
dependent oscillator frequency must be kept much smaller
than the time interval covered by one quantum oscillation
period (a factor of ten in the present case). In connection
with this requirement, oscillator frequency determination
by FFT must include large enough zero padding coeffi-
cient. The relevant parameters of the data processing can
be determined through equation (6).
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