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S. Roddy t, C. Röver b, J. Rollins k, J.D. Romano aq, J.H. Romie t, S. Rowan ax, A. Rüdiger b, K. Ryan s,
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m Eötvös Loránd University, Budapest 1117, Hungary
n Hobart and William Smith Colleges, Geneva, NY 14456, USA
o Institute of Applied Physics, Nizhny Novgorod 603950, Russia
p Inter-University Centre for Astronomy and Astrophysics, Pune - 411007, India
q Leibniz Universität Hannover, D-30167 Hannover, Germany
r LIGO - California Institute of Technology, Pasadena, CA 91125, USA
s LIGO - Hanford Observatory, Richland, WA 99352, USA
t LIGO - Livingston Observatory, Livingston, LA 70754, USA
u LIGO - Massachusetts Institute of Technology, Cambridge, MA 02139, USA
v Louisiana State University, Baton Rouge, LA 70803, USA
w Louisiana Tech University, Ruston, LA 71272, USA
x McNeese State University, Lake Charles, LA 70609, USA
y Montana State University, Bozeman, MT 59717, USA
z Moscow State University, Moscow 119992, Russia
aa NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA
ab National Astronomical Observatory of Japan, Tokyo 181-8588, Japan
ac Northwestern University, Evanston, IL 60208, USA



J. Abadie et al. / Nuclear Instruments and Methods in Physics Research A 624 (2010) 223–240 225
ad Rochester Institute of Technology, Rochester, NY 14623, USA
ae Rutherford Appleton Laboratory, HSIC, Chilton, Didcot, Oxon OX11 0QX, United Kingdom
af San Jose State University, San Jose, CA 95192, USA
ag Sonoma State University, Rohnert Park, CA 94928, USA
ah Southeastern Louisiana University, Hammond, LA 70402, USA
ai Southern University and A&M College, Baton Rouge, LA 70813, USA
aj Stanford University, Stanford, CA 94305, USA
ak Syracuse University, Syracuse, NY 13244, USA
al The Pennsylvania State University, University Park, PA 16802, USA
am The University of Melbourne, Parkville VIC 3010, Australia
an The University of Mississippi, University, MS 38677, USA
ao The University of Sheffield, Sheffield S10 2TN, United Kingdom
ap The University of Texas at Austin, Austin, TX 78712, USA
aq The University of Texas at Brownsville and Texas Southmost College, Brownsville, TX 78520, USA
ar Trinity University, San Antonio, TX 78212, USA
as Tsinghua University, Beijing 100084, China
at Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
au University of Adelaide, Adelaide, SA 5005, Australia
av University of Birmingham, Birmingham, B15 2TT, United Kingdom
aw University of Florida, Gainesville, FL 32611, USA
ax University of Glasgow, Glasgow G12 8QQ, United Kingdom
ay University of Maryland, College Park, MD 20742, USA
az University of Massachusetts - Amherst, Amherst, MA 01003, USA
ba University of Michigan, Ann Arbor, MI 48109, USA
bb University of Minnesota, Minneapolis, MN 55455, USA
bc University of Oregon, Eugene, OR 97403, USA
bd University of Rochester, Rochester, NY 14627, USA
be University of Salerno, I-84084 Fisciano (Salerno), Italy
bf INFN (Sezione di Napoli), Italy
bg University of Sannio at Benevento, I-82100 Benevento, Italy
bh University of Southampton, Southampton SO17 1BJ, United Kingdom
bi University of Strathclyde, Glasgow G1 1XQ, United Kingdom
bj University of Western Australia, Crawley, WA 6009, Australia
bk University of Wisconsin–Milwaukee, Milwaukee, WI 53201, USA
bl Washington State University, Pullman, WA 99164, USA
a r t i c l e i n f o

Article history:

Received 23 July 2010

Accepted 28 July 2010
Available online 10 August 2010

Keywords:

Interferometer

Calibration

Control systems

Gravitational waves
� Corresponding author. 202 Nicholson Hall, Depa

omy, Louisiana State University, Tower Dr. Bato

Tel.: +1 225 578 0321.

E-mail address: jkisse1@tigers.lsu.edu (J.S. Kissel)
a b s t r a c t

The Laser Interferometer Gravitational Wave Observatory (LIGO) is a network of three detectors built to

detect local perturbations in the space–time metric from astrophysical sources. These detectors, two in

Hanford, WA and one in Livingston, LA, are power-recycled Fabry-Perot Michelson interferometers. In

their fifth science run (S5), between November 2005 and October 2007, these detectors accumulated

one year of triple coincident data while operating at their designed sensitivity. In this paper, we

describe the calibration of the instruments in the S5 data set, including measurement techniques and

uncertainty estimation.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

The Laser Interferometer Gravitational Wave Observatory (LIGO)
is a network of three detectors built in the United States to detect
local perturbations in the space–time metric from astrophysical
sources. These distant sources, including binary black hole or
neutron star coalescences, asymmetric rapidly spinning neutron
stars, and supernovae are expected to produce time-dependent
strain h(t) observable by the interferometer array [37,21].

The detectors, two in Hanford, WA (H1 and H2) and one in
Livingston, LA (L1), are power-recycled Fabry–Perot Michelson
interferometers. The optical layout of the interferometers is
shown in Fig. 1. The perpendicular Fabry–Perot arm cavities of
the Michelson, each of length L¼ 3995 m for H1 and L1
(L¼2009 m for H2), are composed of 10 kg optics or ‘‘test masses’’
suspended as pendula. Light reflected from the input port of the
rtment of Physics & Astron-

n Rouge, LA 70803, USA.

.

Michelson is recycled with an additional suspended optic forming
a power recycling cavity. Each interferometer uses a Nd:YAG laser
(l¼ 1064 nm, or f ¼ 282 THz), whose phase is modulated at
several frequencies such that a Pound–Drever–Hall style control
scheme [13,31] can be used to hold the arm cavities and power
recycling cavity in resonance. Fig. 2 shows a schematic of the
suspension system for a given optic and electro-magnetic coil-
actuators (paired with magnets secured on the rear face of the
optic) used to control its motion. Further details of the inter-
ferometer configuration are described in Ref. [2].

During the fifth LIGO science run (S5), these detectors
accumulated approximately one year (368.84 days) of triple
coincidence data near their designed sensitivity between Novem-
ber 4, 2005 and October 1, 2007 (GPS time 815 097 613 through
875 232 014). The best sensitivity (strain amplitude spectral
density) for each detector and an example sensitivity curve used
to guide the design for the 4 km detectors [6] are shown in Fig. 3.
As a figure of merit of the sensitivity over time, we integrate the
power spectral density using a matched-filter template describing
a binary neutron star (1.4–1.4 solar mass) coalescence over which
angle and orientation have been averaged. This metric produces a
predicted range out to which we may see such a source with

mailto:jkisse1@tigers.lsu.edu
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Fig. 1. Schematic optical layout of the LIGO interferometers.

Fig. 2. A schematic of the LIGO optic suspensions for S5. The actuation force is

provided by the coil actuators (mounted to the support structure) which act upon

the magnets secured directly on the rear face of the optic.
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signal-to-noise ratio of 8 (see Ref. [4] for details). Fig. 4 illustrates
the daily median of this range over the course of the science run.

Differential displacement of the interferometer’s end test
masses is measured by precisely monitoring the differential
phase between light returned by each Fabry–Perot arm cavity
using a Pound–Drever–Hall error signal. When the interferometer
is under servo control, this error signal eD(f) is proportional to a
differential arm (DARM) length change, DLextðf Þ caused by the end
test mass displacement such that

DLextðf Þ ¼ RLðf ÞeDðf Þ ð1Þ

where the change in length DLext is the sum of the interferom-
eter’s response to the astrophysical signal and other differential
noise sources.

The quantity RL(f) is a complex function in the frequency-
domain known as the ‘‘length response function.’’ In this paper,
we provide a complete description of a frequency-domain model
of the length response function used for each detector in the S5
data set. Table 1 summarizes the uncertainty in our model of RL(f),
broken up into magnitude and phase of the complex function, and
separated into three frequency bands. Each value is the estimated
68% confidence interval (one sigma) across the band for the entire
2 calendar-year science run.

In Section 2, we describe the model used for all LIGO
interferometers which divides a given interferometer into three
major subsystems – sensing, digital control, and actuation – and
includes a detailed description of the important components of
each subsystem. Measurements of these components along with
corresponding uncertainties are presented in Section 3. Finally,
the response function, RL(f), is developed from the subsystems and
the uncertainty in each subsystem is combined in Section 4 to
form the total uncertainty estimate as seen in Table 1.

Gravitational wave data analysis is performed on a signal
proportional to strain generated in the time domain from eD(t)
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Table 1
Summary of band-limited response function errors for the S5 science run.

RL(f) Magnitude error (%) RL (f) Phase error (Deg)

40–2000 Hz 2–4 kHz 4–6 kHz 40–2000 Hz 2–4 kHz 4–6 kHz

H1 10.4 15.4 24.2 4.5 4.9 5.8

H2 10.1 11.2 16.3 3.0 1.8 2.0

L1 14.4 13.9 13.8 4.2 3.6 3.3

x'

x

y

y'z

�

�

Fig. 5. A schematic of the coordinates used both in the interferometer basis, and in

the incoming plane wave basis. The Euler angles y,f and c are as defined in Refs.

[9,8], except here they are shown relative to the detector frame rather than the

equatorial frame.
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and a convolution kernel, RLðt�tuÞ,

hðtÞ ¼
1

L

Z
RLðt�tuÞeDðt

uÞdtu ð2Þ

developed from the parameters of the length response function.
The production of the time-domain convolution kernel, RLðt�tuÞ,
from the frequency-domain model, RL(f), and the associated
additional uncertainty is discussed in detail in Refs. [33,22].
2. Model

Astrophysical gravitational wave strain h(f) detected by the
interferometers contains source information including wave
forms hþ ,�ðf Þ, azimuthal angle f, polar angle y, and orientation
(or polarization angle) c (see Fig. 5). The amplitude of the wave’s
projection into the interferometer basis is described by

hðf Þ ¼ F�ðy,f,cÞh�ðf ÞþFþ ðy,f,cÞhþ ðf Þ ð3Þ

where F�,þ are the antenna response of the detectors and h�,þ are
the wave amplitudes in the ‘‘cross’’ and ‘‘plus’’ polarizations of the
local metric perturbations hmn in the transverse-traceless gauge
[37,9,8].

We model each interferometer’s response to an optimally
oriented ðy¼f¼c¼ 0Þ, plus-polarized wave form using the long
wavelength approximation. The approximation is valid between
40 and 6000 Hz, and has associated uncertainty of at most 2% [29].
From this reference model, the detector response to an arbitrary
waveform, orientation, and polarization angle may be calculated
analytically [37,9,8]. In the long wavelength approximation, the
strain amplitude, hðf Þ, in Fabry–Perot arm lengths of the
interferometer is

hðf Þ ¼
Lx

extðf Þ�Ly
extðf Þ

L
¼

DLext

L
: ð4Þ

Feedback control systems are used to hold the interferometer
in a regime where the digital error signal, eD(f), is linearly related
to the DARM length, DLext (as in Eq. (1)) and hence to the
gravitational wave strain, h(f). We model this control loop as a
single-input, single-output control loop depicted in Fig. 6.

The loop contains three major subsystems. First is the length
sensing function, CL(f,t), which describes how the interferometer
responds to differential changes in arm lengths and how that
response is digitized. This function is separated into a frequency-
dependent function CL(f) which may have some slow time
dependence captured by a factor gðtÞ. D(f) is a set of digital filters,
used to shape the loop error signal into a control signal. The
remaining subsystem is the actuation function, A(f), which
describes how the test masses physically respond to the digital
control signal. We assume linear relationships between all
subsystems, such that any subsystem (and internal components)
may be defined by the ratio of output over input signals.

The product of frequency-dependent subsystems inside the
control loop is the ‘‘open loop transfer function’’ GL(f),

GLðf Þ ¼ CLðf ÞDðf ÞAðf Þ: ð5Þ

Using the above model, we derive the length response function,
RL(f,t), in terms of these functions to be

RLðf ,tÞ �
1þgðtÞGLðf Þ

gðtÞCLðf Þ
: ð6Þ

The remainder of this section describes the components of each
subsystem in the control loop.

2.1. Sensing function

The length sensing function, CL(f,t), describes the transfer
function between the residual change in DARM length, DLðf Þ, and
the digital error signal, eD(f),

CLðf ,tÞ ¼ gðtÞ eDðf Þ

DLðf Þ
: ð7Þ

It is important to note that this linear relationship between the
DARM length change and the digital error signal only applies
when the detector is under control of the feedback loop: in Eq. (7),
DLðf Þ is the residual external DARM length change, DLextðf Þ, after
the controlled length change, DLAðf Þ, is applied. The sensing
function has several components (shown in Fig. 7) which are
treated independently,

CLðf ,tÞ ¼ gðtÞ �KC � ½CFPðf Þ � ADCðf Þ�: ð8Þ
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Scientific Collaboration, the digital signal eD is often colloquially referred to by its

digital ‘‘channel’’ name DARM_ERR. From left to right, CFPðf ÞpHx
FPþHy

FP is the arm

cavity transfer function; aðtÞ is the time-dependent variation of the interferom-

eter’s input laser power and optical gain; KC is the scaling coefficient which

absorbs all constants including the input laser power, optical gain, the quantum

efficiency of the photodiodes, the impedance of the photodiode circuitry, and the

analog-to-digital gain; ADC(f) is the frequency dependence of the analog to digital

conversion; and bðtÞ is the digital factor which compensates for the analog change

aðtÞ. The compensation is not perfect, therefore the factor gðtÞ � aðtÞbðtÞ represents

the residual variation.
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The constant, KC , which holds all frequency-independent scaling
factors, has dimensions of digital counts of error signal per unit
change in DARM length. The remaining terms in Eq. (8) are
dimensionless, including time dependence, treated independently
in the coefficient gðtÞ.

The change in each arm cavity length L affects the phase of the
laser’s electric field returning from the cavity. On resonance, the
transfer function between the change in electric field phase
reflected by the cavity input mirror Fðf Þ and a change in cavity
length is

HFPðf Þ ¼
2p
l

1

rc

reð1�r2
i Þ

ð1�rireÞ

sinð2pfL=cÞ

2pfL=c

e�2pifL=c

1�riree�4pifL=c
ð9Þ

where l is the laser wavelength, rc ¼ ðre�riÞ=ð1�rireÞ is the on-
resonance Fabry–Perot arm cavity reflectivity, ri and re are the
amplitude reflectivity of the input and end test masses, and c is
the speed of light. In the frequency band considered for analysis,
where 40 Hzo f o6 kHz52c=L, the frequency-dependence of
HFP(f) is approximated by a simple ‘‘cavity pole’’ transfer function,

HSPðf Þ �
HFPðf 5c=2LÞ

HFPð0Þ
�

1

1þ i
f

fc

ð10Þ

where fc ¼ cð1�rireÞ=4pL
ffiffiffiffiffiffiffi
rire
p

[16,29,30,34,35].
The LIGO detectors use a Pound–Drever–Hall detection scheme

to extract this phase information from the arm cavities, which is
recombined at the beam splitter. The laser electric field input into
the interferometer is phase-modulated at om=2p¼ 25 MHz,
which effectively splits the field into a ‘‘carrier’’ field with the
original laser frequency, O, and upper and lower ‘‘sideband’’ fields
with frequency O7om. The sideband fields resonate in the power
recycling cavity but are anti-resonant in the arm cavities, and
therefore, unlike the carrier field, experience no phase change
from the arm cavity length variation. The Michelson is set up with
a fixed asymmetry such that, at the anti-symmetric port, the
carrier field is held on a dark fringe and the sideband fields are
not. In this setup, when the arm cavity lengths change
differentially, the carrier field moves away from the dark fringe,
mixes with the sideband field at the antisymmetric port, and a
beat signal at om is generated.

The power of the mixed field at the antisymmetric port
(in Watts) is sensed by four photodiodes. The photocurrent from
these diodes is converted to voltage, and then demodulated at
25 MHz. This voltage signal (and therefore the change in DARM
length) is proportional to power of the input laser field, the
‘‘optical gain’’ (the product of Bessel functions of modulation
strength, the recycling cavity gain, the transmission of the
sidebands into the antisymmetric port from the Michelson
asymmetry, the reflectivity of the arm cavities for the carrier),
the quantum efficiency of the photodiodes, and the impedance of
the photodiode circuitry [31,16,34,35]. The demodulated voltage
from the photodiodes is whitened, and anti-aliased with analog
circuitry and then digitized by an analog-to-digital converter
which scales the voltage to digital counts. The frequency
dependence of the anti-aliasing filters and digitization process is
folded into the function ADC(f). We absorb all proportionality and
dimensions of this process into the single constant, KC , having
dimensions of digital counts per meter of DARM test mass motion.

The optical gain is time-dependent because small, low-
frequency ðf 540 HzÞ alignment and thermal lensing fluctuations
in the resonant cavities change the carrier and sideband field
amplitudes. The input laser power may also fluctuate from similar
alignment and thermal effects. We represent these variations
with a coefficient, aðtÞ. The input power, along with the carrier
and sideband power stored in the cavities, are monitored by
several independent photodiodes. Their signals are also digitized
and combined to form a coefficient, bðtÞ, used to digitally
compensate for the time-dependent variations. The compensated
anti-symmetric port signal forms the error signal for the DARM
control loop, eD(f). The sensing function therefore depends on
both time and frequency, but can be separated into independent
components CLðf ,tÞ ¼ gðtÞCLðf Þ, where

CLðf ÞpCFPðf Þ � ADCðf Þ ¼ ½Hx
SPðf ÞþHy

SPðf Þ� � ADCðf Þ ð11Þ

and

gðtÞ � aðtÞbðtÞ ð12Þ

is the scale factor of order unity accounting for the residual time
dependence after compensation.
2.2. Digital filters

The digital filters, D(f), are known functions in the model.
These filters are used to shape the digital DARM control loop error
signal, eD(f) (in digital counts proportional to displacement) into a
digital control signal, sD(f) (in digital counts proportional to force),

Dðf Þ ¼
sDðf Þ

eDðf Þ
: ð13Þ

Over the course of the science run, discrete changes are made
to the digital filters, D(f), to improve the performance and stability
of the detector (four times in the Hanford interferometers, three
in Livingston). These changes significantly alter the frequency-
dependence of the DARM control loop, and hence affect the
overall response function of the interferometer. We divide the run
into ‘‘epochs’’ defined by these changes.

Note that the digital filter component does not include all
digital filters in the DARM loop. Both the sensing function and the
actuation function contain digital filters, but their frequency
dependence is either negligible in the measurement band, only
important in a very narrow frequency range, or are compensating
for analog circuitry whose product with the digital filters form a



Fig. 9. Physical shape of the end test mass drumhead internal resonance. Left:

cartoon, edge-on view of the fundamental mode of a cylindrical plate [27]. Right:

three-dimensional modal shape of the drumhead resonance from finite element

analysis of a cylinder with dimensions similar to the LIGO test masses [12].
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unity transfer function. We include these filters in their respective
sub-systems for completeness.

2.3. Actuation function

The actuation function A(f) is defined by the transfer function
between the digital control signal, sD(f), and the physical motion
imposed on the end test masses by the control loop, DLA,

Aðf Þ ¼
DLA

sDðf Þ
ð14Þ

and has units of end test mass displacement in meters per count
of digital control signal. We describe the actuation function as a
linear combination of functions for each test mass,

Aðf Þ ¼ xxAxðf ÞþxyAyðf Þ ð15Þ

where xx,y are known digital coefficients of order unity, roughly
equivalent, but opposite in sign. Once split, the control signal
flows through each component to the end test masses as shown in
Fig. 8.

For each arm, the digitally split control signal passes through
digital suspension filters, DA(f), and is converted from digital
signal to an analog voltage via the digital-to-analog conversion
element, DAC(f), which includes analog anti-imaging circuitry. The
resulting voltage passes through a resistance circuit converting it
into current, and is sent to the coil actuators which convert the
current into force on the magnets attached to the end test mass.
The suspended test mass is displaced according to the force-to-
displacement transfer function, P(f), changing each arm cavity
length, DLAðf Þ. The arm’s scaling coefficients, KA, absorb all
dimensions and frequency-independent factors in the actuation
path. This includes the digital-to-analog gain, the gain of the
resistance circuitry, the gain of the coil actuators, and the force-
to-displacement transfer function scale factor. In summary, we
express the individual end test mass actuation functions in
Eq. (15) as

Ax,yðf Þ ¼Kx,y
A � ½D

x,y
A ðf Þ � DACðf Þ � Px,yðf Þ�: ð16Þ

The actuation coefficients, KA, scale the arbitrary counts of digital
excitation force into meters of test mass motion. The remaining
terms in Eq. (16) are dimensionless.

The suspended test mass can be treated as a pendulum driven
by the coil actuators (see Fig. 2). The force-to-displacement
transfer function for the center of mass of a pendulum, Pcm(f), is

Pcmðf Þp
1

½f cm
0 �

2þ i
½f cm

0 �

Q cm
f�f 2

ð17Þ

where f0
cm and Qcm are the frequency and quality factor of the

pendulum. A rigid body resonant mode akin to the fundamental
mode of a cylindrical plate [27] (see Fig. 9) known as the
‘‘drumhead’’ mode is also included in the force-to-displacement
Fig. 8. Schematic breakdown of the signal flow through the actuation function for

the X arm Ax(f). The digital signal sD(f) is colloquially referred to by its ‘‘channel’’

name DARM_CTRL. From right to left, xx is the fraction of the digital control signal

sent to the X arm; DA
x(f) are digital filters; DAC(f) is the frequency dependence of

digital-to-analog conversion; KA
x is the scaling coefficient proportional to the

digital-to-analog gain, the gain of resistance circuitry which converts voltage to

current, the gain of the coil actuators which convert current to magnetic force,

and the force-to-displacement transfer function gain; and PX is the frequency

dependence of the force-to-displacement transfer function.
model. Its radially symmetric shape, excited by the actuators, lies
directly in the optical path and amplifies the cavity’s response to
the length control signal above a several kHz [12]. We approx-
imate the effects of the resonance by multiplying Pcm(f) by an
additional pendulum transfer function, Pdh(f), defined by fre-
quency, f0

dh, and quality factor, Qdh. The total force-to-displace-
ment transfer function is

Pðf ÞpPcmðf ÞPdhðf Þ: ð18Þ

The digital suspension filters, DA(f), are between the split
control signal and the digital-to-analog converter. Their purpose
is to remove control signal in narrow frequency ranges around the
frequencies of other in-band, non-axisymmetric, rigid-body
resonant modes of the test masses that are excited by the
actuation forces [12], and to reduce the coupling between DARM
length motion and angular motion of the test mass.
3. Measurements

Each subsystem of the response function RL(f) is developed
using measurements of key parameters in their modeled
frequency dependence and their scaling coefficients. The digital
filter subsystem is completely known; its frequency dependence
and scaling coefficient are simply folded into the model of the
response function. The parameters of the frequency-dependent
portions of the sensing and actuation subsystems may be
obtained precisely by direct measurement or are known from
digital quantities and/or design schematics. As such, these
parameters’ measurements will only be briefly discussed.

The detector’s sensing function behaves in a non-linear fashion
when uncontrolled, therefore we may only infer the linear
model’s scaling coefficient, KC , from measurements of the
detectors under closed control loops. We infer that the remaining
magnitude ratio between our model and measurements of the
open loop transfer function GL(fUGF) as the sensing coefficient KC

(where fUGF is the unity gain frequency of the DARM control loop).
Other than the known frequency-independent magnitude of D(f),
the open loop gain model’s magnitude is set by the actuation scale
factor, KA. This makes it a crucial measurement in our model
because it sets the frequency-independent magnitude of the
entire response function. Measurements of the open loop transfer
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function over the entire gravitational wave frequency band are
used to confirm that we have modeled the correct frequency
dependence of all subsystems. Finally, measurements of gðtÞ track
the time dependence of the response function. The details of these
measurements and respective uncertainty estimates are described
below.

3.1. Actuation function

The components of each arm’s actuation function, Kx,y
A , DAC(f)

and Px,y(f) are measured independently in a given detector. As
with D(f), both xx,y and Dx,y

A ðf Þ are digital functions included in the
model without uncertainty.

3.1.1. Actuation scaling coefficients, Kx,y
A

The standard method for determining the actuation coefficients,
Kx,y

A , used for the fifth science run is an interferometric method
known as the ‘‘free-swinging Michelson’’ technique; a culmination
of several measurements with the interferometer in non-standard
configurations. The method uses the interferometer’s well-known
Nd:YaG laser wavelength (l¼ 1064:170:1 nm [24,36]) as the
calibrated length reference while using the test mass’ coil actuators
to cause a length change. Details of the technique are described in
Appendix A. The actuation coefficient is measured using this
method many times for each optic in each interferometer over the
course of the science run, and their mean used as the actuation
scaling coefficient for all model epochs. Table 2 summarizes the
actuation coefficients, Kx,y

A , for the three interferometers in the fifth
science run, using free-swinging techniques.

3.1.2. Force-to-displacement transfer function, P(f)

Each test mass coil actuator system is equipped with an optical
position sensor system that consists of an infrared LED emitter
aimed at a small photodiode mounted in the coil actuator, and a
mechanical ‘‘flag’’ attached to the magnet on the optic that cuts
through the beam. From amplitude spectral densities of these
sensor signals while the optic is free-swinging, the frequency of
each center-of-mass transfer function, f0

cm is measured with
negligible uncertainty. The quality factors, Qcm, depend on the
amount of local damping applied to suspension, but are estimated
from driven transfer functions. The uncertainty of this estimation,
though large, has little effect on the center-of-mass transfer
function in the frequency band of interest and is ignored. Table 3
shows the results for the center of mass force-to-displacement
transfer function. The drumhead frequency, f0

dh for each test mass
in the Hanford and Livingston detectors have been measured to be
9.20 and 9.26 kHz, respectively, with Qdh � 105 [12,25], where
again though the uncertainty in these parameters may be large, it
has little effect in band and is ignored.

3.1.3. Digital-to-analog conversion, DAC(f)

The digital-to-analog conversion model DAC(f) includes the
effects of the finite sample-and-hold method used to convert
Table 2
Summary of the actuation scaling coefficients measured during S5.

Kx
A (nm/ct) Ky

A (nm/ct)

H1 0.84770.024 0.87170.019

H2 0.93470.022 0.95870.034

L1 0.43370.039 0.41570.034

These single numbers are formed by the mean of each measurement’s median

/Kx,y
A Sj (6 for each end test mass in H1, 5 in H2, and 14 and 15 for the X and Y test

masses, respectively in L1). Only statistical uncertainty is reported here;

systematic uncertainty is folded the total uncertainty of the actuation function.
digital signal to an analog voltage, the analog anti-imaging filter,
measured residual frequency dependence from imperfect digital
compensation of analog de-whitening, and the time delay arising
from computation and signal travel time.

We use the standard model for the sample and hold of the
digital-to-analog converter [28,11]

Hsðf Þ ¼ sinc½ð2pf Þ=ð2fsÞ�e
�ið2pf Þ=ð2fsÞ, ð19Þ

where the sample frequency fs ¼ 16 384 Hz is used in all
detectors.

The same analog anti-image filter is used for each of the four
coils on the test mass. They are analog, third-order, Chebyshev
low-pass filters with 0.5 dB passband ripple whose corner
frequency is at 7.5 and 8.1 kHz for the Hanford and Livingston
detectors, respectively, and modeled as such in the DAC(f) transfer
function. We also include residuals measured between the
modeled anti-imaging filter and its analog counterpart.

For a given end test mass, there is a complementary pair of
digital and analog whitening filters for each of the four coil
actuators. A comparison between the digital compensation and
the real analog electronics has shown non-negligible, frequency-
dependent residuals. We measure the residuals for all four coils in
each test mass by taking the ratio of transfer functions between a
digital excitation and the analog output of the whitening filters
with the digital filters on and off. We include the average residual
of the four coils in our model.

A detailed analysis of the digital time delay in the digital-to-
analog conversion has been performed elsewhere [10]. For the
actuation model we estimate the time delay from our model of
the open loop transfer function (attributing all residual delay in
the loop to the actuation function), and assign a fixed delay to
each epoch.

3.1.4. Actuation uncertainty, sA

The digital suspension filters, DA(f), have well-known digital
transfer functions, which are included in the model without an
uncertainty. The model of force-to-displacement transfer func-
tion, P(f), and digital-to-analog conversion, DAC(f), are derived
from quantities with negligible uncertainty. Hence, the uncer-
tainty estimate for the actuation function is derived entirely from
measurements of the actuation scaling coefficient, KA.

The actuation coefficient is measured using a series of complex
transfer functions taken to be frequency independent as described
in Appendix A. We take advantage of this fact by estimating the
frequency-independent uncertainty in the overall actuation
function from the statistical uncertainty of all free-swinging
Michelson measurements. For magnitude, we include a systema-
tic uncertainty originating from an incomplete model of the
actuation frequency-dependence, such that the total actuation
uncertainty is

sjAj
jAj

� �2

¼
sjKA j

jKAj

� �2

þ
sðr=aÞ

ðr=aÞ

� �2

ð20Þ

s2
fA
¼ s2

fKA

: ð21Þ

The statistical uncertainties, sjKA j=jKAj and sfKA
, are the

quadrature sum of the scaling coefficient uncertainty from each
test mass, as measured by the free-swinging Michelson technique.
For each optic’s coefficient, we estimate the uncertainty by taking
the larger value of either the standard deviation of all measure-
ment medians, or the mean of all measurement uncertainties
divided by the square root of the number of frequency points in a
given measurement. These two numbers should be roughly the
same if the measured quantity followed a Gaussian distribution
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around some real mean value and stationary in time. For all
optics, in all interferometers, in both magnitude and phase, these
two quantities are not similar, implying that the measurements
do not arise from a parent Gaussian distribution. We attribute this
to the quantity changing over time, or a systematic error in our
measurement technique that varies with time. Later studies of the
free-swinging Michelson technique have revealed that the
probable source of this time variation is our assumption that
the optical gain of the simple Michelson remains constant over
the measurement suite (see Appendix A).

We have folded in an additional sðr=aÞ=ðr=aÞ ¼ 4% systematic
error in magnitude for the Hanford detectors only. This correction
results from the following systematic difference between the
Hanford and Livingston free-swinging Michelson measurement
setup. Analog suspension filters, common to all detectors, are
used to increase the dynamic range of the coil actuators during
initial control of the test masses. When optic motions are
sufficiently small enough to keep the cavity arms on resonance,
they are turned off and left off as the detectors approach designed
sensitivity [2,14]. These additional suspension filters were left in
place for the Hanford measurements in order to obtain better
signal-to-noise ratios for the driven transfer functions described
in Appendix A. The filters’ color had been compensated with
digital filters, but the average residual frequency dependence is
roughly 4% for both end test masses in H1 and H2.
Table 3
Summary of pendulum frequencies, f0

cm, and quality factors, Qcm, used to compose

models of each interferometer’s center-of-mass pendulum transfer functions in S5.

X end test mass Y end test mass

f0
cm (Hz) Qcm f0

cm (Hz) Qcm

H1 0.767 10 0.761 10

H2 0.749 10 0.764 10

L1 0.766 100 0.756 100
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Fig. 10. Summary of the actuation un
The total uncertainty for each interferometer’s actuation
function, as described in Eq. (21), is shown in Fig. 10. These
estimates include statistical and known systematic uncertainties.
To investigate potential unknown systematic uncertainties in the
actuation functions we applied two fundamentally different
calibration methods. The results of these investigations are
described in Section 5.

3.2. Sensing function

The components of the sensing function, KC , CFP(f), and ADC(f)
are described in Section 2.1. The frequency-dependent compo-
nents are developed from measured parameters with negligible
uncertainties, and KC is obtained as described above. The
techniques used to obtain the parameters are described below.

3.2.1. Sensing scaling coefficient, KC

In principle, the scaling coefficient KC is also composed of
many independently measurable parameters as described in
Section 2.1. In practice, these components (specifically compo-
nents of the optical gain) are difficult to measure independently
as the interferometer must be controlled into the linear regime
before precise measurements can be made. The scaling coefficient
for the other subsystems are either measured (in the actuation) or
known (in the digital filters). We take advantage of this by
developing the remainder of sensing subsystem (i.e. its fre-
quency-dependence), forming the frequency-dependent loop
model scaled by the measured actuation and known digital filter
gain, and assume the remaining gain difference between a
measurement of open loop transfer function and the model is
entirely the sensing scale factor. Results will be discussed in
Section 3.3.

3.2.2. Fabry–Perot cavity response, CFP(f)

Our model of the Fabry–Perot Michelson frequency response is
the sum of the response from each arm as in Eq. (11). Using the
103

Function Uncertainty

uency (Hz)

103

uency (Hz)

certainty for all detectors in S5.
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single pole approximation (Eq. (10)), the frequency response of
each arm cavity Hx,y

SP ðf Þ can be calculated explicitly using a single
measured quantity, the cavity pole frequency fc. We compute fc by
measuring the light storage time t¼ 1=ð4pfcÞ in each cavity.

A single measurement of the storage time is performed by
aligning a single arm of the interferometer (as in the right panel of
Fig. 17) and holding the cavity on resonance using the coil
actuators. Then, the power transmitted through that arm is
recorded as we rapidly take the cavity out of resonance. We fit the
resulting time series to a simple exponential decay, whose time
constant is the light storage time in the cavity. This measurement
is performed several times per arm, and the average light storage
time is used to calculate the cavity pole frequency. Table 4 shows
the values of fc used in each model.

3.2.3. Analog-to-digital conversion, ADC(f)

Each of the four photodiodes used to measure the power at the
dark port are sampled at 16 384 Hz. The dominant frequency
dependence of this analog-to-digital conversion process arises
from the analog anti-aliasing filters. These filters are analog
eighth order elliptic filters, which differ only in corner frequency
at the two sites: 7.5 kHz for the Hanford and 8.1 kHz for
Livingston. The frequency dependence is unity below 1 kHz.
Above a few kHz, the magnitude changes less than 2%, but the
phase loss from these filters becomes non-negligible ð41803

Þ. The
residual frequency dependence between this model and mea-
sured transfer function of the filter is also included. The
discrepancy occurs only above 1 kHz and varies less than 2% in
magnitude and 51 in phase.

3.2.4. Time dependence, gðtÞ
We measure the time dependence of the sensing function by

digitally injecting a signal, scl(f), at the output of the digital filters,
D(f), prior to the control signal, sD(f), at three line frequencies fcl

near 50, 400, and 1100 Hz. The time-dependent coefficient gðtÞ is
defined as

gðtÞ ¼ aðtÞbðtÞ ¼� 1

GLðfclÞ

sDðfclÞ�sclðfclÞ

sDðfclÞ
ð22Þ

where GL(fcl) is the modeled DARM open loop transfer function at
the reference time in each epoch at a given calibration line
frequency, fcl; scl(fcl) and sD(fcl) are the excitation signal and the
control signal, respectively, each digitally demodulated at the
same frequency and averaged over 60 s. The coefficient generated
from fcl � 400 Hz is used to scale the response function model; the
other two frequencies are used to confirm that the variations are
independent of frequency. In the ideal case (no noise on top of the
injected line and with a perfect model for GL(fcl)), the coefficient is
a real factor near unity. Fig. 11 shows the evolution of RefgðtÞg
over the course of the science run for each detector.

We also separate the relative uncertainty of the time depen-

dent coefficient ðsg=gÞ2 into those of systematic and statistical

origin. As the coefficient is ideally real and unity, we expect the
Table 4
Summary of cavity pole frequencies fc used in each interferometer’s sensing

function in S5.

fc
x (Hz) fc

y (Hz)

H1 85.671.5 85.671.5

H2 158.572.0 158.572.0

L1 85.170.8 82.370.5

H1 and H2 have used the average of each arm, hence their numbers reported

below are the same, with uncertainty estimated as the quadrature sum of each

result.
imaginary part of the measurement defined in Eq. (22) to be a
random time series with zero mean. A non-zero mean would
indicate a systematic error in our estimate of RfgðtÞg, given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�ðImfgðtÞgÞ2
q

(assuming the real part of gðtÞ is unity). The

measured mean is less than 5% for all detectors, implying a
negligible systematic error of 0.1% and is ignored.

The statistical error is determined by the signal-to-noise ratio
of the calibration line at frequency fcl, and is estimated by the
standard deviation of ImfgðtÞg, measured in every epoch at a
sampling rate of 1 Hz. Though the statistical error is roughly
equivalent in all epochs for a given detector, we chose the largest
standard deviation as a representative error for the entire run.
Fig. 12 shows an example histogram of ImfgðtÞg for H2.

3.3. Open loop transfer function

The open loop transfer function, GL(f), is measured while the
interferometer is controlled, operating in the nominal configuration,
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at designed sensitivity. We use a digital DARM excitation with
amplitude much larger than DLext , such that we may assume it to be
a contribution to measurement noise. During the measurement we
assume no time-dependent variations occur, and set gðtÞ ¼ 1. We
S5 H1 DARM Open Loop Gain
Model vs. Measurement Comparison
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Fig. 13. Open loop transfer function model vs. measurement comparisons for H1 (top

magnitude and phase of model and measurements (top and bottom left), and the ratio

Table 5
Average value for scaling coefficients KC for the sensing function, CL(f,t) for each

interferometer.

KC ðcts=10�15 mÞ

H1 0.15

H2 0.61

L1 9.1

They are stated without uncertainty, since these quantities are derived from

measurements of the open loop gain and actuation scaling coefficient. See further

discussion in Section 4.
compare this measurement against our model of the open loop
transfer function which is the product of each subsystem described
above (see Eq. (5)), and scale the model by the measurement’s
magnitude at the expected unity gain frequency to form KC as
described in Section 3.2. Values for the sensing scaling coefficient
averaged over epochs, are shown in Table 5.

We measure the open loop transfer function many times
during the course of the science run. To compare these measure-
ments against the model for each epoch, they are normalized by
the magnitude of the open loop transfer function at a fixed
unity gain frequency. This normalization removes the time
dependent scale factors between measurement times such that
a fair comparison can be made. Fig. 13 shows the results of this
comparison.

The uncertainty estimation in the open loop transfer function
magnitude and phase (ðsjGL j

=jGLjÞ
2 and s2

fGL

) are separated into
systematic and statistical uncertainty. We expect the ratio of the
S5 H2 DARM Open Loop Gain
Model vs. Measurement Comparison
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left), H2 (top right), and L1 (bottom) in all of S5. The four panels shown are the

between model and measurements (top and bottom right).
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model and our measurements to follow a Gaussian distribution
with unity mean in magnitude and zero mean in phase. This ratio
is shown in Fig. 13. We observe a non-Gaussian systematic in all
detectors from an unknown source, most apparent in the Hanford
detectors. We estimate this systematic uncertainty in magnitude
and phase by subtracting a smoothed version of the residuals,
Gres

L ðf Þ ¼/Gmodel
L =Gmeas

L S, from unity and zero, respectively. The
statistical uncertainty, sSjGL j and sSfGL

, is estimated from the
standard deviation of the remaining scatter in the ratio after
the systematic error GL

res(f) is subtracted. Both the systematic and
statistical errors are added in quadrature to form the total
uncertainty in the open loop transfer function model,

sjGL j

jGLj

� �2

¼ ðsSjGLjÞ
2
þð1�jGres

L ðf ÞjÞ
2

ð23Þ

s2
fGL

¼ ðsSfGL
Þ
2
þðfGres

L
ðf ÞÞ

2: ð24Þ
102 103

Frequency (Hz)

Fig. 14. Systematic uncertainty in response function arising from the single pole

approximation of the Fabry–Perot cavity response in open loop transfer function.

This uncertainty is epoch-dependent; only the third epoch for each detector is

shown.
4. Uncertainty estimation

The measurement uncertainty of each component of the
response function described in Section 3 are folded into a complex
function of frequency known as the ‘‘error budget.’’

We do not assign any uncertainty to the digital filters D(f) nor
directly to the time-independent component of the sensing function
CL(f). The digital filters, which are well-known digital functions, are
placed into the model without uncertainty. As described in Section
3.2, the frequency dependence of the sensing function is composed
of parameters measured to negligible uncertainty. Uncertainties in
its scaling coefficient KC are accounted for in the open loop transfer
function and actuation function uncertainty.

The uncertainties of the remaining quantities in the response
function A(f), GL(f), and gðtÞ are treated as uncorrelated. If the
uncertainties are completely correlated (i.e. there are none in
CL(f)), the covariant terms in the estimation reduce the overall
estimate of the response function uncertainty [23]. Since we do
not have an independent estimate of the uncertainty in the
sensing function, we adopt this conservative estimate.

We re-write the response function in terms of the measured
quantities to which we assign uncertainty,

RLðf ,tÞ ¼ Aðf ÞDðf Þ
1þgðtÞGLðf Þ

gðtÞGLðf Þ
ð25Þ

and separate into magnitude and phase (dropping terms which
include the uncertainty in D(f)),

jRLj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAj

gjGLj

� �2

½1þðgjGLjÞ
2
þ2gjGLjcosðfGL

Þ�

s
ð26Þ

fRL
¼ arctan

gjGLjsinðfAÞþsinðfA�fGL
Þ

gjGLjcosðfAÞþcosðfA�fGL
Þ

 !
ð27Þ

such that the relative uncertainty in magnitude and absolute
uncertainty in phase are

sjRL j

jRLj

� �2

¼
sjAj
jAj

� �2

þRefWg2
sjGL j

jGLj

� �2

þImfWg2s2
fGL

þRefWg2
sg
g

� �2

ð28Þ

s2
fRL

¼ s2
fA
þImfWg2

sjGL j

jGLj

� �2

þRefWg2s2
fGL

þImfWg2
sg
g

� �2

ð29Þ

where we define W � 1=ð1þGLÞ [23]. Each uncertainty component
in Eqs. (28) and (29) is assumed to be the same over the course of
the science run (independent of epochs). However, the complex
coefficient W is different for each epoch.

Our calculation of the response function includes the open
loop transfer function model which is approximated by replacing
the complete cavity response HFP(f) (Eq. (9)) with the single pole
transfer function HSP(f) (Eq. (10)) in the sensing function
subsystem. We include the ratio of the response function
calculated with and without the correct cavity response in our
error budget,

RFP
L ðf Þ

RSP
L ðf Þ

¼
1þðHFP=HSPÞGLðf Þ

1þGLðf Þ
ð30Þ

added linearly (as opposed to in quadrature) because the
approximation results in a frequency-dependent scaling of the
response function with known sign. As with the weighting
function W, this term involves the direct multiplication of the
open loop transfer function and therefore is epoch dependent. As
an example, Fig. 14 shows this error contribution from the third
epoch in each detector.
5. Results

In Fig. 15 we plot the final response function for all
interferometers for the entire fifth science run. Fig. 16 shows
the frequency dependence of all terms in the error budget of the
response function for the third epoch of each detector. In Table 6,
we summarize the frequency-dependent uncertainty of each
interferometer’s response function by dividing the error into three
frequency bands: 40–2000, 2000–4000 and 4000–6000 Hz and
computing the RMS errors across each band, averaged over all
epochs. All epoch uncertainties are within 1% of the mean
uncertainty stated.

The largest source of systematic error in most data analysis
techniques used to analyze S5 LIGO data is the uncertainty in
response function magnitude [1,3,5]. Our inability to measure the
sensing function independently of the closed loop (specifically its
scaling coefficient) forces a conservative, uncorrelated treatment
of the uncertainty in the measured subsystems, A(f) and GL(f),
inflating the total uncertainty in the response function. In all
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Fig. 15. Frequency dependent response function, RL(f), for the three LIGO interferometers for all epochs of the S5 science run.
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detectors, we find the uncertainty in the actuation function, A(f),
dominates the response function error budget in magnitude.

The statistical uncertainty in the free-swinging Michelson
measurements of the actuation scaling coefficient are the primary
source of the actuation uncertainty. In the Hanford detectors, the
uncertainty arises from our inability to displace the test mass
above residual external noise sources at high frequency. This
decreases the signal-to-noise of the measurement, inflating the
uncertainty estimate across the measurement band. For L1, in
which we have obtained a large number of measurements using
several methods of the free-swinging Michelson technique (see
Appendix A), we have found the results to be inconsistent with a
Gaussian distribution. We attribute this to a poorly understood
underlying variation in the technique, for example the assump-
tion that the optical gain is time-independent over the course of
the measurement suite.

The assumption that the actuation scaling coefficient is linear
in amplitude over the range of actuation, from the 10�8 m
employed for the free-swinging Michelson technique to the
10�18 m required to compensate for expected gravitational wave
signals, has not been confirmed. To investigate the linearity of the
actuation scaling coefficients over this range of actuation
amplitudes, and to bound potential overall systematic errors, we
have employed two additional, fundamentally different, actuator
calibration methods. The so-called ‘‘frequency modulation’’
technique [19] uses an independently calibrated oscillator to
frequency-modulate the interferometer’s laser light, creating an
effective length modulation on the order of 10�13 m while
operating in a single-arm interferometer configuration. The so-
called ‘‘photon calibrator’’ technique [17] uses auxiliary, power-
modulated lasers to displace the test masses by approximately
10�18 m via radiation pressure with the interferometer in its
nominal configuration (see Fig. 1). Both methods are employed at
selected frequencies across the LIGO measurement band. Statis-
tical uncertainties for both methods are reduced to the 1% level by
averaging many measurements.
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At the end of the S5 science run, a detailed comparison
between these two methods and the free-swinging Michelson
technique was performed. With all three calibration methods,
actuation coefficients were measured over the frequency band
from 90 to 1 kHz for each end test mass. For the H1 and H2
interferometers, all calculated actuation coefficients – for all
frequencies, for all four masses, and for all three methods – were
within a 715% range. The maximum difference between the
mean value for any method and the mean value for all three
methods, for any of the four end test masses, was 3.7% [18]. This
indicates that the overall systematic uncertainties in the actuation
functions determined using the free-swinging Michelson method,
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and therefore the magnitudes of the interferometer response
functions, are within these bounds.
6. Summary

The LIGO interferometers have provided some of the world’s
most sensitive gravitational wave strain measurements during
their fifth science run. We have described a model used for each
interferometer’s differential arm length control loop known as the
length response function, RL(f,t), the proportionality between the
digital Pound–Drever–Hall error signal and differential displace-
ment of the end test masses. Measurements presented here have
shown the frequency-dependent uncertainty in RL(f,t) is less than
15% in magnitude and 53 in phase in the frequency band where
the interferometer is most sensitive. Because we cannot measure
the sensing function without the interferometers under control,
this estimate is limited by our ability to measure the actuation
function. The results of two fundamentally different, high-
precision methods for measuring the actuation functions [19,17]
confirm that the free-swinging Michelson results are within the
stated uncertainties [18].

In the two calendar year science run, as our knowledge of the
long-term characteristics of the instrument increased, a great deal
of improvements were made to our measurement techniques
compared with prior results [7]. However, future detectors will
have more sophisticated actuation and sensing methods [15,20].
In addition, an amplitude uncertainty of 10% or less is required to
reduce the calibration uncertainty below other systematic errors
in the continually improving astrophysical searches [26]. To
achieve this goal, the non-Gaussian distribution of the actuation
function measurements must be better understood and indepen-
dent techniques of measuring the actuation coefficient, like the
frequency modulation and photon calibrator, must be used in
concert with the standard techniques presented in this paper to
reduce limiting systematic errors.
Table 6
Summary of band-limited response function errors for the S5 science run.

RL(f) Magnitude error (%) RL(f) Phase error (Deg)

40–2000 Hz 2–4 kHz 4–6 kHz 40–2000 Hz 2–4 kHz 4–6 kHz

H1 10.4 15.4 24.2 4.5 4.9 5.8

H2 10.1 11.2 16.3 3.0 1.8 2.0

L1 14.4 13.9 13.8 4.2 3.6 3.3
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Appendix A. The free-swinging Michelson techniques

The technique used for determining the actuation coefficients,
Kx,y

A , for the fifth science run is known as the ‘‘free-swinging
Michelson’’ technique. This technique uses the interferometer’s
well-known Nd:YaG laser wavelength (l¼ 1064:170:1 nm,
[24,36]) as the calibrated length reference while using the test
mass coil actuators to cause a change in length of simple
interferometer configurations. The technique may be used in
two similar methods: the ‘‘simple Michelson’’ and ‘‘asymmetric
Michelson’’ methods.

The simple Michelson method is composed of two steps. The
first step determines the actuation scaling coefficient for the input
test masses Ki with the interferometer in a non-standard
configuration called a frequency-modulated simple Michelson
(see left panel of Fig. 17). The second step determines the end test
mass actuation coefficient, KA, from the input test coefficient, Ki,
and transfer function measurements of the input and end test
masses of a single Fabry–Perot arm cavity (see right panel of
Fig. 17). The Asymmetric Michelson determines KA directly using
the configuration shown in Fig. 20. Both free-swinging Michelson
methods are described below.
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arm configuration, with the power recycling mirror and the opposing arm’s input
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A.1. Simple Michelson method

The Pound–Drever–Hall error signal at the anti-symmetric port,
qAS, for a frequency-modulated simple Michelson interferometer is

qAS ¼
1

2
Appsin

4p
l
D‘

� �
ð31Þ

where App is the peak-to-peak amplitude of the signal (proportional
to the input power, the product of Bessel functions of modulation
strength, and the transmission of the sidebands
into the antisymmetric port from the Michelson asymmetry),
l¼ 1064 nm is the wavelength of the input laser light, and
D‘¼ ‘x�‘y is the differential arm length of the Michelson. App is
measured by aligning the simple Michelson and recording the qAS

time series as it is left uncontrolled. In this configuration, external
noise sources (e.g. residual ground motion) are large enough to
cause the Michelson to sweep through many interference fringes.

For the simple Michelson, when D‘=l51,

qAS � kD‘ ð32Þ

with the simple Michelson’s ‘‘optical gain,’’

k¼ ð2p=lÞApp, ð33Þ

which has units of digital signal counts per meters of input test
mass motion. After a measurement of App is obtained, we control
the optics using their coil actuators, forcing the Michelson into the
linear regime where Eq. (33) is valid.

The actuation function of the suspended input test masses can
be approximated by the center-of-mass force-to-displacement
transfer function, Pcm

i with a scaling coefficient, Ki. We obtain a
measurement of Ki for a given input test mass by introducing a
digital excitation exci into the control loop that is much larger
than residual external noise sources. The excitation is performed
over many frequencies in the gravitational wave band; assuming
the model is complete, the coefficient should be frequency-
independent across the band. We obtain a solution for the digital
excitation counts on the input test mass in terms of meters of
resulting motion as measured by qAS (normalized by the
pendulum response Pcm

i ),

Ki ¼
qAS

exci

� �
1þGSM

k

� �
1

Pi
cm

� �
: ð34Þ

The first term is the measured response of the Michelson during
the single input test mass excitation. The second term contains
the open loop transfer function GSM of the simple Michelson
control loop (measured just prior to measuring the response to
excitation) and the quantity k is as defined in Eq. (33). We take the
median of Ki (denoted with ‘‘bra’’‘‘kets,’’ /S), over the measured
frequency points to remove measurement outliers and residual
frequency dependence (or time dependence of k, as discussed in
Section 4). Fig. 18 shows an example measurement of Ki for each
input test mass in H2.

We then configure the interferometer to form a single Fabry–
Perot cavity composed of one arm of the interferometer, and
control it such that the cavity is under resonance (see Fig. 17). In
this configuration, the response of the single arm cavity (now
recorded by the in-phase demodulated output iAS, see Ref. [35] for
details) to sequential length excitations of the input test mass,
exci, and end test mass, exce, are measured. The ratio, Rie of these
to transfer functions can then be used to write the actuation
coefficient for the end test masses as

KA ¼Rie
Pi

cm

Pcm

� �
/KiS¼

iAS

exce

� �
exci

iAS

� �
Pi

cm

Pcm

� �
/KiS, ð35Þ

where KA has units of test mass motion in meters (as measured by
qAS) per count of digital excitation. Fig. 19 shows a measurement
of KA for each test mass in H1. As in the first step, the median of
the frequency points measured in KA is used to form a single value
for the coefficient over the measurement bands.
A.2. Asymmetric Michelson method

During the latter part of the science run, a more direct
approach of determining the actuation coefficient KA was taken,
using the ‘‘asymmetric Michelson technique.’’ This method is
similar in principle to the simple Michelson version of the free-
swinging Michelson technique, however, we configure the
interferometer as shown in Fig. 20. In this method the response
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Fig. 22. An example ellipse produced by photodiode demodulated signal qAS

versus total power, and corresponding fit to the ellipse used to determine App in

asymmetric Michelson method.
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of the end test mass is measured directly and

KA ¼
qAS

exce

� �
1þGAM

k

� �
1

Pcm

� �
: ð36Þ

Fig. 21 shows an example result for L1.
The quantity k may vary slowly over the measurement period

due to input laser power fluctuations, interferometer alignment,
etc. The asymmetric Michelson is particularly sensitive to these
variations as round trip power loss is large. For this method, we
employ a more sophisticated technique for determining the
amplitude App, developed originally by Rolland et al. [32]. A plot
of qAS versus the total power incident on the photodiodes should
be an ellipse whose semi-minor axis is App/2. We obtain a fit to
this ellipse and extract App with a quantifiable statistical error
(Fig. 22).

A.3. Results

Using the above methods, the actuation coefficient is mea-
sured many times for each optic in each interferometer over the
course of the science run, and the mean of all measurements’
medians in magnitude is used as the actuation scaling coefficient
for all model epochs. Only the magnitude is used, as the phase of
each measurement is consistent with zero. Fig. 23 shows the
representative median and estimated uncertainty for each of
these measurements. Table 7 summarizes the actuation coeffi-
cients used in the actuation model, /KAS for the three
interferometers in the fifth science run, using either simple
Michelson or asymmetric Michelson techniques, with statistical
uncertainty as described in Section 3.1.4.

Each simple Michelson measurement of a given optic’s
coefficient is assigned magnitude and phase uncertainty,

sjKA j

jKAj

� �2

¼
stdðjKijÞ

/jKijS

� �2

þ
1

/jRiejS
stdðjRiejÞffiffiffiffi

N
p

� �2

ð37Þ

s2
fKA

¼ stdðfKi
Þ
2
þ

stdðfRie
Þffiffiffiffi

N
p

� �
ð38Þ

and asymmetric Michelson measurement is assigned magnitude
and phase uncertainty

sjKA j

jKAj

� �2

¼
stdðjKAjÞ

/jKAjS

� �2

ð39Þ

s2
fKA

¼ stdðfKA
Þ
2: ð40Þ

In simple Michelson technique, measurements of Ki were
found to be inconsistent with a Gaussian distribution across the
frequency band. We therefore estimate the uncertainty in the
median, /KiS to be the standard deviation alone. However, in the
second step (Eq. (35)), we have found the single arm transfer
function ratio, Rie, to be consistent with a Gaussian distribution
across the frequency band, so we estimate the median uncertainty
as though it were a Gaussian distribution and divide the standard
deviation by

ffiffiffiffi
N
p

where N is the number of frequency points. In
the asymmetric Michelson method, where the measurement of KA

is similar to that of Ki in the simple Michelson method, we again
do not assume a Gaussian distribution over the measurement
band, and take the standard deviation alone.
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Fig. 23. Individual measurement medians and uncertainties of the actuation scaling coefficients, /Kx
ASj (left) and /Ky

ASj (right), measured over the course of the fifth

science run. Measurement numbers 6 in H1 and 7 through 15 in L1 used the asymmetric Michelson technique, the remainder were measured with the simple Michelson

technique. Only the magnitude for each measurement (top panels) is used to determine the total scaling coefficient for each test mass (indicated by horizontal lines), as the

phase (bottom panels) is consistent with zero. The statistical uncertainty of actuation function is the quadrature sum of each arm’s actuation coefficient uncertainty, which

takes the larger of the standard deviation of each measurements median, /KASj or the mean uncertainty divided by the number of measurements sKA ,j .

Table 7
Summary of the actuation scaling coefficients measured during S5.

Kx
A (nm/ct) Ky

A (nm/ct)

H1 0.84770.024 0.87170.019

H2 0.93470.022 0.95870.034

L1 0.43470.039 0.41570.034

These single numbers are formed by the mean of each measurement’s median

/KASj (6 for each end test mass in H1, 5 in H2, and 14 and 15 for the X and Y test

masses, respectively, in L1). Only statistical uncertainty is reported here;

systematic uncertainty is folded the total uncertainty of the actuation function.
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