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Abstract. The uniaxial strain dependence of refractive index anisotropy
has been measured for a series of high-porosity aerogel samples. Uniaxial
compression of compliant aerogels introduces an optical activity into the
material. We report on the compression-dependent optical birefringence of
samples with porosities from 95 to 99% under a uniaxial compression of up
to 15% in the spectral range 320–800 nm.
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1. Introduction

Highly porous and transparent silica aerogels were first synthesized in 1931 [1]. Manufactured
by a sol–gel method [2, 3], aerogels are composed of a tenuous network of SiO2 strands and can
be synthesized in a wide range of porosities, especially in the high porosity limit, which extends
up to 99.9% (only 0.1% silica). They are, in fact, the lightest solid materials with the lowest
refractive index ever manufactured. Owing to their unique structure and high porosity, aerogels
have found a wide variety of applications in science and technology [4]. Silica aerogels have
been extensively used in Cerenkov counters in particle physics since the 1980s and have recently
been utilized to capture cosmic dust in outer space [5, 6]. Their low thermal conductivity and
high solar transmittance offer possibilities for use as superinsulating fillers for window systems
and as a solar energy collector [7]. On a purely academic side, aerogels have also found a unique
role as impurities or quenched disorder in systems such as liquid crystals [8] and quantum fluids,
e.g. liquid 4He [9], 3He [10, 11] and their mixtures [12].

The influence of quenched disorder on unconventional superfluids and superconductors
is of immense importance in the field of condensed matter physics and our motivation for
this paper springs from our studies of superfluid 3He in aerogel. The aerogel strands, 3–5 nm
in diameter, enclose open volumes or pores typically 30 nm wide, bringing the geometrical
mean free path to a range of 100–150 nm at nominally 98% porosity. The coherence length
in the superfluid 3He (the characteristic size of a Cooper pair: from 16 nm at 0 bar to 77 nm
at 34 bar) is comparable to the mean free path provided by the aerogel structure, but is much
larger than the aerogel strand diameter. Therefore, liquid 3He imbibed in high-porosity silica
aerogel allows a systematic investigation of the effects of disorder on a p-wave spin-triplet
superfluid. Various theoretical models for superfluid 3He in aerogel explain some—but not
all—of the experimentally observed features of superfluid 3He in aerogel. In particular, there
has been continuing interest in the consequences of the interaction between anisotropic disorder
presented by aerogel and the anisotropic order parameter of superfluid 3He [13]–[16]. It has
been proposed that this effect can be systematically studied by introducing controlled global
anisotropy through uniaxial deformation of aerogel [16]. This scheme is attractive because
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high-porosity aerogels possess an extremely low Young’s modulus (≈ 0.1–1 MPa) and excellent
mechanical compliance. Therefore, it is imperative to have a quantitative characterization of
amount of anisotropy generated by compression or stretching for a systematic investigation.

Recently, Pollanen et al [17] demonstrated the presence of global anisotropy in compressed
aerogels through optical birefringence. They measured the transmittance of white light passing
through cylindrical aerogel samples under various degrees of compression between two crossed
polarizers. However, no quantitative and spectroscopic information on birefringence was
obtained. In this paper, we report the quantitative results of our optical characterizations of
high-porosity aerogel samples subjected to a uniaxial strain of up to 15%. This work is an
extension of our earlier publication [18] on 98% porosity aerogels. In this paper, we present
more detailed measurements including the mechanical properties of aerogels with 95, 97, 98 and
99% porosities and a model for our results based on effective medium approximation (EMA).

2. Principle of measurement

The examination of a dielectric material placed between two crossed polarizers is a standard
method of separating anisotropic materials from those that are isotropic. It is based on the fact
that a linearly polarized light propagating through a uniaxially anisotropic medium experiences
different indices of refraction for two rays with mutually orthogonal polarizations, namely,
the ordinary ray (OR) and the extraordinary ray (ER). As a result, the light emerges from the
medium with a phase difference δ between the two polarizations expressed by

δ =
2πd1n

λ
, (1)

where d is the thickness of the sample and λ is the wavelength of light. 1n represents the
birefringence of the sample; it is defined as 1n = ne − no, where ne and no are, respectively, the
indices of refraction corresponding to ER and OR. Equation (1) holds true when the angle of
incidence of light is normal to the sample, which is the case for all our measurements.

Figure 1 shows a schematic diagram of our experimental setup. Suppose that the optic axis
is along the compression axis, as indicated in figure 1. If a beam of intensity Io is incident on
the sample, placed between two linear polarizers, the transmitted intensities for the crossed (I⊥)
and parallel (I‖) orientations of the analyzer relative to the polarizer are given by [19]

I⊥ = Io sin(2φ) sin2 δ

2
, (2)

I‖ = Io sin(2φ) cos2 δ

2
, (3)

where φ is the angle between the polarization axis of the polarizer and the optic axis, fixed at
45◦ in our experiments. Here, we have neglected the absorption coefficients associated with the
ne and no directions. Equations (2) and (3) can be inverted to find the phase difference,

|δ| = kπ + 2 tan−1

√
I⊥

I‖

, k = 0, 2, 4, . . . , (4)

|δ| = (k + 1)π − 2 tan−1

√
I⊥

I‖

, k = 1, 3, 5, . . . . (5)
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Figure 1. A visualization of the experimental setup. Collimated monochromatic
light beam is passed through a polarizer with its polarizing axis fixed at 45◦ to
the compression axis of the sample. The output intensity is measured through an
analyzer at angle θ relative to the polarizer transmission axis.

By measuring the intensities I⊥ and I‖, one can extract the phase difference δ and hence 1n
from equation (1). Note that the above solutions only give the absolute value of 1n but not the
sign. The sign has to be inferred by other means, discussed later.

Because we are dealing with the uniaxial compression of the aerogel, we have to
account for the increase in thickness (d) in the direction perpendicular to the compression by
incorporating the Poisson ratio of the aerogel. If do is the original thickness and L is the length of
the uncompressed aerogel, then for a small deformation (1L), the thickness of the compressed
aerogel is

d = do

(
1 + ν

1L

L

)
, (6)

where ν is the Poisson ratio of the aerogel. This modified thickness needs to be incorporated
into equation (1) to extract 1n.

3. Experimental method

We adopted a technique similar to the one developed to investigate birefringence in liquid
crystals [20] and polymers [21]. We have optically characterized three aerogel samples with
98% porosity (batch A), which will be referred to hereafter as samples 1–3. Another batch of
aerogel samples with porosities ranging from 95 to 99% (batch B) have been used to measure
their Poisson ratios and optical birefringence. The aerogels used in this study were made
following the so-called two-step method first described by Tillotson and Hrubesh [2], using
acetonitrile as the solvent to set the final aerogel density. The gels are typically aged for two
weeks and then supercritically dried at 290 ◦C. The resulting aerogels are hydrophobic. The
specific surface area, as determined from helium adsorption isotherms, is about 1000 m2 g−1

with a primary particle diameter of 3 nm. The density of 98% aerogel is 0.044 kg m−3.
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Figure 2. Images of the surfaces of the aerogel in white light. Cut surface in (a)
and as-grown surface in (b).

The optical measurements were performed using a Zeiss MPM800 microspectrophoto-
meter equipped with a Xe lamp as the light source and a photomultiplier tube as the detector.
A platform was designed for mounting the aerogel between the polarizer and analyzer of the
microscope, so that the light propagates in the direction perpendicular to the compression axis.
The aerogel samples were synthesized in glass tubes in the shape of right circular cylinders. Two
plane surfaces were cut parallel to the cylinder axis on either side of the cylinder using a high-
speed diamond cutter. This process provided two parallel and flat surfaces for optical measure-
ments, eliminating tilt of the beam at the surface of the aerogel. The cut and as-grown surfaces
of an aerogel sample were imaged using a white light and pictures of those images are shown in
figures 2(a) and (b). At the scale observed, the pictures suggest that the as-grown surface of the
aerogel is much smoother than the machine-cut aerogel. This could be of importance to trans-
verse acoustic impedance measurements of superfluid 3He in aerogel, where the contact between
the aerogel and the transducer surfaces is crucial in observing the superfluid transition features.
The polarized light beam (≈0.5 × 0.3 mm2) was focused on the sample with a focusing lens and
the output light was viewed through a 10× objective lens located before the analyzer (figure 1).
The aerogel samples were compressed along the cylindrical axis and the strain was determined
using a micrometer vise with a non-rotating spindle. For each compression–decompression
cycle, the wavelength was scanned from 320 to 800 nm in 4 nm increments and the output
intensity of light was measured for various angles of θ , the angle of the analyzer relative to the
polarizer transmission axis that was always fixed at 45◦ to the compression axis. Strong absorp-
tion by the optical components limited the short-wavelength measurements to approximately
320 nm and the photomultiplier cutoff dictated the 800 nm long-wavelength limit.
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Figure 3. Graph showing shrinkage of aerogels (batch A) after every cycle
of compression and decompression. The bars in the graph denote the length
measured before each cycle to 15% compression. Each compression–
decompression cycle typically took about 4 h. No significant relaxation in the
length was observed after the completion of each cycle.

4. Results and discussion

4.1. Mechanical properties

Before we discuss the birefringence, we would like to briefly describe some mechanical effects
of compressive strain on the aerogel. It is known that compression can lead to a reduction in
the elastic modulus of high-porosity aerogels [22, 23], and shrinkage or damage can occur
in aerogels during the supercritical drying stages of the gel [17, 24, 25] or during capillary
condensation [26]. In our measurements we observed a substantial amount of shrinkage in
length along the compression axis for the aerogel samples that underwent cycles of compression
and decompression. In figure 3 the length of the aerogel before each cycle of compression up
to 15% is plotted for three samples of batch A. In general, the shrinkage is found to be the
largest after the first compression–decompression cycle and decreases for the subsequent cycles.
After the completion of four cycles, the total amount of shrinkage was 9, 7.5 and 6.7% for
samples 1–3, respectively. However, no shrinkage was observed for the samples cycled up to 5%
compression. Our observation is consistent with the elastic measurements of Gross et al [22], in
which most samples recovered 99.5% or better of their original length after compressions of a
few per cent, although we have to point out that their sample preparation method was different
from ours.

4.2. Poisson ratio measurements

To our knowledge, the only known measurements of the Poisson ratio of high-porosity aerogels
in the literature are from Gross et al [23, 26] and Pollanen et al [17]. Gross et al determined
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Figure 4. The width versus length of an aerogel sample with 95% porosity
undergoing a compression of up to 15%. The black squares (red circles) were
taken on compression (decompression). The solid line is a linear fit to the data.

Table 1. Poisson ratios of aerogel samples of different porosities.

Porosity (%) Poisson ratio (ν)

95 0.112 ± 0.003
97 0.094 ± 0.002
98 0.147 ± 0.005
99 0.143 ± 0.005

the Poisson ratio from the longitudinal and transverse sound velocity in the aerogel and found
ν ≈ 0.2, independent of porosity, whereas Pollanen et al determined ν ≈ 0.3 ± 0.05 based on
their optical images. We measured the Poisson ratio by direct mechanical compression using
the same micrometer vise used in our birefringence measurement. We believe that this method
is more appropriate for determining the actual change in d caused by uniaxial compression. The
samples were cut as described in section 3 and were compressed in a micrometer vise mounted
on a x–y micro positioning stage under a microscope. The compression in the x-direction was
varied from 0 to 15% determined by the micrometer reading. The change in width of the sample
(in the y-direction) was measured using the x–y micro positioning device with the help of the
eyepiece cross-hairs. A laser beam threading through the sample in the y-direction was used to
clearly identify the aerogel boundary. A typical plot of the width versus the length of a 95%
porosity sample is shown in figure 4. The slope of a straight line fit (solid line in figure 4) to the
data yields the Poisson ratio. Measurements were repeated on different samples with the same
porosity and the average Poisson ratio was calculated. The average Poisson ratios for different
porosity samples are given in table 1 and are used in our analyses. Our values fall lower than
0.2, between 0.1 and 0.15 for porosities from 95 to 99%. The difference might be caused by
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Figure 5. The transmittance (the ratio as defined in section 4.3) of samples
1–3 (a–c, respectively) in the crossed-polarizer configuration as a function
of wavelength. The solid (dashed) lines are data taken on compression
(decompression).

a small nonlinearity evident in figure 4 because the Poisson ratio determined from the sound
velocity is presumably in the low strain limit.

4.3. Optical transmission measurements

Figure 5 displays the transmittance of samples 1–3 in the crossed-polarizer configuration
(θ = 90◦) as a function of wavelength on the fourth compression–decompression cycle. The
transmittance was determined as the ratio of the transmitted intensity to a background intensity
measured without a sample but with the two polarizers aligned parallel (θ = 0◦). The traces
taken on compression (decompression) are represented by the solid (dashed) lines. In this
configuration, any finite transmittance indicates the presence of optical activity in the aerogel.
At zero compression, the transmittance is very low, because it is the transmittance of a nearly
isotropic substance between crossed polarizers. With increasing compression there is initially
an increase in transmittance across the spectrum and then an oscillatory behavior, both with
wavelength at a given compression and with compression at a given wavelength. For sample 1

New Journal of Physics 12 (2010) 103016 (http://www.njp.org/)

http://www.njp.org/


9

Figure 6. Transmittance versus wavelength of sample 1, with progressively
increasing compression shown in panels going from left to right (0–15%), at
different angles of the analyzer (see the legend on the right).

in figure 5(a), the transmittance reaches a broad maximum by 7% compression. The position
of the maximum moves progressively towards longer wavelengths for higher compression and
then a second maximum emerges from the short wavelength side. These oscillations are caused
by the birefringence. For a given compression, the path length d and refractive index anisotropy
1n are fixed; however, the phase difference δ increases with decreasing wavelength, and the
transmittance, in accord with equation (2), swings between the maximum transmittance and
zero. One other factor, scattering of light in the aerogel, affects the spectra. Because the sizes
of the aerogel strands are much smaller than the wavelength of light, Rayleigh scattering is
responsible for the increasing envelope of the transmittance between 320 and 800 nm. Similar
behavior has previously been observed in aerogels with comparable porosities [27].

We note that sample 1 shows non-zero transmittance in the uncompressed state. The trans-
mittance first decreases with compression and then starts to increase after 2% compression. We
believe that this behavior is due to the inherent anisotropy in the aerogel sample, probably from
the growth process or through the repeated compressions [17]. Our results also exhibit substan-
tial hysteresis between the compression and decompression. For example, the transmittance for
7% in sample 1 on decompression actually matches that for 5% on compression, as shown in
figure 5(a). This result can be understood by taking into account the shrinkage in the length
of the aerogel (≈ 2%) occurring during the fourth cycle, as can be inferred from figure 3. The
built-in anisotropy is also manifest in sample 3, as can be seen in figure 5(c).

Figures 6–8 display the transmittance for different angles of the analyzer for samples
1–3, respectively. The panels show data at progressively increasing compression, from 0 (top
left) to 15% (bottom right). In an uncompressed aerogel, the effect of optical birefringence
is modest due to the weak built-in anisotropy mentioned above (samples 1 and 3). Therefore,
the polarization-angle dependence of the transmittance is easily understood. When compressed
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Figure 7. Transmittance versus wavelength of sample 2 with increasing
compression shown in panels going from left to right (0–15%) at different angles
of the analyzer.

Figure 8. Transmittance versus wavelength of sample 3 with increasing
compression shown in panels from left to right (0–15%). The legend on the right
shows the different angles of the analyzer.

by 15%, the birefringence produces oscillatory behavior as the phase difference δ is inversely
proportional to the wavelength. One particular feature of this observation is the appearance
of the nodes at which the transmittance becomes independent of the angle of the analyzer.
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At these nodes the emerging light is circularly polarized, with the phase difference between
OR and ER being an odd integer multiple of π/2. For example, the 15% compressed aerogel
(sample 1) behaves as a quarter-wave plate at the wavelengths of the nodes near 375, 500, and
800 nm (see figure 6), which is periodic in frequency, in accordance with the birefringence in
the compressed aerogel. It is worth mentioning that compressed aerogels have the potential
to serve as tunable wave plates, with some advantages over conventional tunable waveplates
such as Babinet compensators, including smaller reflectance, absence of gradient effect and no
limitation on the beam size.

In order to understand fully our results, we need to consider the effects of birefringence
associated with anisotropy, Rayleigh scattering and dispersion. Therefore, the expression for
transmittance in the crossed-polarizer configuration should be modified from equation (2) to

T = A exp

(
−B

λ4

)
sin (2φ) sin2 πd1n

λ
. (7)

The first exponential term accounts for the Rayleigh scattering. The dispersion effect is
incorporated in 1n by a simplified form of the Sellmeier dispersion equation called the Cauchy
formula [19]:

1n = C +
D

λ2
. (8)

The Sellmeier form has been previously used in the literature to fit the birefringence dispersion
in glasses and liquid crystalline materials [21, 28, 29]. The light path length is also corrected by
equation (6), using the reported value of the Poisson ratios ν = 0.2 [23, 26] (the Poisson ratios
of these samples were not measured in this work). The above two equations are used to fit our
transmittance for all samples at 15% compression by a nonlinear least square fitting method,
with A, B, C and D as our fitting parameters [18]. The results are shown in figure 9(a) [18] as
solid lines. In figure 9(b) we plot the 1n(λ) directly obtained from our measurements of I⊥/I‖

using equations (1), (4) and (5). For example, the three red traces represent the birefringence
for sample 1, assuming three different branches of k in equations (4) and (5). In each trace only
the nearly horizontal portions are meaningful and the conjoined traces of the horizontal sections
correctly reflect the birefringence of the sample. Also displayed in the plot is 1n(λ), calculated
using equation (8) and C and D obtained from the fit. They are in excellent agreement with each
other.

Adopting the same fitting procedure, we find very good agreement with the measured
1n(λ) at all compressions. These results are shown for sample 3 in figure 10 for strains between
2 and 13% over the whole wavelength range. Figure 11(a) shows the strain dependence of the
optical birefringence for the three samples with 98% porosity. All samples studied follow a
quasi-linear dependence with a weak nonlinearity. The built-in anisotropy is manifest in this
plot for samples 1 and 3. We can only determine the absolute value of birefringence through our
measurements. Therefore, it is reasonable to think that the birefringence of sample 1 actually
changes its sign around the 3% strain point, suggesting that the small uniaxial compression
compensates, in effect, the built-in anisotropy in the sample. In contrast, the built-in anisotropy
in sample 3 is in the same direction caused by uniaxial compression. 1n for all compression
cycles of sample 3 is shown in figure 11(b). In each cycle the strain was determined based on
the sample length at the beginning of each cycle. 1n shifts up with the number of cycles and
seems to saturate at the fourth cycle of compression. However, the overall change in 1n for a
given strain range remains almost the same.
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Figure 9. Transmittance and birefringence data in the cross-polarized setup for
samples 1–3 at 15% compression. The solid lines in both panels are the results
of the fit as explained in the text.

Figure 10. Birefringence dispersion in aerogel sample 3 for various strains (see
the legend) ranging from 2 to 13%. The black lines are the 1n calculated by
fitting the wavelength-dependent transmittance data using equations (7) and (8).
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Figure 11. (a) 1n versus strain at 632 nm for samples 1–3 on their fourth cycle
of compression. (b) 1n versus strain at 632 nm for sample 3 at different cycles
of compression from its virgin condition (cycle 1).

Figure 12. (a) Total transmittance (〈T⊥〉) in the cross-polarized configuration
integrated for all wavelengths (320–800 nm) as a function of strain for all
samples. (b) The transmittance (T⊥) of sample 2 between the crossed polarizers
for several wavelengths.

Figure 12(a) illustrates the total transmittance (〈T⊥〉) of the three samples integrated over
the whole wavelength range as a function of applied strain. The transmittance for samples 2
and 3 rises initially and starts to drop beyond 10%. Sample 1 behaves a little differently,
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Figure 13. Strain dependence of birefringence for aerogel samples (batch B)
with various porosities.

with a more pronounced oscillatory behavior. As explained previously in the discussion
of figures 6–8, the transmittance is expected to oscillate since the aerogel placed between
the crossed polarizers acts just like a waveplate tunable with the compressive strain. Our
results are in contrast to the recent observation by Pollanen et al [17]. They performed a
similar measurement with a 98% cylindrical aerogel sample (≈ 8 mm diameter) between two
crossed polarizers. Their transmittance (using white light) showed a linear strain dependence
to their highest uniaxial compression at 20% and was uniform throughout the sample. In this
case, one effectively measures the average intensity of light traversing different path lengths
throughout the cylindrical sample. Figure 12(b) plots the wavelength-dependent transmittance
(T⊥) of sample 2, which conforms to the waveplate character of the compressed aerogel,
where the maximum in the transmittance occurs at different compressions induced at different
wavelengths. A similar behavior was observed for samples with porosities other than 98%.
Figure 13 depicts the optical birefringence as a function of strain on samples with porosities of
95, 97, 98 and 99% (batch B). In evaluating the birefringence our measured Poisson ratio values,
as determined in the previous section, were used. The data shown in figure 13 were obtained
during the second compression-decompression cycle. As seen from the figure, the birefringence
for the various porosities is of comparable magnitude and the 99% aerogel sample also shows
built-in anisotropy almost identical to that of sample 1.

4.4. Effective medium model

In this section, we develop a simple model for our results in an attempt to correlate the
birefringence with the structural changes. The optical properties of the aerogel can be modeled
by the well-known EMAs [30, 31], the Bruggemann EMA or the Maxwell Garnett theory

New Journal of Physics 12 (2010) 103016 (http://www.njp.org/)

http://www.njp.org/


15

(MGT). These approaches are applicable here because the wavelength of the light used is
much longer than the inter-strand distance. The effective dielectric function of the composite
medium is calculated by averaging the dielectric permittivities of its constituents, namely air
and SiO2 grains with their respective volume fractions. In the case of compressed aerogels, the
dielectric function is a tensor due to the anisotropy generated and the depolarization effects
become important. Note that there are no absorption bands in the aerogel for the measured
wavelength range, so that the refractive index can be simply calculated by setting n =

√
ε.

In the Bruggeman model, considering the aerogel as a collection of uniformly distributed
needle-shaped SiO2 pieces, the dielectric constant εB is formulated as

f
εSiO2 − εB

gεSiO2 + (1 − g)εB
+ (1 − f )

εair − εB

gεair + (1 − g)εB
= 0, (9)

where f is the filling fraction of SiO2, εSiO2 = 2.34 and εair = 1.00. g is the depolarization factor,
related to the topology of the inclusion material and the orientation of the applied electric field.
For the cylindrical axis parallel and perpendicular to the electric field, g‖ = 0 and g⊥ = 1/2,
respectively. With f = 0.02 (98% porosity), the indices of refraction for two perfectly aligned
cases are evaluated as no = 1.0133 for the ordinary component (g‖ = 0) and ne = 1.0081 for
the extraordinary component (g⊥ = 1/2). This sets the upper bound of birefringence for this
model 1n = ne − no ≈ −5 × 10−3, a reasonable result considering that our birefringence at
15% is ∼ 5 × 10−5. The index of refraction for an isotropic aerogel can be estimated to be
n = (1/3)no + (2/3)ne ≈ 1.010, in good agreement with the previously reported values [32].

In the MGT, we model the system as a collection of SiO2 ellipsoids embedded in
air with the respective dielectric permittivities. The procedure discussed here has been
successfully applied before in understanding the form birefringence of porous semiconductors
and dielectrics [33, 34]. The MGT dielectric function for oriented ellipsoids [31] is given by

εG
⊥,‖ = εair + εair

f (εSiO2 − εair)

g⊥,‖(1 − f )(εSiO2 − εair) + εair
. (10)

The spectral dispersion of the refractive index of SiO2 in the above equation is given by a three-
term Sellmeier form given by Malitson [28]:

n2
SiO2

(λ) = 1 +
∑

i

Aiλ
2

λ2 − λ2
i

, (11)

where for i = 1, 2, 3, Ai and λi are the constant fit parameter values determined from the
experimentally measured values of the refractive index of SiO2 (see [28]). The constants g‖ and
g⊥ appearing in equation (10) are the geometrical depolarization factors similarly defined as in
the Bruggemann model [35], corresponding to the electric field being parallal or perpendicular
to the principal axes of the ellipsoid. Their values depend on the ratios of the polar to the
equatorial axes of an ellipsoid. Tabulated values of g can be found in the literature [36]. For
example, a plane has g‖ = 1, g⊥ = 0, an infinite cylinder has g‖ = 0, g⊥ = 0.5 and a sphere
has g‖ = g⊥ = 0.333. If the ellipsoid is a spheroid where two of the principal values of g are
equal, we have the condition g‖ + 2g⊥ = 1. Using g‖ as the fitting parameter, the birefringence
ne − no =

√
ε‖ −

√
ε⊥ is calculated using equation (10), which also gives a negative sign to

our birefringence values. This is compared against our measured values of birefringence in
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Figure 14. Measured birefringence values of sample 1 at 15% compression
(circles) on the left y-axis and 2% compression (triangles) on the right y-axis.
Solid black lines are from the MGT equation (10), with g‖ = 0.340 for 15%
compressed aerogel and g‖ = 0.333 for 2% compressed aerogel.

figure 14. The bottom trace of the figure shows the birefringence of sample 1 at 2% compression
and the top trace at 15% compression. The best fits to our experimental data yield values of
g‖ = 0.340 for 15% compressed aerogel and 0.333 for 2% compressed aerogel, indicating that
at 2% compression, the aerogel particles maintain a spherical shape, and when compressed by
15% they deviate towards a spheroid by about 3% in length. Both models predict 1n ∝ f ,
which is in qualitative agreement with our results (see figure 13).

When the needle-shaped aerogel strands are not perfectly aligned the birefringence can
be expected to be lower than the perfectly aligned case. The degree of misalignment can be
described by the Hermans orientation function χ(θ) [37], such that

1n = 1nmaxχ(θ), (12)

where χ(θ) is given by 1
2(3〈cos2 θ〉 − 1) and 1nmax is the maximum birefringence for the case

of perfect alignment. 〈cos2θ〉 is the average over polar angle θ between the optic axis and the
needle direction. This quantity is 1/3 for an isotropic configuration. There are various theoretical
models in polymer physics that describe the molecular orientation through uniaxial deformation
and one can derive the appropriate form of the Hermans function for the system under study. In
our case, assuming a linear deformation of the aerogel needle about the network of joints, the
〈cos2 θ〉 can be given as

〈cos2 θ〉 =
1

3

(
1 −

1L

L

)2

. (13)

This relation is derived in the appendix. Using equations (12) and (13) and the value of
1nmax = ne − no ≈ −5 × 10−3 from our previous consideration, |1n| is plotted in figure 15 as
a function of strain along with our experimentally measured values for samples 1–3. As seen in
this figure, as well as in figures 11 and 13, the measured 1n show a small curvature, indicating
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Figure 15. Strain dependence of birefringence for aerogel samples 1–3 and
calculated values using the Hermans orientation function.

the presence of a small quadratic strain dependence with a negative coefficient. This behavior
is consistent with equation (13) (1n< 0). However, the magnitude of optical birefringence is
about 1/3 of the value predicted by this model. Here, we should note that the magnitude of
1nmax is estimated in a model of ideal needle-like cylinders made of SiO2. It is also assumed that
all the needles would rotate in response to uniaxial compression. This idealization is far from the
actual structure of the aerogel strand, which is formed by random cluster–cluster aggregation of
nanometer-scale aerogel particles [38, 39]. In a real aerogel, there are many dead-end clusters
attached to the backbone structure at one end and with the other end dangling [39]. These
dead-end clusters neither contribute to the mechanical strength of the material nor generate
rotation to the first order in response to uniaxial strain [40]. A more sophisticated model should
also incorporate local variations of cluster orientation (̂nloc) in a strand whose orientation is
represented by n̂st (see figure 16). For a random structure, n̂st and n̂loc are correlated and are
characterized by the correlation function κ =

3
2 (̂nst · n̂loc)

2
−

1
2 . Therefore, this correlation effect

should be included as a prefactor in equation (13). The value of κ depends on the detailed
structure of the aerogel but should be 0 < κ < 1. Based on our measurements, we find that
κ ≈

1
3 (assuming no dead clusters), which limits the variation of n̂loc within ≈ 60◦ with respect

to n̂st.

5. Summary

We have measured the birefringence of uniaxially compressed high-porosity aerogels in the
visible range of the spectrum. A mechanical compression beyond 5% on the aerogel shows
hysteresis in transmittance data, which can be correlated to the non-recovery of the aerogel to its
uncompressed length. The birefringence exhibits quasi-linear dependence on the compression
and is large enough to observe the wave plate phenomenon. The birefringence, and its
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Figure 16. A cartoon of the aerogel structure depicting local variations of cluster
orientation of a strand. The thick red arrow represents n̂st and the small black
arrows indicate the direction of local cluster orientation, n̂loc.

dispersion, is in excellent agreement with the Sellmeier oscillator model. The effective medium
approximation model provides a satisfactory picture of the observed phenomena.
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Appendix

Here, we derive equation (13) relating the Hermans anisotropy function to mechanical strain.
Let L be the initial length of the uncompressed aerogel and 1L be the change in length after
compression. Define the compression or stretch ratio as

α = ln
L

Lmin
, (A.1)

where Lmin = L − 1L , so that in the uncompressed state α = 0 and α > 0 when compressed.
We consider an aerogel strand of length ` initially making an angle θ with respect to the ẑ-axis.
After a small deformation by an angle δθ , the change in length along the ẑ-axis is

δz = `{cos(θ + δθ) − cos(θ)}, (A.2)

which, for small δθ , reduces to

δz = −` sin θδθ. (A.3)
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Using δα = −δz/z, we have

δθ =
δα

tan θ
. (A.4)

Therefore,

δ〈cos2 θ〉 = −2〈cos2 θ〉δα, (A.5)

which can be rewritten in the following form:

∂ ln〈cos2 θ〉

∂α
= −2. (A.6)

Integrating equation (A.6), we obtain

〈cos2 θ〉 =
1
3e−2α, (A.7)

where the factor 1/3 is the integration constant so that at zero compression, when α = 0,
〈cos2 θ〉 = 1/3 in the isotropic case. Substituting equation (A.1) for α and Lmin = L − 1L in
equation (A.7) leads to equation (13):

〈cos2 θ〉 =
1

3

(
1 −

1L

L

)2

. (A.8)
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