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Abstract

We report on the numerical and experimental study of the vibrational spectrum of the charge-density-wave (CDW)
conductor (TaSe,),I. The microscopic mechanism accounting for the giant IR peak at frequencies about ~ 40 cm ™" in
the (TaSe,),! is proposed. The mechanism is based on an assumption about dynamical charge transfer between adjacent
CDW periods accompanying their vibration in corresponding normal mode with wave vector equal to that of
superstructure. The mechanism is consistent also with the increase in the IR intensity of the peak observed experimentally
when heating the (TaSe,),] crystal above the Peietls transition temperature T, = 261 K. Critical index of the Peierls
transition order parameter determined from the temperature dependence of the phase phonons intensity is found to be

about 0.17, consistent with the results of X-ray experiments. € 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Vibrational and transport properties of quasi-1-
D conductors in the Peierls—Frohlich state attract
great interest due to numerous peculiarities. The
most striking among them are: (i) the giant peak of
unknown origin in the low-frequency IR spectrum
of a number of inorganic charge-density wave
(CDW) conductors such as K, ;M00;, (TaSe,).l
and TaS; [1-3]; (i) nonlinear conductivity and
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noise generation when conducting DC current
by these materials. It is suggested that this phe-
nomenon can be ascribed to an influence of defects.
Present communication is devoted to analytical
and numerical study of vibrational properties of
a model system, which obey all the above-
mentioned intrinsic features of CDW conductors in
the Peierls-Frohlich state. We believe that after
comparison of the numerical results with the
experimental data and proper justification of the
model it can serve as a bases for understanding
of the microscopic nature of the above-peculiar
features.
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The low-frequency excitation spectrum of the
CDW ground state have been widely investigated
both theoretically and experimentally (see, e.g., re-
views [4-6] and references therein). It 1s well estab-
lished that incommensurate CDW ground state is
characterized by two specific collective excitations:
IR active phase mode and Raman active amplitude
mode [7]. The frequency of the former, w,, in the
incommensurate CDW conductors is of the order
of 1em ! while the amplitude mode frequency
w, is about one-two orders of magnitude higher.
These vibrations have been observed experi-
mentally in such model CDW conductors as
Ko 3:MoQ;, (TaSe,),I and TaS; [1, 2, 8-14].

Besides the phase and the amplitude modes an
additional vibration obeying giant IR activity has
been observed in all the above-mentioned com-
pounds [1-3]. The frequency of this additional
feature in (TaSe,),] is about 38 cm ™! in between
the phase (~1cm ™!, Ref. [13]) and the amplitude
(~90 cm™*, Ref. [10]) mode frequencies. Several
explanations have been proposed to account for the
additional giant IR peak, but microscopic origin of
this vibration is still not clear (see, for instance, the
discussions in Refs. [1,15]). An interesting phe-
nomenological model has been proposed by De-
giorgi and Griner [15] although the microscopic
origin of some phenomenological parameters of
this model remains unclear. According to this
model, the additional IR peak results from a
bound collective-mode resonance localized around
impurity.

In the present study, it is shown that the giant IR
resonance occurs in the incommensurate CDW sys-
tem even in the absence of any impurities provided
that the dynamical charge transfer between adjac-
ent CDW periods is taken into account. For de-
scription of vibrational and transport properties
of CDW system a model system of interacting
particles in sinusoidal external potential (Frenkel-
Kontorova (FK) model [16]) has been used. The
theoretical vibrational spectra have been compared
with those obtained experimentally for (TaSe,),I
CDW conductor.

The theoretical investigations have been per-
formed in two approaches: (i) molecular dynamic
(MD) simulation has been used for the system to
reach an equilibrium state according to the method

proposed in Ref. [17], after what all the particles
has been subjected to a small uniform step-like
displacement and subsequent vibrations has been
analyzed via Fourier transformation; (ii) eigenvec-
tor problem (EVP) has been solved in the harmonic
approximation to study the vibrational spectrum of
the system. The superstructure in this case has been
taken into account through expansion of the poten-
tial energy around particle equilibrium positions
determined from MD simulation.

Experimental IR conductivity was calculated via
Kramers-Kronig transformation of IR reflectance
spectra measured at near-normal incidence by
means of Michelson interferometer (6-100 cm™1)
and with Bruker 113v Fourier-transform spectro-
meter (80 and 22000 cm ™).

2. Results and discussion
2.1. Model description and numerical results

Since the lattice deformation coupled to the
CDW is much smaller than the crystal-lattice con-
stant, it is reasonable to describe the CDW system
within the FK model. Let us consider a chain of
particles of mass m and charge e with nearest-
neighbor Column interaction in the sinusoidal ex-
ternal (crystal lattice) potential

Vix) = — (Va*/4n*)cos(2n x/a).

Motion equation for nth particle is
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where 7 is phenomenological damping and E(z) is
the external electric field. We will consider the in-
terparticle distance in the phase without super-
structure to be equal to 2a which means the CDW
is formed due to dimerization. In case if the number
of particles differs from the half-number of the
potential minima one obtains superstructure. Then
the time-dependent position U, of the particle can
be represented as U, = 2na + U + §,(t), where
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Uy is quasi-static variable describing a shift of the
equilibrium position of the particle with respect to
the corresponding potential minimum, J,(r) de-
scribes a vibration of the particle around the new
equilibrium position Uy. In the harmonic approxi-
mation and suggesting d,(t) = d,(w) exp(iwt) and
E(t) = Ey- exp(im-t) Eq. (1) can be reduced to two
equations:

- V
RoQUY — Up-y — Ut + 3_sin 2aUD =0 (2)
and
SV cos2rU°) — w? + iwy]
+ K2(20,(w) — 6, 1(@) — 8,1 1(w)) = Ey (3)

suitable for analytical study. K, =2K,e?a’/
(b®m) ~ K,/4, where b ~ 2ais the average interpar-
ticle distance. Here and below we accepted m = 1,
¢=1 and a = 1. Disregarding the trivial case
U2 = 0 Eq. (2) describes quasi-static kink-like de-
formation of the chain (due to neglection of the
dynamical term we restrict our consideration by
standing kinks only), while Eq. (3) describes the
particle vibration around the new equilibrium posi-
tion. In the continuous limit Eq. (2) reduces to the
sine-Gordon equation [18-20] with the single-kink
solution [21] U2(i) = 2n~ ' - arctg{exp[ + 2]},
Rk=4\/(152/V) can be considered as the kink
radius measured in ¢ units, i is the kink position.
Although the N-kink solution U¢ of Eq. (3) is also
available [22] it is more convenient to approximate
it with the sum of the single-kink solutions
Uy ~ Y U(i). Our MD study of the ground state of
a system consisting of 128 particles arranged in
256 + N potential wells with cyclic boundary con-
ditions showed that even for N> 1 (N, is a number
of kinks) the kink lattice or, in the other words,
superstructure with the wavevector k, = m- N,/
(128-b), can be perfectly described as a sum of the
single-kink solutions with some effective R,, al-
though the latter looses its meaning as the kink
radius when exceeding the half-period of the kink
lattice (superstructure) [23].

Fig. 1a shows the fragment of MD simulation
result for arrangement of 128 particles over 264
potential wells, thus we simulated CDW with
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Fig. 1. (a) Fragment of particle arrangement obtained via MD
simulation in the Frenkel-Kontorova model containing 128
particles arranged over 272 potential minima (k, = § 7/b) and
subjected to circlic boundary conditions. The particle No. 51 is
pinned by an extra local potential. {b) Eigenvectors of phason
mode without pinning (dotted line) and with pinning (thick solid
line), and those of CT mode (see Fig. 2) shown by thin solid line
for both pinned and depinned chain.

superstructure period. The S1th particle (shown by
arrow in the figure) is pinned. The conductivity
spectra I(w) = w-Im[(}.d,(w))/Es] obtained from
MD simulation are shown in Fig. 2 for both pinned
and depinned system. The features of our interest
are the phase mode (PM) and the peak CT mode
(charge-transfer mode), marked by PM- and CT-
arrows in Fig. 2, respectively. The latter peak of
very weak intensity is genetically related to the
vibration with the wavevector equal to that of the
superstructure. The corresponding eigen vectors
are shown in Fig. 1b. We will show that the CT
peak acquires the giant IR intensity if one takes
into account, the fact that the CDW internal defor-
mation related to this vibration can be adiabati-
cally accompanied by charge redistribution. As it
has been demonstrated by Itkis and Brill [24],
spatial redistribution of the charge condensed in
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Fig. 2. Model IR conductivity spectra of the FK model (see
caption to Fig. 1), calculated wusing Egs. 3)(5) for
4\/[122/V) = 6. Thin solid line is for 8 = 0 and thick solid line is
for # = 30 in case of pinned chain. Dashed line is for § = 0 and
symbols arz for f = 30 in case of depinned chain. PM are the
phase modes and CT are the modes which intensity may contain
the charge-transfer contribution. For § = 30 the 0.03¢ of the
particle charge is transferred during the CT mode vibration
while for f =0itis 0.

CDW takes place under action of static elec-
tric field. Obviously, a characteristic time for
the charge redistribution or, in the other words, for
the charge transfer from one CDW period to the
other is determined by the amplitude-mode fre-
quency (~90cm™!, Ref. [10]). Therefore, in the
case of the CT vibration the adiabatic condition is
fulfilled.

To take into account the charge transfer con-
tribution to the IR intensity of any mode let us
suppose that the particle charge in our model is
determined as

&(t) = e(1 4 B0y + 1(1) — 05— 1 (1)), ()

what means that the charge is transferred from the
region of local compression of the CDW to a region
of local dilatation. The factor f determines the
fraction of the particle charge transferred during
vibration. The dipole moment is determined as
a sum of the part related to the particles displace-
ment and the part, related to the charge transfer
between adjacent unit cells

P(2) = Y [ed(t) + ef-(Uy — Up-1) (3+1(0)
— 0, 1())]. (5

If we suppose, the charge variation to be of the
order of 0.1e which means $ ~ 0.1/5¢, where 8° is
the vibration amplitude of particles in the corres-
ponding phonon mode, then the charge-transfer
effect will increase the total dipole moment roughly
by factor ~ 0.1e-(U? — U2_,)/62 ~ 10% The con-
ductivity spectra in which the charge-transfer effect
has been taken into account according to Eq. (4)
and Eq. (5) are shown in Fig. 2 by symbols (depin-
ned chain) and thin solid line (pinned chain). The
phase mode intensity remains nearly the same
while the CT mode intensity increases several or-
ders in magnitude. This occurs due to coincidence
between the wave vector of the CT mode on the
one hand and the superstructure wave vector
on the other. Fig. 3 shows that the CT mode inten-
sity  (Im[(} 8,(w)/Eo)]) included charge-transfer
contribution possess a universal dependence on

the parameter 4./(K,/V) regardless the super-
structure wave vector, while the intensity without
charge-transfer contribution strongly depend on
the superstructure wave vector and possess another
universality [23].

2.2, Experimental conductivity spectra

Fig. 4 shows the room temperature and 10 K
conductivity spectra for polarization along the
chains. As it can be seen from the figure, the two
basic changes in the spectrum take place upon
cooling: (i) an appearance of the pronounced fea-
ture representing the Peierls energy gap at frequen-
cies around 500 meV; (i1) a development of sharp
structure in the low-frequency range. The low-fre-
quency spectrum is quite similar to that obtained
by Sherwin et al. [11].

The structure below 50 meV is a matter of our
present study while the temperature-dependent
conductivity around the Peierls gap value will be
discussed elsewhere.

The giant low-frequency peak in the 10 K spec-
trum in Fig. 4 with intensity approaching 10000 S
and frequency about 38 cm ™' is that in which ori-
gin is discussed and we assign it to the CT mode.
The sharp structure above this peak should be
assigned to the so-called phase phonons [25, 26].
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Fig. 3. Dependence of the CT mode integrated intensity on the
potential parameters of the FK model containing 128 particles
arranged over 264 minima (k, = 15 n/b): (1) is for § = 30 and (4)
is for # = 0; over 272 minima (k, = 75 n/b): (2} is for § = 30 and
(5) is for f=0. (3) is the dependence y = 0.45/x?2°. Arrow
shows the parameters for the spectra presented in Fig. 2.
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Fig. 4. Optical conductivity spectra of (TaSe,),l single crystal
for El ¢ at room temperature (dashed line) and 10 K (solid line)
calculated via Drude-Lorenz fit from corresponding reflectivity
spectra.

These are totally symmetric vibrations participat-
ing in the stabilization of the CDW. Their IR activ-
ity results from small-amplitude phase vibrations of
partial charge densities with respect to the total
CDW [27].

To answer the question whether the giant low-
frequency peak can also be assigned to some phase
phonon we compare temperature dependence of its

intensity with that of the phase phonons (see
Fig. 5). The latter is proportional to the square of
the order parameter and reduces strongly upon
approaching T, = 261 K from below. Some resid-
ual intensity remains even at temperatures above
T, because of the short CDW order. From dashed
line in Fig. 5 is shown the mean-field behavior of
the square of the order parameter which is propor-
tional to (T, — T)*# with § = 0.17. The latter value
of f1s in good agreement with X-ray measurements
[28]. In contrast to the phase phonon intensity, the
integrated intensity (or, in the other words, oscil-
lator strength) of the giant low-frequency peak
slightly increases upon heating suggesting quite
different origin of this vibration. Also, the resonant
frequency of the peak displays a pronounced red
shift upon heating in contrast to nearly temper-
ature-independent frequencies of the high-fre-
quency phonon structure.

The increase in the CT mode intensity shown in
Fig. 5 can be naturally explained within our model.
Indeed, as it is clear from Fig. 3 the integrated
intensity of the CT mode as a function of the system
parameters can be approximated as (see dashed line
in Fig. 3)
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Fig. 5. Temperature dependences of the integrated intensities of
the phase phonons and the CT mode at ~ 38 cm ™' (see Fig. 4).
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where C, is constant and all the parameters as well
except the particle charge.

The latter represents CDW amplitude and de-
creases upon approaching T, ~ 261 K from below.
Due to short-range order the particle charge
remains finite even at very high temperatures.
Now, one can see that CT mode intensity in-
creases upon the particle-charge decrease. To
estimate the latter recall that the pseudogap
value, describing the quasi-particle thermal excita-
tion over the Peierls gap, decreases by factor
2 above the Peierls transition temperature T, [29].
Using Eq. (6), one obtains about 20% increase
in the CT mode intensity suggesting the particle
charge to be decreased by factor 2 above T,. It
should be pointed out, that we suppose the
Column-type interaction between CDW peri-
ods, although it is of much stronger distance (and
probably charge) dependence. Therefore, the
obtained estimation is very likely an estimation
from below.

Note several features of the CT peak. Firstly, in
contrast to the phase mode, its frequency does not
depend on pinning (see Fig. 2). It also does not
depend on the number of particles in the coherent
CDW domain or, in the other words, on the effec-
tive mass of CDW condensate. The latter can ex-
plain why the corresponding frequency has nearly
the same value in such different compounds as
Ko .3MoO; and (TaSey),1 [13, 14].

3. Summary

We have presented a model and experimental
investigation of vibrational spectrum of quasi-one-
dimensional CDW conductor (TaSe,);l. The
microscopic mechanism accounting for the giant
IR peak at frequencies about ~40cm™! in the
(TaSe,),I and based on an assumption about dy-
namical charge transfer between adjacent CDW
periods is proposed. The mechanism is consistent
with the increase in the IR intensity of the 40 cm ™!
peak observed upon heating the (TaSe,),I crystal.
Critical index of the Peierls transition order
parameter has also been determined from the
temperature dependence of the phase phonons
intensity.
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