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1. Introductibn;

The subject of this feview is the far-infrared propertiesAof
randomly inhomogeneous media consisting of mixtures of iwo or more kihds of
small particles. The size of an individual particle (approxim;tely 100 A) is
large compared with atomic dimenéions but small coﬁpared to thé wavelength of
far-infrared radiation (50 to 1000 ﬁﬁ). On the scale of the ﬁavelength, these
inhomogeneous media appear to be homogéneous.and to have a well-defined
effective dielectrié response function. One of the goals of research in this
area is to understand the ways in which the effective properties of an
inhomogeneous medium depend upon the properties of the constituents and their
geometric arrangement in the medium.

The field of inhomogeneous materials has been an active area of
research in recent years, both on account of the intrinsic interest of the
subject and due to possible technological applications of these materials. An
area of basic interest is the insulator to conductor transition or
"percolation transition” which occurs.in these materials and which resembles
in many ways a second-order thermodynamic phase transition; A possible
important application is in the design of materials with useful infrared
properties, such as effigient photothgrmal solar energy collectors. The far-
infrared absorption in small particles is another interesting issue. For
nearly ten years it has been known that this absorption is substantially
larger than the predictions of classical electromagnetic theory. A ceptral
focus of this review will be this long-standing problem, which at present
remains unexplained. |

The next section of this review describes the far infrared
properties of gold biack. This substance has been used fqr many years to

increase the performance of thermal infrared detectors. It is a good example
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of the qualitative behavior of small particle systems in the far infrared.
With this material as background, we discuss in detail théoretical models for
inhomogeneous media in the third and fourth sections. Section V reviews
experimental studies of normal metal and insulator composite systems whereas
Section VI gives both theoretical and experimental details of granular
superconducting systems. The anomalous properties and theoretical attempts to
resolve the anomalies are discussed in Section VII. Section VIII gives a
brief description of layered semiconductor systems. Lastly, Section IX is a
summary of current problems in the area.

There have been no previous reviews specifically about this
subject. The general area of inhomogeneous materiéls has been reviewed by
Landauer (1977) while the properties of granular films have been described by
Abeles et al (1975). A detailed review of the electronic properties of small
metallic particles was recently made by Perenboom, Wyder, and Meier (1981).
cher articles which have touched on the subjects with which we are concerned
include studies of surface phonons by Ruppin (1973), by Genzel and Martin
(1973), and, recently, by Martin (1983), the reviews of percolation by
Kirkpatrick (1973) and Shklovskii and Efros (1975), a review of disordered
solids by Bottger and Bryksin (1976), a survey of the properties of
interstellar dust by Huffman (1977), a discussion of the bounds upon the
dielectric constant by Bergman (1978), an artiéle about amorphous solids by
Zallen (1979), and a review of quantum size effects in small particles by
Marzke (1979). Reviews of the far-infrared properties of homogeneous
materials which bear on our analysis include Mitra and Nudelman (1970),
Chantry (1971), Hughes (1971), Méller and Rothschild (1971), Robinson (1973),

Wyder (1976), and Perkowitz (1983).



Ii. Example: Gold black.
A. The material.
Gold black has been used for many years as a coating for thermal
receivers of infrared radiation (Harris et al, 1948, Harris and Beasley, 1952,
Harris and Loeb, 1953, Harris, 1961). fhese samplés»are prepared by
evaporation of g§1d metal in the presence of 0.1 to 10 Torr pressure of an
inert gas. TheAgasés used include N,.Ar and He, sometimes with an admixture
of oxygen. This procedure allows the production of a highly'absofbing layer
of gold small particles. The performance of infrared detectors is enhanced by
the application of gold black, because the black increases the amount of
_radiation absorbed without adding greatly to the heat capécity of the
detector. |
Electron microscope examination of these materials (Harris and
Beasley, 1952) show that tﬁey consist of small gold particles about 100 A in
diameter, aggregated into chains. Samples made without the presence of oxygen
are usually found to be conducting and to be highly absorbing in the infrared;
this class of materials is called "gold black”. Those ﬁade with the oxygen
are usuélly electrical insulators and,_although absorbing in the visible, are
relatively transparent in the infrared; this second type is called "gold
smoke".
B. Infrared‘measurementsri
Harris and Loeb (1953) reported the transmittance and reflectance of
‘gold black from 22 to 100 cn while Harris (1961) gave data from 100 to
700 cm~ 1. In these conducting blacks, the trausmittance below 100 <:m"v1 is
nearly consﬁanf, determined by the sheet impedance of the sample; at higher
~frequencies the "absorption increases as a roughly.linear or perhaps somewhat

slower function of frequency. The magnitude of the absorption coefficient at
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a frequency of 200}cm"1 was a = 200 cmﬂl. Typical data for three samples are
shown in Fig. 1,.after Harris (1961).

Harris and Beasley (1952) showed mid-infrared transmission data,
covering 700 cm_l to 10,000 cm-l, for gold blacks and for gold smokes. The
absorption of the blacks is strong at all frequencies. It increases slightly
wity increasing frequency and has a broad maximum around 2000-3000 eml. 1In
contrast, the smokes have high transmission at low frequencies but show an
intense absorption above 5000 cm'l, with a maximum at 12,000 cm~ 1. -

c. Discussion of the gold black data.

The gold black and gold smoke samples differ primarily in that the
blacks are condﬁcting and the smokes are not. Thus, the blacks are above
their percolation transition; their far-infrared absorption is governed by the
effective conductivity ( 1 to 10 Q-lcm_l, relatively low for a metal but still
large enough to dominate the optical properties). The smokes, with an
insulating oxide coating on each metal pafticle, are well below their
percolation point and the absorption is characteristic of isolated grains.

The strong absorption in the infrared is s resonant absorption of a small

particle. Theoretical models for both types of absorption processes are

discussed in the next section.



III. The basic theory
A; The effective response functions
1. The dieiectric function of a homogeneous substance.

We begin by considering a pure, isotropic, homogeneous substance
which is subjected to an external electromagnetic field of frequency w. The
response of thié medium to the applied field can be characterized quite
generally by a frequency-dependent permeability, u(w) and qomplex dielectric
function, e(m). We write the latter quantity in terms of its real and N

imaginary parts as:
e(w) = e, (w) + 4l o, (w) : (1
: 1 w 1

The quantity el(w) appearing in‘Eq. (1) is called the real dielectric function
while 61(w) is the frequéncy-dependent conducﬁivity. In the zero-frequency
limit, 81(0) becomes the static dielectric constant.and 01(0) the ordinary dc
~electrical conductivity.

That this definition of e€(w) 1s a reasonable one can be shown

easily. 1In the absence of free charges, Maxwell's equations are:

veD = 0 (2a)
VB = 0 (2b)
' ¥
1 3B
= -+ 98 2
VxE T (2¢)
by D)
Uil = 2T F 4 13D (2d)
c c ot
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with the usual definitions

+ UL
of E (electric field), D (displacement vector),

>
i (magnetic field), i (magnetic intensity), and J (electric current

density). For linear materials (as we will assume throughout) linear

relations exist among these quantities:

(3a)

B=elﬁ=§+4u§
A =,01§ (3b)-
A=%/u=28 -4l (3¢)

<>
" where ; is the electric dipole moment per unit volume, M is the magnetic

dipole moment per unit volume, and p is the magnetic permeability.

These equations may be simplified further by assuming plane wave

solutions for E and B:

substituted into Maxwell's

> >
E = ﬁgei(k'r - wt) (4a)
> >
B2 B tler = wt) - (4b)
where k is the wave vector of the light. When Eqs. (3) and (4) are
equations, we find
kKeE =0 (5a)
o

> > .

kB =0 (5b)



k= 95 (5¢)
o co _
o bui > w3
kao "L’B’“l o T celEo) (54)

Eqs. (5a) and (5b) show that the light is transverse, with
. | . .
k perpendicular to £ and B. The vector parts of (5c) and (5d) show
> > > =+ >
that E and B are likewise perpendicular, with k, E, and B forming a right-
handed set. Simultaneous solution of the scalar parts of these last two -

equations, gives

- 4ri 1/2 _
k = c[u(el +-—a-01)] =N (6a)
BO = NEO (6b)

where N=n+ik is the complex refractive index of the substance; n is called the
refractive index and x the extinction coefficient.
Finally, with the definition of the complex dielectric function

given in Eq. (1), there is a simple relationship between N, €, and u

N = Yeu (7
The flow of energy through the system is governed by the Poynting
> ' '
vector, S:
, 22D

- %;Re(gxg*) =_§;£|E6| ne °© (8)

~ A A

where k is a unit vector in the propagation direction. Taking k=x the

intensity I=(4n/c)|§| is



I=1Ie & : (9)
(o]

where o is the absorption coefficient, defined to be
a = 2%( = ZgIm(/EE) (10

Thus, the abéorption coefficient of a substance~—a commonly measured quantity-
is governed by the dielectric function and the permeability of that substance.
As might be expected the real and imaginary parts of the complex *
dielectric function are not independent quantities. First, they are related
by the Kramers-Kronig relations (for a discussion, see Wooten, 1972):
w © (w')
1
e, (w) =1+ SP([ ———sdw' (11)
1 ' 2 2
0w -
where P means "principal part”. Second, they satisfy certain sum rules, the

most important of which is the f—sum rule:

2
J g l(uo')dw' =-127—£3- (12)

where n is the total electron density in the medium, e is the electronic
- charge, and m is the mass of the electron. Subject to these constraints,
€(w) depends primarily upon such properties of the medium as the free carrier
density and lifetime, the phonon spectrum, any electronic band'gébs, and the
details of the band structure. If the material is inherently anisotropic, as
for example a one-dimensional conductor or a good metal in a strong magnetic

field, the dielectric function becomes a tensor quantity. So long as the



medium is perfectly homogeneous, however, its response to external fields is
still well charécterized.
2. The Drude dielectric functiﬁn

The simplest model for the dielectric function of a metal is dge to
Drude and Sommerfeld (See Kittel, 1976).A According to this model, when the
electrons in a metal are subjected to an electric field the entire Fermi
surface is displaced rigiély in a direction opposite to the field direction
(because the electronic charge is negative) by an amount proportional to the
current density. This displacement is caused by a balance between the force
exerted on each electron by the external field and the scattering of electrons
across the Fermi surface. The relaxation raﬁe is 1/1= vF/l, where vp is the

Ferml velocity and £ the total electron mean free path, which is determined by
the probability of collisions between electrons and imperfections such as
phonons (giving lp), impurities (21), and the sample surfaces (ld). If the

scattering processes are independent, then the rates add, so that

=%__+_’1L__+%_+... (13)
P i d '

el

The Drude dielectric function is

2
w

e(m) = E“ - -—-Z——E-'—— (14)
o + iw/T

where €_ is the dielectric constant of the atomic cores (typically 1 < €, < 3)

and wp is the plasma frequency of the electron gas,

. 4wne2 ‘
e = e (15)
s

p . 1




Using Eq. (1), the real dielectric functiog within the Drude model is
w

el(m) =c - —5——2———2 - (16)
w + 1/t

while the frequency dependent conductivity becomes

w 21/4w.
o = TTAT o

Typical values for the plasma frequency for ordimary metals are in
the fange 5 to 12 eV (40,000 to 100,000 cm-l). At room temperature,
electronic mean free paths are 50 to 500 A, making the relgxation rate 300 to
3000 cm™!. (Note that in cm_l, 1/T=VF/2wc£.) Pure metals at low temperatures
have mean free paths often 1000 times the room—temperature value, so that the
relaxation rate can be <1 cm . For nmany of the systems considered here,
however, the mean free path is limited by surface scattering to 100 A or so,

making the relaxation rate larger than typical far infrared frequencies (2-200

cm_l). Thus the far infrared is often equivalent to zero frequency, where the

dc conductivity is

w 21
O'0 = Thq (18)
and the static dielectric function is
€ =€ ~-w 212 ® —y 212 (19)
o «© P P

(Note that with wp and 1/7 in cm-l, the conductivity in practical units, .
..1 —

Q "-cm, is 0 = w 2'r/60. )
0 p

In metals physics, and particularly for suberconductors, a complex

-10-



conductivity, o(w)= 9 + 102, is often defined. This quantity is related to

the complex dielectric function by

e(w) = g, + é%%a(m) (20)
or
o(w) = —-%%[e(w)—ew] (21)-

Clearly ol'is still given by Eq. (17). The imaginary part of the complex

conductivity within the Drude model is

w 212/4w. -
o, = P ' (22)

2 1+ w212

(Finally, we note that in this review we have taken an e—th time
+
dependence for the electric and magnetic fields. Had we chosen an e fwt time
dependence, the sign of every imaginary part would be changed; the complex

conductivity would be o=¢ —ioz, for example. This latter time dependence was

1
often used in optics in the past; in quantum mechanics the convention that we
have chosen is the more common.)
3. The response of an inhomogeneous medium.
The situation is greatly complicated if the medium is not spatially
homogeneous, but instead has physical properties which vary throughout the
material. The manner of the variation may be random, may be periodic, or may

be ordered in some other way; in all cases the dielectric function and

permeability become functions of position

-11~-



e = e(r,w) (23a)
u o= u(t,w) , (23b)

In writing Eq. (23) (or Eq. (3) for that matter) we have used a loéai response
function; namely, we assumed that the response of the medium at point ;
depends only on the values of the fields at that point. This assumption is
equivalent to taking the scale over which the dielectric function fluctuates
to be large compared to such‘quantities as the electronic mean free path.

As an example of an inhomogeneous medium, consider a random
composite made from metal small particles and insulating grains. The
dielectric response function of each constituent is assumed to be well
understood. The metal could be approximated by a Drude dielectric function
with 1=« while the insulator has a dielectric function that is mostly real and

nearly unity. Thus the spatially varying dielectric function has two possible

values:
© 2
1 - —g—-= - 101°/w2(1n cm’l) ; in metal
+ A
e(r,u) = . (24)
ei = 1 r in insulator

Obviously, the local properties of this material will vary dramatically
depending upon whether ; is in the metallic or insulating component of the
composite.

Although it is true that the functions e(;,w) and u(;,w) completely
describe the electromagnetic response of the medium, this description is not a
very useful one because to employ it would require a knowledge of the exact .

geometric location of the constituents. Generally, this information is

-12-



dnavailable; in addition, the interesting quantity is the average response of
the inhomogeneoué medium to externél fields, not the local response.
Fortunately, so long as the scale on which measurements are made (the
WaVelength) is large compared to the scale of the fluctuations of the
dielectric function (the particle size), the inhomogene§us medium appears to
be uniform in its response to external fields and can thus be described by an
effective dielecﬁric function, eeff(w) and permeability ueff(w).' The problem
with which theériesbof inhomogeneous media are confronted, tﬁerefore, is in.
its most general terms the fbllowing: given an inhomogeneous medium that has
a well-defined local dielectric function g(;,m) and permeability u(;,w), how
can the effective response functions of the enpire medium be determined?

4, The effective medium

Historically, the problem of calculating ee and ueff has been

ff
addressed from two rather different points of view. The first is a molecular
field model originally developed by Clausius, Moésotti, Lorentz, and Lorenz to
calculate the local field in a crystal and later applied to the optical
properties of an inhomogeneous medium by Garnett (1904, 1906). Garnett's
papers were about the colors of stained glasses containing metallic
inclusions. Because his full nahe was James Clark Maxwell Garnett, this model
has become known as the Maxwell-Garnett theory (MGT). The second point of
view is a symmetrical effective medium approach, initially develoﬁed by
Bruggeman (1935) .and rediscovered by Landauer (1952). The application of this
model to opticél properties were first suggested by Springett (1973) and by
Stroud (1975). This model is generally called the effective medium
approximation (EMA), although both it and the MCT are in fact effective medium

theories. Each provides an expression for the dielectric function of a

homogeneous medium which has properties effectively identical to those of the

-13-



inhomogeneous medium.

Each theory (and most subsequent developments) begins wifh a major
simplification. The local dielectric function e(;,w) of the inhomogeneous
medium 1is assumed/to take on a limited number of discrete values (typically'
two) rather than being allowed to vary over a continuous range. This
simplification corresponds to the example already discussed: the system is a
disordered composite, a random mixture of many grains each of which by itself
has spatially uniform properties. The composite is characterized by -
specifying the volume fraction, dielectri¢ function, shape, and size bf each
grain type. Each grain is then taken to be a polarizable entity,_with
electric (and magnetic) dipole moment induced by electric (and magneﬁic)
fields from external sources as well as from the fields of the polarized
grains in the outside medium.

The principal difference between the MGT and the EMA is the way in
which the medium-surrounding the grain under consideration is treated. This
difference is illustrated in Fig. 2. In the MGT it is assumed that the medium
surrounding the grains is one of the constituents of the mixture (for example,
the one with the largest volume fraction) while in the EMA it is assumed that
the surrounding medium is characterized by the effective properties of the

inhomogeneous medium.

14—



B. Response of a single grain.
1. Quasistatic model: Electric dipole moment
The initial step in the solution for the effective properties of an

inhomogeneocus medium is to fina thevelectromagnetic fields inside and outside
of a single particle when that particle is subjected to a'plane wave field.'
For simplicity we will assume for the moment that all particles are spherieal,
deferring until a later section the discussion of the response of ellipsoidal
and cylindrical particles. 1In the long—wavelength limit,lc/w>>a, the applied
fields appear to be spatially uniform and to have e—'imt time dependence. The
particle in this quasistatic limit has only dipole moments; these momeqts are
time varying so that electric current flows. The electromagnetic power
dissipation 1s proportional to the integral of j-ﬁ thoughout the volume of the
particle. |

The electric dipole moment is
; = Qy o 1wt (25)

where Q is the volume and Yo is the electric polarizability per unit volume of
the particle, given by the solution to the static boundary value problem of a

dielectric sphere in a uniform far field (Jackson, 1975):

(26)

3¢ (e - ¢)

_ o 'p "o
Ye " %r e+ 2¢_)
P o

In Eq. (26) ep is the complex dielectric function of the particle and €, is
the complex dielectric function of the medium outside the particle. The

electric field outside the particle is that of a dipole with

-~15-



moment ;. Inside, the electric field is

3e
o) > —iwt
p T Tv I B 273
P [o]

o4
i

Note that this field is uniform and parallel to the external field. The
difference between Eo and Ep is called the depolarizing field.
2, Eddy currents: Magnetic dipole moment

Although it may seem that Eqs. (25)-(27) would specify fully the .
response of the particle to fhe applied plane waves, it turns out that in the
far infrared frequency region magnetic dipole (or eddy current) behavior is
often even more important. This effect, which causés the medium to have a
nonzero magnetization even though the constituents are nonmagnetic, has been
discussed by Tanner, Sievers, and Buhrman (1975), Stroud and Pan (1978), and
Russell, Garland and Tanner (1981). The magnetic dipole moment is

proportional to the magnetic field strength of the far infrared radiation,

4 i e—imt . (28)

where Ym is the magnetic polarizability per unit volume. When vacuum
surrounds the particle, this quantity is given by the solution to the boundary
value problem of a conducting sphere in a spatially uniform but time varying

magnetic field (Ford and Werner, 1973):

3 jz(ka)

Yo T 8w jo(ka) (29)

In Eq. (29) k = (w/c) Vsp is the wave vector of light travelling in an

infinite medium of dielectric function ep. The functions

-16~




sinx
X

jo(x) =

and

. 2 .

. 3sinx -~ 3xcosx - x sinx
Jp(x) = 3
N p.4

are spherical Bessel functions. On substitution, the magnetic polarizibility

-

becomes (Landau and Lifshitz, 1960):

= [2—, -1~ cot(ka)] - Qo)

3
Y —_—
m 8n (ka) (ka)

At low frequencies, Eq. (30) reduces to a simple expression for the

polarizability:

2 .
21 22 _ 1 o 2 2
Tn = Fow kia” = 4om 22 ¢ a Ulp (31

~le

1
+ 1 ==
o 1p 10 c

Tﬁe low frequency limit here differs from the long wavelength (wa/c << 1)
limit. The low frequency limit is reached only when ka = /E;ma/c <« 1.
Because the fa; infrared dielectric function can be very largé, a particle may
be in the long wavelength limit but not in the low frequency limit. (Note
that the low frequency limit is essentially identical to requiring that

a << 6 , where § is the electromagnetic skin depth.)

Althéugh the curreats inside the particle are not uniform (at low
frequencies they correspoﬁd to those of a uniformly charged sphere rotating
with angular velocity w) the fields outside are those of a magnetic dipole of
moment ;. This equivalence leads one to define a pseudo-permeability u for

the particle. The motivation for the definition is that eddy current effects

=17-
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EY
have caused the particle to have a definite dipole moment, m, and this moment
is equivalent to that of a sphere with permeability up in a uniform external

field. The permeability,

4uy

m
=1+ ——— (32)

3 'm

is a complex quantity because ep and hence Ym are complex. The imaginary part

of the permeability will govern losses in the particle. Note that at low

frequencies
u =1+ 5=k"a (33)

3. | Mie theory.

A rigorous solution for the fields inside and outside of a spherical
particle subjected to plane wave irradiation was first given by Mie (1908) and
by Debye (1909). As described by van de Hulst (1981) and by Born and Wolf
(1975), this solufion to ﬁaxwell's equations (or, what is equivalent, the
vector wave equations for B and g) for the case of plane waves,incident on a
sphere of arbitrary size and complex dielectric function gives exactly the
fields inside and outside the sphere. The solution is obtained in terms of a
pair of series expansions for the fields in spherical Bessel functions and
Legendre polynomials--essentially, a multipole expansion. The arguments of
the Bessel functions are ka = /E;wa/c and koa = /E;wa/c where €, is the
dielectric function of the medium surrounding the sphere. This expansion
yields the cross section Ce for extinction (extinctién = scattering plus
absorption; in the far infrared, it is mostly absorption) which is related to

the real part of the forward-scattering amplitude function S(0) by
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e 2
w

N Re[s(0)] | (34)
where No = /E;. S(0) is in turn given by the series

5(0) =3 £_ (20 + 1)(a_ + b)) - (35)
The terms a, and b, appearing in Eq. (35) are called the M;e coefficients. *
The a, are known as the electric partial waves or TM waves while the b; are

called the magnetic partial waves or TE waves. These quantities are given by

the following expressions:

N Oy (8 0-N (N )y ' (N x)
%n T Nw'WxﬂwmxH1MWXva(Nﬂw mx>+unmxw

(36)

N ¢ '(N x)w (N JFIN ¥ (N X)w "(N %)

bn N w (N x)[¢ (N x)+ixn(N x)j;N b (N x)lw (N x)+ixn (N x)J

In these expressions, Np = /Eb is the complex refractive index of the particle
and x=wa/c is a reduced particle radius. The functions wn and X, are
Riccatti~Bessel functions (with the prime denoting a derivative), which are

defined in terms of the ordinary spherical Bessel functions to be:

dj _(2)
“pn(z) = zjn(z) ‘pn'(Z-) = jn(Z) + z ——d-z——
dj_(z)
Xn(Z) = znn(z) xn'(z) = nn(z) + z ~fzﬁ;——
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If n=1 (dipole terms),

sinz ! sinz cosz X
= - = e ame— +
wl(z) - cosz wl(z) 7+t = sinz
coSz ! cosz sinz
AXI(Z) ' == - sinz | xl(z)_ 22 + > cosz

When the external wavelength is long, or the particle size is small,
so that wa/c<<1l, only these n=1 terms in Eq. (35) remain. This great -
simplifica;ion holds even when Npma/c)l, because.what is importanf for
truncating the series is that the field in the absence of the particle be
spatially uniforﬁ over the dimensions of the particle. In this limit, those
Riccatti-Bessel functions which aré functions of N x (but not those which are
functions of pr!) may be replaced by their leading terms. After some
algebra, the electric partial wave becomes:

€

0
N - T Ve i S Sl (37)
1 3 oc¢ ep + Zeo - F(w)

In this expression, F(w) is a correction to the quasi-static limit of section

III-B-1, above,

2
- _(3-y )tany - 3y
Flw) = tany - y

with y = pra/c

The Mie expression for the electric polarizability is then

Y= A ()

N wa al
o)
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where a; is given by Eq. (37) so that

€
o
. - 350 ep - €, + 7_F(w)
e 4n € + 2¢ - € F(w)
P [+) [

The magnetic partial wave is

L (yuay3 30 cot(N ) - 3 _j2 _ L [y a2
by =5 (8= [+ f—geot (8 ) 3(Npma) 5 =)

1f No<<Np, as has been assumed here, the magﬁetic polarizability

_9 ¢ 43
Yo = B (wNoa) b

1

1s the same as given in Eqs. (29) and (30).

(38)

(39)

The only difference between the Mie series expressions for the far—

infrared electromagnetic response of small particles. and the simpler models

given earlier in this section is the inclusion of the function F(w) in the

electric dipole term. For pra/c((l, this quantity becomes

F(w)= epwzaz/Sc2 and may be neglected completely with respect

to_ep. Numerical calculations show that this quantity becomes significant omly

for particle sizes above 10 um; it is never as important as the magnetic

dipole term for the far infrared absorption.

-21-



C. Effective medium theories.

1. Average fields

We will define the effective dielectric constant and permeability of
the inhomogeneous medium in terms of volume-averaged fields, <E> and <ﬁ>, and
responses <ﬁ> and <§>. (It is also possible to work with the volume averaged
dipole moments per unit volunme, <§> and <§>‘, the choice being entirely a
matter of individual prgference.) 1f fi is the volume fraction of the ith

component of the medium, then the average electric field is, , -
<> = ot E (40)

with analogous definitions for 2D>, <§>, and <.
For siﬁplicity we will assume a two‘component composite and label
these constituents type a and type b materials. If f is the volume fraction

of type a, then (1-f) will be the volume fraction of type b, so that the

average fields are:

@& = ff + -6)F

a b
> 3 ' + (41)
<D> = fe E + (1-f)e.E

a a b'b

and
KD = f ﬁa + (1-f)§b
(42)

3. 3
<B> = fufi + (l-f)ubﬁb

where we have used the lecal relationships 6i=eiﬁi and §i="iﬁi’ The effective
dielectric function and permeability are defined in terms of the average

finlds:
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<3>=eé & (43)
Bo=p__ <> | (44)

When we write Eqgs. (43)Iand (44), Qe take the poiné of view that the
interesting property of the medium is the éverage response to eitgrnél fields;
the external fields are just <E> and <ﬁ> while <3> and <§> are the responses.
to those filelds. (Note’that by our definitiﬁn of the complex dielectric -
function, Eq. (1), we have ihcluded the current density <3> in <3§.)

2. Maxwell-Garnett dielectric function.

The Maxwell-Garnett theory is impiicitly a model for‘a diiute
system. According to the MGT, a single graiﬁ‘éf dielectric function ea is
assumed to lie at the center of a éavity (the Lorentz cavity) carved out of
the interior of the.inhomogeneous medium. All other type a grains are
excluded from this cavity, whose remaining space is assumed to be filled with
a medium with dielectric function sb. Thus the local field at the grain is
the superposition of the uniform applied field and the uniform field from the
charge located on the cavity surface. (As discussed by Landauer (1978) in his
review of inhomogeneous materials, one way to exclude other grains from the
cavity is to cause the cavity tightly to jacket the grain. A more common
approach is to assume that the dipolar fields from those neighboring grains
which are inside a large cavity sum to zero in the vicinity of the central

grain.) With this assumption, the electric field inside the grain is uniform

and found by substitution of ep=ea and €,=€y into Eq. (27):

B o= £ T (45)
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Combining Eqs. (41), (42), and (45), gives, after some algebra, the Maxwell~
Garnett expression for €off which we label meT’

3f(ea~eb)

b T € (=D)(e,-¢,) + 3¢, (46)

€ = €

MGT
“Eq. (46) illustrates. two properties which are characteristic of the

MGT approach to inhomogeneous media. First, the equation is inherently

asymmetric in its treatment of the two constituents: different values are "

obtained for € T depending on whether, for example, ﬁe regard the composite

MG

as consisting of metal grains embedded in insulator or the other way around.
Second, the equation gives a smooth variation of €MGT with volume fraction,
from 2 when £=0 to €, when fsl; That real physical systems do not always
behave in this fashion may be seen by considering the low-frequency behavior
of an inhomogeneous medium for which aa=1 and eb=4wicb/m, i.e., material a is
vacuum and material b is a metal. At f=0 the MGT conductivity is just Oy As
f increases, holes appear in the medium and the effective conductivity will
decrease. According to the MGT, the conductivity will remain finite all the
way to f=1, when no conducting component remains. In reality, however, the
medium is likely to stop conducting at a lower value of f, when the
nonconducting regions occupy enough space to block curreat flow through the
sample.”™ This “percolation threshold” is not predicted by the MGT; it is, in
fact, specifically excluded by the assumption that the embedded grains do not
contact one another. In applications of the MGT the asymmetry énd the absence
of a percolation transition can be handled in an ad hoc fashion by assuming
that as the volume fraction of one constituent increases from zero to one its

role changes from that of inclusion to that of host.

Despite its shortcomings, the MGT is generally believed to work
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reasonably well in dilute mixtures, where the grains of the minority
constituent are well separated. More geﬁerally, Hasﬁin and Shtrikman (1962)
have shown that the MGT expression, Eq. (46), in its zero-frequency limit

_ represents bounds to the'actual conductivity of a two—component heterogeneous
medium, an upper bound if oa<cb and a lower bound if 6b<0a.

The MGT approach to‘thé propertiés of inhomogeneous média has been
rediscovered and elaborated numerous times over the past 80 years, including
work by Doyle (1958), Galeenmer (1971, 1976), Genzel and Martin (1972), Barker
(1973), Weaver et al (1973), Cohen et al (1973), Abeles et al (1975),
.Grangvist and Hunderi (1977a, 1977b) and Lamb et al (1980). As an example,
let us consider the case of small metal particles embedded in a mediuﬁ with
dielectric constant g =1, For the metal we assume a simple Drude dielectric

b
function, Eq. (14) with ¢ _=1:

2
(l)p 4
€, =1 = ~ (47)
o +iw/T

Under these assumptions, the MGT dielectric function becomes

£ 2
wP
Cwer =1t T3 2 (48)
w T-w- iw/t

The effective dielectric function will exhibit a resonant absorption when the

frequency of the light equals the Maxwell-Garnett resonant frequency, wo.

v, = u VD73 (49)

(o]

This resonance arises physically from the fact that the Drude dielectric

function of a metal, Eq. (47), is negative below the plasma frequency and can
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thus cancel in the electric polarizability, Eq. (26), the positive dielectric
constant of the surrounding medium. More sophisticated models, in which thé
outside medium has dielectric constant € and the metal has a core

contribution €_ in its dielectric function, become algebraically more complex

but retain the Lorentzian form of Eq. (48). The resonance frequency is

shifted in this more general case to

w, = wp (l—f)eillf%2+f)eb ) (50).
3. Maxwell-Garnett permeability.
‘ The permeabiiity of a inhomogeneous medium containing grains thaf
have a net magnetic polarizability may be calculated in a way completely
analogous to that used to calculate the dielectric function. The permeability

is identical in form to Eq. (46),

3f(u_-1)
u =1+ a

MGT (=5 (a_-1) + 3 1)

except that we have set the permeability of the insulator eqdal to unity. Eq.
(51) is an interesting result: Although containing no magnetically
polarizable substances, an inhomogeneous medium in an exteinal magnetic field
possesses a net magnetization. This magnetization results ffom the eddy
currents circulating around metallic inclusions in the medium.

4. Mie expressions for the dielectric function.

The‘Mie theory is mainly concerned with the properties of a single

particle, as described in section III-B-3. For a medium containing n
particles per unit volume, the absorption coefficient 1s related to the cross

section for extinction by
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a= nCe (52)

Eq. (52) contains two implicit assumptions (first, that only single scattering
events occur, i.e. that light which is scattered out of theAbeam by one
particle is not subsequently scattered back into the beam by an encounter with
a second particle, and secoﬁd, that no interference occurs in the light
scattered by various particles) which restrict it to the case of a random
medium of very low density. The complex dielectric function of this medium is

given by

€ =-¢_+ i¢ éﬁii s(0) (53)
bt 1% 33

where eb.is the dielectric function of the medium surrounding the particles

and we have substituted f =-£% a3n . Eq. (53) is equivalent to the Maxwell-
Garnett dielectric function in the small volume fraction, long-wavelength
limit.
5. The effective medium approximation.

| The second major approach to the theory of inhomogeneous media, due
to Bruggeman (1935), is generally called the effective medium approxi@étion‘
(EMA). 1In this discussion we will again restrict ourselves to a two—-component
medium made up of spherical gréins. The first component has dielectric
function €, and is present with volume fraction f while the second has € and
the remaining volume fraction, (1-f).

In contrast to the MGT, the EMA has the attractive feature of

treating all constituents of the medium in an equivalént way. It achieves

this symmetry by regarding an individual grain (which may be either type of

material) as being embedded in an otherwise homogeneous "effective” medium
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which is assumed to possess the average properties of the medium. When placed
in an external field, the grain in question will be polarized; the field
inside is given by Eq. (27), with €, equal to the effective dielectric

function EEMA

3e

. EMA o ~{wt
E = ———— e (54)
P ep+28EMA eff

where ieff is the effective field in the surrounding medium. This field is,

‘chosen in a self—-consistent way so that the electric field in the medium, when

5 .
summed over all the grains in the medium, equals Eeff' This self-consistency
condition may be incorporated into the théory in a number of ways; the

simplest is to set ﬁe equal to the definition of the average field, Eq.

£f
(41),

3 +> )
E .= + (-DF _ (55)
and then substitute Eq. (54) evaluated for the fields inside the two kinds of
grains. After a little algebra, this procedure yields a quadratic equation

for €EMA® conventionally written as

€2 %EMA €b " EMA

f —5——+ (1-f) ———m—— =0 (56)
ea+2£EMA eb+2eEMA
. <>
This quadratic equation may also be obtained by using Deff=€EMA§eff’ with
Beff=<5>’ Eq. (41). The solution to Eq. (56) is
_B 1 2
Ceva % E T /g + 85aeb (37)
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where
B = ea(3f-1) +‘eb(2-3f)

and where the sign of the'squarevroot is chosen such that Im(eEMA)>O.

The EMA differs from the MGT in twohimportant ways. First, the
equations treat each of the constituénts of the medium on an equal basis. The
EMA is thus a symmetric theory and is not restricted to a particular range of
concentrations. Second, the EMA predicts a metal-insulator transition at a
critical volume fraction (for spherical grains) of 1/3. To demonstrate this
second point, we assume that the imaginary part of the complex dielectric
function dominates the real part és w =+ 0, so thét Ea = 4wiaia/w>>l .

If, in additiom, 61b=0, Eq. (53) may be solved to find
0 - £<1/3

= ' : (58)

3f-1 ‘
—— £>1/3

O1EMA
(4]

1a>
The EMA may readily be.extended to systems more complicated than the
one considered here. Some of these generalizations will be discussed in
subsequent sections of this paper. Fo; metal-insulator comﬁosites, with low
metal volume fraction, the theory gives a broad absorption peak centered near
the Maxwell-Garnett resonance frequency.
6. Effective medium permeability. .
The analogy between dielectric function and permeability continues

in the case of the EMA. The permeability thus is the solution (with positive

imaginary part) to

u_—u -y ,
ﬁ__ixfgﬂé_ + (1-f) _Tiigﬁé__ =0 (59)
Ha TeVEMa YEMA
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. where the insulator has u =l.

b
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1v. Discussion of the theory
A. Numerical examples.

In this section we show the results of model caléulations using the
tﬁo-component MGT and EMA of the previous sectidns. We have taken the
metallic portion of the composite to have a Drude dielectric function, Eq.
(14); and the insulating portion to ha&e a real, constant dielectric function,
tybically ei=4..

Fig. 3 shows the MGT (left panel) and the EMA (right panel) R
frequency—dependent conductivity over the entire frequency range from dc
to mp for metal volume fractions of 0.1, 0.3, 0.6, and 0.7. The MGT was
inverted for this last concentration; ie, the metal was taken.as host and the
insulator as inclusion. Relatively shoft mean free paths (about 30 A) were
taken in calculating these plots; this choice leads to a broad MGT
resonance. The width of the EMA resonance is intrinsic to the theory.

There are several important points to make gbout this figure.

First, there is no dc conductivity in the MGT when the metal is taken as
inclusion; there is always a finite dc conductivity when the metal is host.

In constrast, the symmetric EMA has a insulator-conductor transition when the
metal volume fraction reaches 1/3, the critical concentration for

percolation. Second, although both models have a broad resonance centered
near the MGT resonant frequency (given by Eq. (50)), this fesonance has
greater width in the EMA. The low frequency edge of the EMA resonance moves
to zero frequency at the percolation transition (Stroud, 1979); this effect is
seen In the curve for the f=0.3 sample in Fig 3. Third, (although this point
is hard to see from Fig. 3) for small concentrations, the MGT and the EMA give

nearly identical results for the low-frequency conductivity.
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Fig. 4 shows the electric dipole contribution to the far-infrared
absorption (using either the MGT or the EMA) for an f=0.0l concentration of
metal in insulator. Curves are shown for three particle radii, a=10, 100 and
1000 A. These curves were calculated using Eq. (46) for the MGT dielectric
function, Eq. (10) (with u=1) for the absorption coefficient, and taking a

model in which the electronic mean free path of the metal (Eq. 15) was

dominated by surface scattering, so that £=a., Note that the strength of the

absorption goes as l/a, that the overall magnitude of the‘absorption is very
small, and that the absorption coefficient is quadratic in frequency over the
entire range. Fig. 5 shows the magnetic dipole contribution to the absorption
coefficient (using either the MGT or the EMA) for a fQO.Ol concentration of
metal in insulator. Curves are shown for radii of a=100, 300, and 1000 A.
(The curve for a=10 A could not be plotted on this scale so we have included
a=300 A instead.) These curves were calculated using Eq. (29) for the
magnetic polarizability, Eq. (32) for the permeabili;y, Eq. (51) for the MGT
permeability, and Eq. (10) (with e=4.0) for the absorption coefficient. We
again have put £=a in the metal dielectric function. Note that the étrength

3at

of the absorption increases rapidly as the radiué increases (it goes as a
low frequencies) and that, although the absorption coefficient increases
quadratically at low frequencies and for small sizes, it is tending to
saturate at higher frequencies for larger sizes. The magnitude of the
absorption coefficient is substantially larger tﬁan in the electric dipole
case. The combined absorption is not really distinguishable from this eddy
current term.

The saturation of the absorption coefficient at high frequencies is

a result of the skin effect. As the size or conductivity of the particle

increases (ka = a/8 is the important parameter) the eddy curreuts flowing near
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the surface screen the interior of the particle from the external fields.
Consequently, the volume in which currents‘flow is reduced along with the
absorption. This effect is clearly seen-in Fig. 6, where the calculated
magunetic dipole contribution to the absofptibn coefficient of 1 um (10,000 A)
‘radii particles is plotted for three values of the dc conductivity of the

particles:vlos, 106, and 107 Q-lcm—l.

(106 Sl“lcm--1 corresponds to a
resistiviﬁy of 1 yi~cm.) 1In this size regime, the absorﬁtion actually
decreases as the particle is made more conaucfing (except at tﬁe very lowest
fﬁ%uencies) because of the dominance of the skin effect. Fig. 7 shows_the
sizé dependence of the absorption coefficient at a single frequency (70‘cm~1)
as a function of radius, again for three conduétivity vaiues. The arrows show
the radius for which a=8. The tendéncy is for the absorption initially .to

increase with size and then, once the radius is a little larger than the skin

depth, to decrease.
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B. Expansion at small volume fraction and low frequency

In this section we discuss the pfedictions of effective medium
theories for a composite medium made up from metal (represented By ;ubscript
a) and insulator (represented by subscript b). We will assume that three
conditions hold. First, we will make the metal volume fraction be small (in
comparison both to the insulator volume fraction and to the critical volume
fraction for percolation): f<<1{ >In this regime, the EMA and MGT reéults for
the effective response functions are numerically the same. Second we will °
assume that we are in the loﬁ frequency regime for thg metal, wd<l/1, so that
the metal conductivity is close to the dc value. On account of this limit, it

is also true that Iea|>>|e i.e., the metal dieletric function is much

o
larger than that of the insulator. Finally, we will assume that the frequency
is sufficiently small that the electromagnetic skin depth is large combared to
- the particle radius: 6&>>a.

To obtain our small-concentration, low-frequency limit for the.

dielectric function we expand Eq. (46) to first order in f and assume

that Re(eb)>>Im(eb). Then,

€
_ 2 2a
- eb(1+3f)+i9felb 3 > (60)
€ + €
la 2a
(Note: €y = wola/4n.) The low-frequency-limit equations for the magnetic

polarizability of a conducting sphere and the pseudo-permeability of that
sphere are given in Egs. (31) and (33). From Eq. (33) we see that the real
part of u~l while the imaginary part is small compared to one. Thus, the

expansion of Eq. (51) for the effective permeability gives a simple result:
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e 2 N
= 1+3f + ifIm(u ) = 143 +if Zﬂgﬁ—oalz (61)

!
MGT 50

The absorption coefficient is, from Eq. (10),

2 36nce‘ o

_ ot — 1b “1a 2 | -
ayor = £3 76y 53 55t SR 9y, ) + o (1436) (62)
c w ela-+ 167 ola

where o = ngmfgghis the absorption coefficient of the host. The first term
in the brackets in Eq. (62) arises from electric dipole absorption while gpe
second term is due to magnetic dipole aﬁsorption. Note that the absorption by
the host is enhanced by the presence of the small particles (Simanek, 1977).

The ébsorption mechanisms all act in parallel in the low
concentration limit. As a final éimplification, we assume that the host 1is
non—absorbing (ab=0) and that the metal dielectric function has an iwmaginary
part much larger than its real part. (So that we may neglect mela with

respect to 4wo, .) The absorption coefficient becomes:

la

2 9¢ ¢

Qo = fw €
MGT 2
c

b . 27 2

lb[ 4ro + T
la

o (63)

la]

We will compare the results of this model to experiment in

subsequent sections of this review. To simplify this comparison, we write
= (K + K )Ev2 (64
“MeT e m :

where v=w/2wc is measured in cm—l. The strength of the absorption is governed
by the magnitudes of Ke and K, which contain all of the material-dependent

parameters:
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3/2
37 elb

Ke = lO(Ola/SOC)

k= 48r°a%(c,, ) 2(o,, /30¢) (62

Eq. (65) has been written with the term 618/30c because the conductivity
in ﬂ~1cmf1 is found by dividing the conductivity in esu (dimensionally in
sec—l) by 30c. Thus d(esu)/30c = G(R-Icm—l). K, and K both have dimensions
of cm.

Note that Ke = 1/0la while K.m = olaaz. Thus, the electric dipole-
absorption should dominate in very small, poorly conducting particles, while
the magnetic dipole absorpﬁion would be important in large, highly conducting

particles. The two terms are equal when

e
a = 1b (66)

4w/T6(ola/30c)

1f ola/30c = IOSQ'_lcm—1 and €,, = 4, the equality occurs at a = 50 A,

1b
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c. Other shépes, other constituents, other sizes.

In the preceding parts of this section, we have chosen to work out
the effective medium theories for a two—-component mixture of identical size
spherical particles, because these coqditionsvgreatly simplify the algebfae
Now, we sketch the modifications to these theories when each of the conditions
is reiaxed.

1. Ellipsoidal particles.

The dipole moment of an ellipsoid is generally oriented at an angle

to the épplied external field, so that the polarizability is a tensor

quantity,

p = ay - o1t : (67)

with the principal axes of the tensor corresponding to the principal axes of
the ellipsoid. Without introducing additional complications we can also
assume a tensor dielectric function for the particle, 2, so long as the
principal axes of the dielectric tensor are aligned with the principal axes of
the ellipsoid. Then, the electrostatic boundary value problem (Landau and
Lifshitz, 1960) of this ellipsoid in an uniform external field gives an
equation similar to Eq. (27) for the field inside a single grain; except that
. now there are three terms

eo(xj-e)x. ot ‘ (68)

3
E = E e

=] de ), + {1l-g.)e "o
P J=l gyle ), + g, e,

where the sum runs over the three axes of the ellipsoid, [ep)j is a component

~

of the dielectric tensor, and eo is assumed isotropic. The three vectors xj

are unit vectors in a coordinate system aligned with the ellipsoid axes
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and e is a unit vector in the direction of the external field. The quantities
8 appearing in Eq. (68) are the three depolarizatidn factors of the ellipsoid
(Landau and Lifshitz, 1960, Kittel, 1976). The 85> which are determined by

the shape of the ellipsoid, relate the inside electric field along a primcipal
axis of the ellipsoid to the componenf of dipole monent per unit volume vector

along that axis:
E ). = =4ng P, . .
(’ P)J 553

The values for g5 vary from nearly zero (for field along the length of a
needle) to nearly one (for a field normal to the surface of a flat disc); for

a sphere g=1/3. The depolarization factors always add to one:

b

jh 8 71

Along the figure axis (or axis of revolution) of a spheroid the depolarization

factor is in general given by

g, = —s—[itann (e ) - 1] (69)

¢ is the figure axis length, and a is the transverse axis length. If c<a (an

oblate spheroid), e . is imaginary. 1In this case, Eq. (69) may be rewritten

[od

(Granqvist and Hunderi, 1977a):
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1 -1
g, = ‘—'—3——"—[1 - e tan (eoJ]
e o

with e, = /;2/c2 -1= Iecl. Finally, the depolarization factor for prolate

spheroids is often given as

which is equivalent to Eq. (69).
2. Dielectric function fox oriented ellipsoids
An artificial but useful model occurs when we assume thaf the
ellipsoids are oriented parallel to the applied exterﬁal field. Then, only a‘

single term remains in Eq. (68)

€
=S Le) r —iwt :
"p T % e, * (I-g)e_ o° ‘ (70)

The MGT and EMA dielectric functions are calculated as was done for spherical
particles. The MGT equation becomes

_ f(ea—eb)
€ nm = €

Mer - bt & g(I-D) (e ¢,) ¥ ¢ 71

b -

while the EMA dielectric function is the solution (with positive imaginary

pért) to

£ - €
a

> : - _ '
EMA + (l1-f)—D EMA =0 (72)

£ =
. gea + (l—g)eEMA gey + (1 g)eEMA

The chahge in the shape of the particles affects the concentration

-39-



at which percolation occurs within the EMA. We take ea=4ﬂicla/w and eb=1’ and

find that as w0,

0 f<g

g = (73)
f-
1-g ' la f?g

so that g=fc, the critical concentratién for percolation! That fc was 1/3 for
the EMA in earlier parts of this review (Eq. 58) is a consequence of our
having assumed spherical particles.
3. Dielectric function for randomly oriented ellipsoids.
The derivation of the MGT for the case of randomly oriented
ellipsoids begins by writing the volume-averaged électric field and

displacement vectors in the medium as

=2

<E> = (1-f)§b +

(74)

D> = & (1-0)E, + £Y 3

N n=]1‘"a’n

where Eb is the electric field in the host (with isotropic dielectric
function eb) and the sum runs over all of the N grains in the medium. The
displacement vector inside a particular grain is the dot product of the

dielectric tensor of the grain and the field inside the grain
> e A ~
B_ = g=1(ea)j(Ea.xj)xj

On account of the ellipsoidal shape of the particles, both sums in

; 3
L

Eq. (74) contain terms with some components parallel and others perpendicular
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to the applied field. Howevef the transverse componenfs must sum to zero
because by assumption the average electric field in the inhomogeneous medium
is parallel to the applied field. We enforce this condition by taking thevdot
product of both sides of Eq. (74) with ;, define the MGT dielectric function

by <E> = <B>, and use Eq. (68) for the relation between the field inside

MGt
a grain (with dielectric tensor Ea) and the external field. Then

_ “a _
(e.).(e*x.) )
_ £ i‘d J_n
(1-£)_ * N°bnZ1j51 g. (e ), * (l-g )€
) . CRA 1’% (75)
“MGT (e-x,)2
(1-£) +Le ¥ -

N bn=1j=1 gj(ea)j + (1~go)Eb

If we interchange the order of summation in this equation, the sum over
particles becomes an orientational average of coszer

1 .A'A 2_1 2 —1__ 2 =—1‘
ﬁ'n=1(e xj)n = ﬁ-gzl(cos Gj)n =i j4ﬂd9cos 0=

and the MGT dielectric function for randomly oriented ellipsoids is (Sen and

Tanner, 1982).

(ea)j - &

£
=1 g.(e ). + (1-g).e
e, . =€ + € J 2] b

MeT ~ b T % . 1
3(1-f) + fe 3

bij=1 g.te }. + (l-g.)e

| 3=l g le ), + (=g ey

(76)

which reduces to Eq. (46) if g1 = 89 = 83 = 1/3.

As we know, the EMA does not identify either component as the host
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material. For self-consistency, the average field in the composite is equal
to the effective field felt by each grain
ff n=1

N N
=N _f ca (2 (1-f) b
<E> E fr = N, §=1 [Ea)n + “ﬁ;‘" X (Eb)n (77)

where the sums run over all the Na type a grains and the Nb type b grains.

The field inside each grain is given by Eq. (68) with the dielectric function

. of the medium outside the grain being g the effective dielectric function

of the composite, As in the MGT, we also require that the components
perpendicular to the average field sum to zero and equate the sum over
particles to an angular average of cos?6. The EMA dielectric function is the

solution (with positive imaginary part) to the sixth-order equation

gj[(ean - eEMA]

g.[le); ~ el
. e e—* (1-£) .g itNbYg EMA
Bi1€5/4 €5/ EMa

=0
i=1 gj(eb]j + (1 gj)eEMA

(78)

f

e

3

4, Many constitutents
The extension of the MGT or the EMA to media containing three or
more constituents (with spherical shape) is relatively straightforward. For

the MGT, the volume-averaged fields are

3f. ¢
e 2 -1 iH 2
<E> = fHEH + g=1 e, + 2¢,. H
i H
(79)
3f, ¢ €
3 > -1 i Hi1 =
= -—-—-—.——.._E
D> = fed + g

=] Ei + ZeH H

3> : .
€y EH are respectively the volume fraction, dielectric function,

and electric field in that component which is identified as host; fi is the

where fH’
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volume fraction and ei the dielectric function for the ith one of the N-1

other components. We have used Eq. (27) for the field inside a grain in terms

of the outside field. Finally, we invoke a condition on the volume fractions,

l—fH = fi

and the MGT dielectric function is

3 g-l £, (eqey) >
: =] ei + Ze
mor = 1 * £.0ey - &) (80)
1 - g =1 e+ 25

The EMA does not identify a host, so that the average (or effective)

field in an N-component medium is

3f

€
+ i TEMA > >
> =3 g =f (81)
i=1 ei + ZEEMA eff eff
with the condition
LREARE
so that the EMA dielectric function is the solution to
E, — € _
o=§ ¢ L EMA (82)

(82) is a N-order polynomial in CEMA®
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5. Size distribution
Up to this point, we have assumed that all pf the grains in the
inhomogeneous medium were of a single size whereas in real materials there is
an unavoidable variation in the sizes of the grains. Because the particle
size enters the dielectric functidn (through the mean free path) as well as
the magnetic polarizability, it is important to account for size variationms.
Sizes are most easily included in our model of a two-component medium by

assigning to each size of the a-type grainms a volume fractiom
£f .=fP _ (83)

where Pa

is the probability of finding a particle with radius x43 ie, Paj is

J
the jth column in the particle size histogram. Clearly,

so that f_, is the total volume fraction of the a-type mateial. The MGT and
EMA resﬁonse functions resemble those derived for a multiple-—component
composite medium in the preceeding section, except that the sum now runs over
the size histogram rather than the kinds of particles.

We could also assume a continuous probability distribution for the
particle size, Pj=P(x)dx, and convert the sum into an integral. The EMA
dielectric function for a two-component mixture of spherical grains is then
the solution to

e (x) - ¢

o a E
fé Pa(x) ;a(x) + 2¢

ey(x) — epya
ep(x) + 2ep,

e+ (1-6) 7P () dx = 0 (8%)

EMA

1A

bl



where Pa(x) is the probability distribution of sizes x for the type a material

and Pb(x) is for type b.

In contrast, the MGT assumption that type b is host permits only

type a to have any size variation, and

e (x) ~ €

L a b .,
3f [ P(x) e GO ¥ 2o
et = b * & . ea(x) = . (85)
1-f P(x) ——r—————— -
4 ea(x) + Zeb -

Eq. (85) reduces to Eq. (46) for a delta function size distribution.



D. Modern theories of small'particlé.composites.

In this section we outline recent theories for composite systemé and
small particles. Toplcs addressed include new effective medium theories,
ﬁercolation theory, and quantum-mechanical calculations of mean free paths in
small particles.

1. Effective medium theories.

Stroud (1975) presented a generalized effective medium theory in
which he solved formally the self-consistent (EMA) and non-éelf—consistent :
(MGT) models for inhomogeneous media using a Green function approach. In
addition to obtaining formulas equivalent to Eqs. (46) and (56), he worked out
the conductivity of a polycrystalline sample of an uniaxial material and
showed that the EMA and MGT are respectively anaiogues of the coherent-
potential approximation and average—t-matrix approximation'of alloy theory.

In a subsequent paper, Stroud and Pan (1978) discussed electromag%éetic wave &

’;

propagation in ah inhomogeneous medium. They derived an equivalent of the

effective medium approximation for the case of Mie scattering within an
inhomogeneous medium. The self-consistency condition (the equivalent of our

Eq. 55) for this dynamic effective medium theory is
f Si (0) = <s(0)> =0 (86)f

where the sum runs over all the grains in the medium, the brackets denote a
volume average, énd the function S(0) 1s the forward scattered amplitude. We
have given an Eq. for S(0) in Eq. (35). For a two-component medium of
spherical particles, Eq. (86) reduces to-

ey

fsa(O) + (l—f)Sb(O) =0 . | (87)
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When only electric and magnetic dipole terms are kept in (87) the absorption
is equivalent to our EMA expressions for the dielectric function and.
permeability. Recently, Chylék and Srivastava (1983) have extended this model
to include the effects of size distributions.

In 1979, Stroud derived_a humber of sum rules for composite
systems. In particular,‘he showed that the f-sum rule (Eq. 12) carries over

2
« \ LA 19._3.. -
jodl(w Jaw' = f 5 = . (88)

He also showed that the low-frequency edge of the "impurity band” in ol(w)
(the EMA equivalent of the Maxwell-Garnett resonance) drops to zero as f+fc
‘and then moves back to finite frequencies at higher concentrations, leaving a
pole at dc behind. This effect can be seen in the EMA conductivity of Fig.

3. Fig. 8 shows the concentration dependence of several characteristic
frequencies in oi(w) and the loss function, Im(-1/€).. The shift of the low- |
frequency edge of the conductivity to zero frequency implies that the
concentration dependence of the far infrared absorption near percolation
should be stronger than linear. Calculations by Russell et al (1981) show
that this conjecture ié true within the EMA.

Webman, Cohen, and Jortmer (1977) also derived the EMA equation for
the dielectric function from a scattering-theory vieWpoint. They further
showed that similar behavior for the dielectric function could be obtained
from a random cubic resistor lattice except that the resistor lattice had a
smaller value of the percolation threshold (fc“0f15)°

Wood and Ashcroft (1977) and Lamb, Wood, and Ashcroft (1980) have
iﬁvestigated the application of the EMA to optical properties. The effects of

electrically insulating coatings surrounding each of the metallic grains were
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examined; in this case the EMA prediction for the dielectric function becomes
equal to the MGT dielectric function. This result is not unexpected because,
with every metal particle coated with insulator, the metal particles cannot
contact each other; this no-contact rule is inﬁoked from the start by the
MGT. This effect is illustrated by Fig. 9.

Sheng (1980a and 1980b) has.also considered effects of inhomogenei-~
ties within the particles themselves. In one case, he considered the
inhomogeneous medium to consist both of insulator-coated metal and metal- °
coated insulator particles with the probability of finding # particular
structure determined by the metal volume fraction. Im particular, the

probability of finding insulator—coated metal grains, determined by the free

volume available to the grain center inside the spherical region, is

(1-£1/3)3

p= (=273 Pa[1-(12) O P (89)

where f is as always the metal volume fraction. (Note that our notation
differs from that of Sheng.) This probablility is large when £<0.4 and is very
small wﬁen £f>0.6. An effective mediuﬁ approach to the properties of a mixture
of these coated particles leads to an increase of the critical concentration
for percolation té fc=0.5. This sort of consideration justifies the often
used MGT procedure of assuming that as the volume fraction of a constituent
increases, its role becomes that of host when f~0.5. In the second case,
Sheng considered the individual grains to consist of two hemispheres stuck
together; the probability that either hemisphere was formed from a particular
substance was equal to the volume fraction of that substance in the medium.
The EMA was tl®en used to calculate the effective properties of a collection of

these gralns. At intermediate concentrations this assumption led to a
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substantial amount of interfacial contact bét-ween the individual constituents
of the medium. In contfast, the only interfaces in the ordinary EMA are fhose
between a particular grain and the surrounéing effective medium. Both of
these models sharpen up the sﬁall—particle resonance compared with the EMA,
making the dielectric function at optical frequencies resemble the MGT
dielectric function yet retaining a dc percolation transition. At low
frequencies, however, the predictions of these models resemble closely ﬁhe
EMA, as long as comparisons are not made at concentrations where oné model is
above the percolation pbint.énd the other below.

2, Percolation theory.

Percolation fheory addresses the propérties of inhdmogeneous
materials by invéStigating an ordered lattice in which each site (or bond) is
occupied with probability p or vacant with probability (1-p) and in which
adjacent occupied sites (or bonds) are regarded as being electrically
connected. .The probability p in this model plays thé-role of volume fraction
for a continuous medium. A computer is used to generate the lattices and to
solve Kirchoff's laws for the conductivity of the lattice as a funétion of the
occupation probability, the dimeﬁsionality, the nature of the interconnection,
and the type of lattice employed.

Percolation theories always give a percolation transition, but the
critical probability varies from as low as 0.2 to as high as 0.7 depending on
the coordination number and dimensionality. Scher and Zallen (1970) and
Powell (1979) have argued, howevér, that when the amount of space that can be
filled by spheres (of equal size) in a particular lattice is taken into
account, the critical volume fraction in three dimensions is always in the
- range 0;16<fc<0.18, a value which is close to experiment (Grannan et al,

1981). The electrical resistance of a percolating system has been considered
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by a number of authors (among them Kirkpatrick, 1971, 1976 and 1977, Last and
Thouless, 1971, Ambegaokar et al, 1973, Watson and Leath, 1974, Webman et al,
1975, and Levinshtein et al, 1976). Straley (1976, 1977a, and 1977b) has
stressed the relation of the percolétion transition to a second-order
thermodynamic phase transition and has constructed a scaling theory of the
transition. The main prediction of this idea, which has also been studied by
Stinchcombe and Watson (1976), Efros and Shklovskii (1976), Hﬁrris and Fisch
(1977), and Bergman and Imry (1977), is that many properties of the :
inhomogeneous medium obey po%er—law dependences on the quantity (p—pc). For
instance, the conductivity of A lattice, 0,> goes to zero at p, according to.

o, = oa(p-pc)t P>P, (90)
where o, is the conductivity of the‘resistors, while the static dielectric
constant €, diverges below P. a8

-8 *
e, = € (P ~P) <P, (1)

where 2% is the dielectric constant of the insulating 1inks. According to the
scaling theory, quantities such as the percolation threshold and the prefac-
tors in Eqs. (90) and (91) may vary from system to system dependihg upon the
details of materlal and sample preparation, but the exponents s and t are
universal; the& depend 6nly on the dimensionality. In three dimensions t=1.7
and s=0.6 (Straley, 1978). The latter estimate in particular is in remark-
ably good agreement with experiment (Grannan et al, 1981). Note that both

scaling exponents differ from those of the EMA, for which s=t=1 (Pan et al.,

1976).
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Only recently has the frequency dependence of the conductivity been
discussed. According to the EMA, the low-frequency conductivity varies
as w2 for f<<fc and as Yo for f>f.. Bergman and Imry (1977) have suggested

that the conductivity at p=p, obeys
o « o (92)

with 8=0.73. Similarly, Stroud and Bergman (1982) found that

o, = mt/(t+s) | : . . (93)

The exponent t/(t+s)=0.75. More recently, Wilkinson et al. (1983) obtained

' that at low frequencies and for p<p.

o, = o - (94)
3. Mean free path and non-local effects.

There is a basic contradiction in the way that we have been
characterizing the properties of an individuvual grain. We have aésumed up to
this point that the grain is described by a local dielectric response
fqnction, e(w), yet that the mean free péth can be equal to the particle
radius. Clearly, with this long a free path, the current density at a point
within the particle will be determined not only by the electric field at that
point, but also by the value of the field at neighboring points; a nohjlocal
dielectric function should be used. This point was discussed by Trodahl
(1979) with respect to eddy-current absorption. He found that non-local

effects were relatively minor, reducing the magnetic dipole moment and the
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absorption coefficient by a small amount,
a, =32 (95)

where the subscript 'nf&' stands for non-local and '2' for local. A more
detailed theory was made recently by Mal'shukov (1982). He pointed out that
for a small particle there are really two distinét relaxation rates, whicﬁ may
have rather different valueé. The first applies to the momentum of thé .
electrons and the second to the angular momentum. - The momentum relaxation
time Tp enters into the electric dipole absorption whereas the angular
momentum relaxation time T, governs the magnetic dipole absorptiom.
Physically, the difference occurs because the eiectric currents that giye :ise
to the electric dipole moment travel across chords of the sphere and always
intersect the surface, while the currents associated with tﬁe magnetic dipole
moment circulate around the axls of the sphere in a tangential.direction. 1f
we define Tb to be the bulk relaxation time (determined by collisions with

phonons, impurities, etc.) and T to be the classical results for the mean

time between collisions with the surface,

a
e T vy | (56
then Mal'shukov's theory gives
-1 _ _-1¢4 | 1 -1
L T, [9 + 61n(2wprc)] + T (97)

and
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Tm_l =% Tc-l(l-—P) + 'cb—l - (98)
where P is the probability that the surface scéttering is specular. These two
- relaxation times enter the Drude dielectric function of fhe metal, which is in
turn used to find the electric and magnetic dipole contributions to the
absorption coefficient. Note that in the case of diffuse surface scattering
(P=0 in Eq. 98) Mal'shukov's result for the magnetic dipole absorption is
identical with that of Trohdal. : ‘ :

A somewhat different‘approach was taken by Kawataba and Kubo (1966)
and by Wood and Ashcroft (1982). These authors made a quantum—mechanical
calculation of the dielectric response of a small particle using linear
response theory and the random phase approximation. We will discuss quantum
size effects (i.e., the quantization of the electronic energy levels in a
small particle by the surface of the particle) in a later part of this
review. One result of both calculations, however, was that the small particle
resonance has the same width as predicted by the classical theory using a
local dielectric function and T,

Penn and Rendell (1981, 1982) have investigated the properties of
small particles also within the random phase approximation. The particle was
characterized by the Lindhard dielectric function. The presence of the:
particle surface greatly enhances the cross section for the electron-hole pair
productiqn. This enhancement océurs because interactions with the surface can
soak up momentum, so that the momentum of an electron-hole pair produced by
photoﬁ absorption need not be zero, as it.is in a bulk metal. (Another way of
stating this idea is that the wave vector k is no 1onger a good quantum number

for the electronic states in the particle.) The result of their calculation

is again equivalent to the Mie (or Maxwell-Garnett) classical tﬁeory if the
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- mean free path is taken as the particle radius.
We close this section by noting that the optical measurements of
Doyle (1958) and the electron energy-loss studies by Batson (1980) provide
experimental support for the use of the particle radius as the meanvfree
path. Thus, although our use of a local dieléctric function and our
assumption that the mean free path is equal to tﬁe radius are inconsisteht in
a strict sense, they give results that are in accord with more sophisticated

-

theories.

-
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v. Experiments on normal-metal and insulator composites
Despite the wide variety of inhomogeneous systems that exist,_

relatively few attemptsbhave been made to correlate the effective dielectric
function of these systems with the properties of their constituents. In our
-opinion, there are two reasons for this lack of informati§n on what is
obviously an impoftant problem. First, the interesting features of the
effective dielectric function occur over a range of frequencies which‘extends
from d.c. through the visible spectrum, so that a comprehensive experimental
study requires elaborate laboratory facilities. Second, despite the large
number of inhomogeneous materialg, few éf them can be sufficiently well
charactefized to make such an investigation worthwhile. It is important to
havelnot only an accurate measure of the size and concentration of the |
inhomogeneities, but also to be certain that the effective dielectric function
of the material being studied is governed only by the dielectric function of
the constituent particles and not by other physical pfocesses. For example,
there is a large literature devoted to the physics of hopping conduction in
semiconductors (see Bottger and Bryskin, 1976, for a review). The onset of
hoppiné conduction in many ways resembles the percolation transition; however,
because the hopping process depends on tunneling probabilities and activation
energies in addition to conductivities, these semiconducting materials are not

suitable candidates for studying the properties of inhomogeneous materials.
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A. Near infrared and visible studies
1. Very dilute systems
For materials that are essentially homogeneous except.for occasional
small grains (f < 0;01), it may be reasonably assumed that the grains have a
Qery small probability of coming into contact with one another. In this

regime, the MGT and the EMA yield qdite similar expressions for the effective

.dielectric function and appear to describe réasonably well the available

- experimental data.

Optical transmission measurements on dielectrics containingzsmall
numbers of conducting'particles have been made by Doyle (1958), Doremus
(1964), Kreibig and Fragstein (1969), Jain and Arora (1974, 1975), and
Ganiere, Recheiner, and Smithard (1975).' The metal particles in these samples
were generally grown as precipitates by means of ir:adatiation or thermal
treatment processes. Because of the in situ particle growth, not a great deal
was known about the size distribution, crystallinity, or conductivity of the
metal particles except that they were approximately spherical with dimensions
ranging from 10-100A. 1In all cases a relatively narrow peak in the optical
absorption was observed at a frequency below the plasma frequency of the bulk
metal. Although the peak was referred to by several names in the original
works, it appears to be siﬁply a consequence of the Maxwell-Garnett resonance
discussed in section III-C-2. When the MGT was used to calculate the
absorption coefficient, the center frequency of the resonance in all cases was
accurately predicted (to within ten ﬁercent), although the width of the

resonance was always substantially larger than expected. It is possible that

“ the concentration of particles in some of the samples was too great to

preclude particle-particle interactions, so that the EMA (which predicts a

X
¥ j

broadened resonance in such situations) would have yielded better results.
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Similar considerations have been reported by Galeener (1971) for
another interesting type of very dilute system. In this case the background
medium, amorphous germanium, was conducting while the inhomogenelties were of
the form of non-conducting cracké within the germanium. The MGT equations for
.this situation also preduct a Maxwell~Garnett resonance, often called a “void"
resonance. Structure in the optical constants near 8eV ﬁas attributed to this
phenomenon.

When the volume fraction of inhomogenéities exceeds a few bercent‘in
a heterogeneous material, the interactions between grains become significant
and actual physical contact between grains qf the minority constituent becomes
likely.  We consider separaiely three types of materials that haQe been used
to study the influence of these effects on the average dielectric function:
discontinuous films, granular métals, and gas evaporated particles.

2, Discontinuous films

In the initial stages of evaporated metal film growth it is common
to have isolated metallic islands form on the substrate. These islands
are 20-300A in diameter - depending on the conditions of preparation. They
grow in size and number as metal atoms are deposited and eventually coalesce
into a continuous film. In the island growth phase, the films consist of
small isolated grains of metal affixed to the substrate surface. The optical
properties of these discontinuous films have been measured by Semnett and
~Scott (1950), Doremus (1966), Yoshida, Yamaguchi and Kinbara (1971, 1972),
Hetrick and Lambe (1975), Truong ané Scott (1976), and Norrman, Andersson and
Grangvist (1977, 1978), who studied samples made of gold, silver, indium and
aluminum deposited onto glass. The frequency range iﬁvestigated was limited
by the transparency of the glass to the narrow range between the near infrared

and the near ultraviolet. In all cases, a relatively broad absorption peak

-57-



J

was observed at a frequency below the plasma frequency of the bulk metal.A
Although the experiments were analyzed by means of the MGT, the agreement with
theory was not particularly strong. The width of the resonance was again
substantially greater thaan calculated from using the bulk optical constants of -
the metal, and the measured and effective film thicknesses —— obtained by
matching the theoretical and measured intensity of transmitted light -~ were
in disagreement by a factor of two or more.

.The difficulty in accounting theoretically for the measured
properties of discontinuous films probably results'from their complexity.
Electron microscope photographs of typical specimens show that the islands
take on a variety of shapes, each of which has a characteristic depolarization
factor.' Furthermore,.the presence of the substrate seriously perturbs the
induced dipoie fields in the vicinity of each conducting gréin. Tﬁe influence
of the substrate is most easily seen when considering the frequency of the
optical resonance; in fact, some workers have found that better agreement with
experiment isbobtained by using the dielectric constant of the substrate in
calculations rather than the dielectric constant of the vacuum (or air) which
actuéllylfills the space between the islands. Finally, the two dimensional
character of the films also poses particular difficulties. The averaging
procedures in both the MGT and the EMA assume implicitly that a given particle
has neighbors located randomly in three dimensions.

3. Granular metal films |

There has been a considerable amount of research on thedBroperties
of thin films formed by simultaneously sputtering insulating and conducting
particles onto a glass substrate. These ceramic-metal (cermet) films are
particularly interesting because the concentration of metal particles may be

made to vary over the entire range from'O < f < 1. The experiments performed
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by the RCA group on these materials represent, to our knowledge, the first
attempt to investigate systematically the entire range of-concentrafions on a
single class of materials and, in addition, to compafe'the optical propefties
of these materials with the measured d.c. electrical conductivities.
The d.c. propertiés of cermet films have been studied by Abelés,

Pinch, and Gittleman (1975), and by Abeles and Gittleman,K (1976) who have found
that the metal-insulator transition occurs abruétly at a metal concentration
of £ = 0.6 rather than the lower concentration of f = 1/3 predicted by the A
EMA. The abruptness of the transition appears to result from a peculiarity of
the growth phase that prevents the metal particles from contacting each other
at concentrations below the transition. 'In other wordé, these films do not
form the labyrinthine interpenetrating structure of conducting and non-
conducting filaments which a strictly random two component system would
exhibit over a wide range of concentrations. Because of this feature of the
cermets, the MGT, which neglects interaétions between -particles, may be used
with a degree of confidence at higher concentrations than would ordinarily be
possible.

| Cohen et. al. (1973) have applied the MGT to their measurements of
the optical transﬁission of Au-Si0, and Ag-Si0, cermet films between near
infrared and near ultraviolet frequencies. The convenfion adopted by these
workers was to regard films having a metal concentration f < 0.6 as consisting
of ellipsoidal metal grains embedded in a dielectric medium, while for f > 0.6
the reverse assumption was used. Using this procedure, the MGT was found to
agrée relatively well with their experimental results. In particular, they
found that ét low concentratibns their samples had low optical absorption in
the Lnfraréd with a broad absorption peak in the visible. The absorption peak

became larger and shifted to lower frequencies as the volume fraction of metal
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was increased up to the metal-insulator transition. Above this transition the
films exhibited the strong frequency-dependent absorption characteristic of
the bulk metal in the infrared, while the absorption peak, which is not a
characteristic of the bulk metal, persisted in the visible spectrum to quite
high concentrations.

In a comparison of their data for a Ag-5i0, cermet film with the
predictions of both the MGT and the EMA, Gittleman and Abeles (1977) found
that the MGT appeared to give better results. Although the MGT overestimated
the strength and the sharpness'of the absorption peak in the viéible, it
otherwise showed good qualitative agreement with measurements. The EMA; on
the other hand, had already predicted a metal-insulator transition for this
sample #né therefore gave a qualitatively incorrect frequency dependence for
the optical absorption over the entire frequency range.

4, Gas evapo?ated particles

If a metal is evaporated in the presence of an inert gas at low
pressure,'the metallic atoms coalesce into small particles while in the gas.
By choosing properly the type of gas —— typically argon, helium or nitrogen —-
and the pressure of the gas, the radii of the particles can be made to vary
between 10A - 1000A. The particles produced in this way h;ve nearly ideal
characteristics: they are spherical, crystalline and, for a given gas
pressure, almost uniform in size (Granqgvist and Buhrman, 1976).

The substance formed by depositing the gas evaporated particles onto
a surface is generally called a "smoke” or "black” and has very interesting
properties. The density of a smoke as deposited is very low (f < .0l), with
fhe majority of the material consisting of empty spaces between particles.

The particles themselves are abhle to enclose these large empty regions by

forming long chainlike structures with each other. 1In other words, even
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though the volume fraction of metal in the smoke is quite small, there is an
extremely high probabili;y of contact between metal particles. Smokes can be
easily prepared with a thickness of:several microns, so the chainlike
structure are clearly three dimensional. Smokes prepared‘in an ultrapure .
inert gas atmosphere are often found to be conducting. The reverse is true,
however, when a small amount of oxygen is present in the atmosphere. Although
it is reasonable to speculate that the presence of oxygen coats each metal
particle with a non—conducting oxide layer, the real explanation may be moré
complicated since even gold particles ~ which do not readily form oxides -
exhibit this property.

Almost all optical measurements in ;he near infrared to near
ultraviolet spectral region have been made on gold smokes, which were prepared
both in pure inert atmospheres and in the presence of oxygeh._ The early
experiments were done by Harris and coworkers were reviewed in section II éf
this review. More recent studies of gold smokes were .made by McKenzie (1976)
who found a direct correlation between the d.c. conductivity of the gold
smokes and the measured optical properties. He further determined that Mie
theory (essentially the MGT) could account reasonably well for the oxygen-
prepared insulating smokes, but that it failed to account for the properties
of the conducting smokes. |

The optical absorption of dilute non-conducting gold smokes near the
Maxwell-Garnett resonance has also been studied extensively by Granqvist and
Hﬁnderi (1976, 1977a). Their work is particularly interesﬁing because they
were able to analyze their data successfully using two different approaches.
In their first approach, the MGT was invoked under thé assumption that the
gold particles in the smoke deposit were spherical, with a depolarization

factor of 1/3. 1In order to fit the theory to their data, the thickness of the
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sample and the plasma frequency of the gold were treated as adjustable
parameters. Their results, which are reﬁiniscent of those found for
discontinuous films where a similar procedure was used, required a depressed
plasma frequency and an effective film thickness equal to twice the measured
value. The second model used by Granqvist and Hunderi was physically more
appealing in that the bulk value of the plasma frquency and the measured film
thickness were used. In order to account for the elongated structures
observed in their samples by electron microscopy, a set of effective

depolarization factors was introduced into the MGT formalism.
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B. Far infrared studies

0f all the types of inhbmogeneous materials, normal-metal/insulator
mixtures have been the most studied in ﬁhe far infrared. The reason for this
emphasis is the simplicity of the syétem: The far—-infrared dielectric
functions and conductivities of metals and insulators differ greatly and are
often nearly frequency independent. Such systems can be in the form of metal
'smokes, which consist of nearly spherical particles with controllable sizes.
(One less desirable aspect is the affinity of the small metal particles to
form long chains or clusters, which makes the materials non-random unless
special care is taken in sample preparation.) Thé insulating component in
early experiment was just the voids between the metallic grains; later an
alkali-halide host was used.

Inhomogeneous mixtures other than metal-insulator mixtures are
certainly feasible and in some cases are actually finding applciations as far-
infrared filters. Black polyethylene, one of the most commonly used far-
infrared fil£ers, is actually a composite of carbon particles embedded in a
polyethylene host. Other filters have been produced using mixtures of glass
particles in teflon and alkalai-halide powders in polyethylene (Yoshinaga et
al., 1960). To date, however, the design of such filters is nét due to a
quantitative theoretical understanding but more a matter of trial and error.

1, Unsupported smokes

In section II we discussed some of the earlier experiments on gold
smokes. These measurements constitute the first work on metal-insulator
mixtures with voids between the grains playing the role of the insulator. The
possibility for observing size—quantization effects led to more recent
interest in small particle composites. Tanner et. al. (1975) measured the

far-infrared properties of Cu, Al, Sn, and Pb small particles. The metal
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particles were produced by noble gas evappration (with some oxygen), or by a
colloidal technique. The small particle powders, clamped between spaced
sheets of polyethylene, had metallic volume fractions less than 0.1 with most
between 0.02 and 0.04. Therefore, these samples of unsupported metal
particles were mostly void; and in the dielectric (non-conducting) regime.
The experimentally measured quantity, the absorption coefficient, wa; found to
-increase as w" with 1<n<2. Comparisons were made with the predictions of both
quantum mechanical (Gor'kov gnd Eliashberg 1965) and MGT (Qarnett, 1903, 1965)
models. In most éases, particularly for the larger particles, the aBsorptibn
was much greater than predicted by the theories. Fig. 10 shows the absorption
coefficient of two Al samples, with median radii of 190 and 200 A (diameters
of 375 and 400 A). The solid line is a calculation from the quantum—-
mechanical theory (Gor'kov and Eliashberg, 1965), although the classical
theory (inéluding eddy currents) would have given about the same absorption
coefficient.

Granqvist et. al. (1976) measured the far-infrared absorption in
unsupported aluminum small metal particles (diameters < 100A). The results of

these measurements are shown in Fig. 1l. The absorption followed

_ 2
a(v) = Cexpv (99)
where Cexp was frequency independent. Both classical (MGT) and quantum
mechanical theories predict this behavior; however, Granqvist et. al. found

that Cexp > C for either classical (MGT) or quantum mechanical

theory
theories. Additionally, the absorption was found to increase with particle
size, contrary to the quantum theory and electric~dipole absorption but in

reasonable agreement with the classical theory when magnetic dipole effects
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were included. The majoritf of the recent studies of composite systems has
focused on résolving this anomaly.
2. .Metal—pérticle/insulator composites

Russell et. al. (1981) measured the absorption by 1 um diameter Pd
particles embedded in KCl. There were several reasons for»this choice of
samplé. An undesirable aspect of the hnsupported small metal particle samples
is the lack of control over the metallic concentration. Also, as already
mentioned, the inert gas evaporated small particles tend to‘form long chain-—
like clusters, a factor which can not be theoretically treated in a simple
) wéy. The small particles of Pd used by Russell et. al. were prepared by a
chemical precipitation process; The mean particle size was quite lafge
(1 um), to avoid any quantum effects associated with extremely small sizes.
Insfead of studying the as-prepared material, the metal particles were mixed
with powdefed KCl, an insulating material which is transparent for
w<100 cm—l. Known volumes of metal and insulator were mixed and compaéted
into a solid wafer to make samples with filling fractions between 0.001 and
0.1.

The results of these measurements showed an absorption for £ < 0.1
which was quadratic at low frequencies (w<30 cm—l) and tended to saturate at
higher frequencies.This behavior is shown in Fig. 12. The saturation was
interpreted as due to the skin effect Becoming important at these frequencies,
ie in terms of magnetic dipole (eddy current) effects. The magnetic dipole
absorption gave the correct shape for the absorption, but ﬁhe magalitude was a
factor of ten too small. An important result of these measurements,
11lustrated in Fig. 13, was the linear dependence on metallic concentration
for all but the highest concentration samples, in agreement with both the EMA

3
and MGT in the low concentration limit. The sample with f=0.1 was not in the
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low concentration limit and followed the expectations of the EMA more closely
than these of the MGT.

Measurements were made by Carr et al. (1981) on particles made from
Ag, Pd, Au, and Al whose sizes (150-700 A radius) were smaller than those of
Russell et al. The metal particles were.made by the gas evaporation technique
and were dispersed in an insulating host. As in all previous studies, the
absorption was much larger than theoretical predictions. Fig. 14 shows thg
absorbtion coefficent of Pd and Ag particles in powdered Al,03. The solia‘*

lines are fits to
a = Kfv

with the coefficient K (in cm) given in the figure. As in the case of larger
Pd particles, the absorption Iinitially increases as the square of the
frequency but at higher frequencies it tends to saturate.

Fig. 15 shows data for 450 A radius Al particles. The frequgncy

1, where the KCl begins to

dependence was quadratic all the way up to 90 cm
absorb. The magnitude of the absorption, while somewhat smaller (with K = 0.2
cm), 1s still about a factor of ten larger than thedry. One unusual result
for some of the Al samples was the concentration dependence of the absorption,
which was found to increase as f2 rather than linearly in f. In our more
recent measurements, however, the absorption is found to be linear in
concentration over 0.001 < f < 0.032 (Kim and Tanner, 1984). The earlier
results may have been caused by faulty sample-preparation procedures. The
magnitude of the absorption coefficient for the more recent measurements is

very close to that shown in Fig. 15.

Carr et al. also measured the static dielectric constant of thelr
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composite samples by analysis of the interference fringes caused by multiple
internal reflections between the surfaces of their samples. The result of
this measurement, shown in Fig. 16, was that the dielectrié constant is
enchanced by the addition of the metal particles, in agreement with the much
more accurate audio-frequency measurements.of Grannan et al. (1981).
3. Other systems

Finally, infrared absorption in doped semiconductors was also
successfully analyzed using the MGT by Barker (1973). He assumed that the
introduction of a donor or acceptor into a polarvsemiconductor changed the
dielectric function of the semiconductor in a small spherical volume centered
on the impurity site. These small polarizable particles embedded in the host
semiconductor produced an absorption resonance just beiow the longitudinal
optical phonon frequencies. This effect is just a Maxwell-Garnett-—like
resonance in the composite dielectric function where the longitudinal optical
phonon frequency takes the place of the plasma frequency in the theory of

metal particles.
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VI. Superconductivity

Superconductivity, a phenomenon with typical energies in the far
infrared, has been studied for many years in this spectral region. In_thié
part of our review we will discuss recent studies of inhomogeneous
superconductors. To provide background, the next section describes the far
infrared behaviof of homogeneous bulk and thin film superconductors. Only
after ordinary superconductors have been Introduced will we continue to a
detailed discussion éf results for granular superconductors.
| A. Homogeneous superconductors

The dynamic properties of superconductivity stem from the existence
of an energy gap 2A. The gap is the minimum enefgy necessary to produce an
excitation, i.e. to break apart a pair. In the Bardeen-Cooper-Schrieffer

(BCS) theory this energy at O K is given by
2A=3.53kac : (100)

where ky is Boltzmann's constant and T, is the superconducting transition
temperature. Actual superconductors do not adhere rigidly to this relation;
in particular, the so—-called "strong coupling” superconductors may have 2A=
Sch. However, in most cases the gaps are clustered near the BCS value; for
Sn with T =3.7 K, Eq. (100) implies a gap energy of 1l meV, corresponding to a

frequency of 9 cm™!

and close to the experimental value. It is thus cleap
that far infrared photons are excellent probes for superconducting phenomena.
1. The frequency-dependent conductivity of a superconductor
This qualitative insight into the importancé of the energy gap can

be supported by detailed calculation. The convention is to use the complex

optical conductivity,
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0(3,) = 0, (3,0) + 1 0,(3,0) (101)

rather than the dielectric function to deséribe the optical response., One can
readily convert between conductivity and dielectric fuunction using Eq. 20.

- Mattis and Bardeen (1958) have calculated os(z,m), the full
wavevector and frequency dependent conductivity within the BCS framework.
| They then simplified matters by assuming that the-normal.state metallic o
properties were either in thé extreme dirty limit, where the electrounic mean
free path is much smaller than the scale of spatial variation of the
electromagnetic wave, or the extreme anomalous limit, where the opposite is
true, It is an interesting and very simplifying result -that in both of these
limits the ratio os(a,m)/on(a,m) (on is the normal state conductivity) is the

same and independent of 3. The results are for O0<Kw<2A

016 o2 ° E2+A2+}$wE'
8 = 2 4B [£(E)-f(E+Hhw) (1022)
O_n “w A [ ] (EZ_AZ 1/2 [(E"'MU))Z'—AZ]I/Z
g o =A . | 2,..,2
PV E"+A"+HwE
=== = o— [dE [1-2f(E+{w) (1020)
o Ko AHe (AZ-EZ)I/Z[(E+HN)2-A2]1/2
while for Kw>2A
5 - . 2, .2
s 2 E 4+ AT+HwE
—== = Z— [dE [£(E)-f(E+Hw)
o e’y [ ) (£2-a2y1/2 [(E+Hw)? - A2]1/2
-A 2,2
1 E“+A"+RwE
+ o~ [dE [1-2£(E+Hw) ] (10527
R Ao (€222 [(meuy 222112 |
o, A E2+A% +HuE | 03
——= = 21— [dE [1-2f(E+}hw) ] (o)
o Fel§ [ (0222 [(Eriw) 2-02 )12
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In these equations, the zero of energy is taken as the Fermi energy and

is the Fermi function. The results of a calculation of ols/on and ozs/on at
0 K with 24=9 c:m.-l are shown in Fig. 17.

The physical interprétation of these results is direct if one
recalls that the power absorbed by a metal is proportional to oy - Phbton
energies below the gap cannot dissociate Cooper pairs so both ols and the
absorption are zero. Absorption begins at Hw=2A and smoothly approaches the
normal state value.

2. Thin superconducting films

Many studieé have dealt with thin superconducting films, which for
mechanical strength are usually mounted on substrates. In films for which the
thickness d is comparable to the skin depth Gc’ transmission measurements
become possible. In the case when d<<6c, simple expressions relating the
optical conductivity to the transmission and reflection can be found. These

expressions, due originally to Tinkham (1958), are
2, 2
T = 4n/[(n+1+y1) +y, ] (105)

for the transmission and
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R = [(n-1+y1)2+y22]/[(n+1+y1)2+y22] (106)

for the reflection. Here n is the refactive index of the substr#te,
y1+iy2=(4n/c)cd,‘and 4n/c=Zo, the impedance of free space, which in practical
units is 377 Q. Effects due to multiple internal reflections and absorption |
within the substrate have been omitted here for simplicity. .

Eqs. (105) and (106) may be used in two ways. When N
~ both T(w) and R(w) can be measured with sufficient accuracy, the equations |
can be inverted to yield the microscopic quantities oy and %y for comparison’
with theory. The first such analysis was made by Palmer and Tinkham (1967)
who found good agreement between experiment and theory for Pb films. Recent
measurements by Karecki et al. (1983) on NbN are shown in Fig. 18. The
resﬁlts for o, agree with Mattis-Bardeen theory, as does the shape but.not the
magnitude of Cpn» This latter discrepancy is due to strong éoupling or
scattering time effects. The Leplae (1983) theory, an extension of.the
Mattis-Bardeen result to be discussed below, gives an improved fit as shown.

It is not always possible to measure T and R with adequate accuracy,
especially as the reflectance generally undérgoes only a small change between
superconducting and normal states. In that case Eq. (105) can predict the
transmission, given the correctness of the model for 9 and the availability
of other parameters. One striking feature‘in the ratio of TS (the
supérconducting state transmission) to Tn (thevnormal state transmission) is
" an unmistakable peak which occurs near the gap frequency. This peak 1s seen
in Fig. 19 thch shows TS/Tn for. an amorphous film of NbN,

3. Deviations from Mattis—Bardeen prediction

In many cases, the extreme dirty limit is unnecessarily confining,
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as it implies that wt=0. In some superconductors, wT may be of the order of
unity in the far—infrared. An extension of Mattis-Bardeen theory which does
not assume either of the extreme dirty or the extreme anomdlous limit has been
provided by Leplae (1983), who writes 9s in a form which incorporates the

normal state conductivity. At T=0, cls=0 for hw<2A, while for Kwd>2A

0,4 (®) =1 ]uzFA {[g(E,E')—l]oln(le']—lel)+[g(E,E')+1]oln([e'[+|e|)} dE

2hw
(107)"
where
g(E,E') = (EE'~A2)/|ee'—A2|
c = (EZ_AZ)I/Z
e = (2212 gropyE
The Kramers-Kronig relation (Eq. 11) then.gives on
o, (w) =22 p J° :éi:wz) aw + 22 ' (108)

and A is determined by the conductivity sum rule, A = j:dm' [oln—ols] . In
this development; if o, is inserted as the constant O ;he Mattis-Bardeen
dirty limit is derived. For on(w)=do/(l—iwr), the Drude form, a modified
ols(w) is obtained with T as a new parameter.

Besides omitting the scattering time effects described above, the

Mattis-Bardeen calculation is not adequate for describing the strong-coupling
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superconductors such as lead. Nam's theory (1968) provides very good results
for members of this class of superconductor, though its application can be
quite involved. The domipant effect of strong coupling is a uniform decrease
in Opg Fortunately, this same béﬁavior is found from the Leplae forumation
for wt<l. Therefore, reasonable fits to exﬁerimental results for strong-
codpled materials can be obtained with its use, though the interpretation T of
- in this case is not so clear. As examples, we show inIFigs. 18 and 19 the
improvement over Mattis—Bardeen theory when the Leplae theory is used to fié
data for homogeneous NbN.

To add the complexities of full strong-coupling analysis to the
intracacies of a granular system and geometry would give a very difficult
situation. Because the Leplae extension of the MB theory gives a satisfactory
means of fitting homogeneous supercondécting behavior, it serves as anb

adequate starting model for the analysis of granular systems.
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B. Theories for inhomogeneous superconductors

A discussed in the previous section, a qualitative change occurs in
the far-infrared properties of a metal when it goes from the normal to the
superconducting state. Comparable changes should occur in the far—infrared
response of an inhomogeneous material as its metallic constituent becomgs
superconducting. The far-infrared properties of an inhomogeneous
superconductor should be described by the model appropriate to the system in
its normal state (the EMA, for instance) with the substitution of the N
dielectric function of a bulk superconductor for the dielectric function of
the metallic constituent. This approach seems reasoﬁable as long as the
superconducting component can be expected to possess bulk characteristics.

One immediately obvious difference that can be incorporated into the
model 1s a change in the relaxation time T, as discusséd in section IV-D-4,
This change affects both the normal and superconducting state response.
Because wt+0 as the grain size shrinks, the response-of-highly granular
superconductors should approach more closely the Mattis—-Bardeen dirty limit
results.. However, in contrast to the normal state, two additional length
scales are associated with superconductivity: the coherence length, &, and
the penetration depth, A. The dynamics of a superconductor are modified when
any of its dimensions is smaller than either of these quantities.

1. Small dimensions |

The intrinsic Pippard coherence length, Eo, for a superconductor is
usually derived within the framework of the BCS theory. We will present only
a qualitative derivation for Eo in order to gain some physical insight into
this length scale. The BCS theory shows that the superconducting state
differs from the normal state only for those electrons lying within

approximately k T, of the Ferml energy, implying that the many-particle

~74=



wavefunction of the superconducting state is formed with eigenfunctions whose

energy spread is of the order

AE = k_BTc - (109)
and whose momentum spread is
kBT .
Ap = —F5 : ' (110)
Ve S

The uncertainty relation now sets a lower limit on spatial variationmns in the

superconducting state

£~ B _F (111)

Note that a second coherence length occurs in the Ginzberg-Landau
phenomenological theory, which is valid near Tc' This approach gives a

temperature dependent coherence length

, _
(1) = £00) ¥ w52 (112)
c

where except for factors 0(1), E(O)=E° . Typical values for Eo range from 50
to 50,000 A, depending on the material.

The other length scale, originally from the London theory for super-
fluids, is the penetration death A. This parameter describes the depth to
which external fields penetrate before being completely screened by the

superconducting electrons. It too is a temperature dependent quantity,

diverging as T increases toward T,. Typical values at T=0 are on the order of
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1,000 A, with little dependence on material.
These lengths play qualitatively different roles in the properties
of small superconducting samples. On the one hand, when the dimensions of a

sample decrease below the penetration depth, an external field is no longer

‘completely screened from the interior of the superconductor. On the other

hand, as the dimensions decrease to less than the coherence length, thermo-
dynamic fluctuations become increasiqgly important. Fluctuations, and their
effecfs, are greatest near the transition temperature. The effect of :
fluctﬁations on the optical éonductivity has been calculated by a number of
workers (Schmid, 1968, Schmidt, 1968 and 1970, Eilenberger, 1970, Bray and
Rickayzen, 1972, and Tanner, 1973) by use of a time-dependent generalization
of ;he Ginzberg-Landau equations. The fluctuation conductivities are maximum
near T,, are inversely proportional to a characteristic length scale (the
thickness of a film in 2-d, the volume iﬁ 0-d), and follow a 1/w frequency
dependence. Because most experimental studies of granular systems have used
thin (2-d) films containing small (0-d) grains, fluctuations may considerably
alter the optical properties from the Mattis-Bardeen bulk values, especially
near Tc'

2. Effective medium theories for superconducting-particle composites.

Most experiments have used granular superconductors mixed with an
insulator, frequently the superconductor's native oxide. We will therefore
consider superconductor—insulator mixtures first. Furthermore, most composite
sampleé have been dilute, with f<<{f,. Because the MGT and EMA yield identical
results in this limit, we will employ the simpler MGT, whose dielectric

function is given in Eq. (46) while the permeability is given by combining _

Eqs. (29), (32), and (51).
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Replacing the dielectric function of a normal metal with that of a
superconductor (ignoring fluctuations) gives the results for the absorption
coefficient of the composite shown in Fig. 20. The normal state absorption is
. also shown. Parameters appropriate for 250 A radius Sn grains in KCl were
chosen. For this case, the eddy current térm dominates the electric dipole
term. The superconducting state composite absorption is predicted to be zero
below the gap, the same as in the bulk case. The absorption coefficient above
the gap increases roughly as (w - 2A)2, rising nearly parallellto tﬁe normal
state result. In the case of extremely small grains, the electric dipole term
becomes appreciable; Fig. 21 shows the absorption coefficient for electric
dipole absorption only. We again use parameters for Sn in KCl, but with a
grain radius of 25 A. Now, in contrast to the normal state, the
superconducting state result reveals an electric dipole absorption with a
shape different froﬁ the magnetic dipole absorption. This difference arises
from the sensitivity of the electric dipole term to the imaginary part of the
conductivity, UZs'

It is important to note that the low-frequency, dilute limit
expressibn for the absorption coefficient of ordinary metal particles, Eq.
(63), is not valid when o, = 0, as occurs in superconduétors. The aépropriate

expression valid for superconductors is Eq. (62), which we write here in terms

of ol and 02

2 9ce,, © 2ra’e

o = £ /e[ 1 1s o 1s ) (113)

s 2 11 2 2

c 4bn(a., “+o ) c
ls 2s

The change in the absorption coefficient due to the superconducting
transition, AaEuS—an, can be calculated for either electric or magnetic dipole

absorption. Starting with Eq. (113), which can be written
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2 2 l
ag = £v° [cg + GOy = oty (114)
o +o
1s 25
where CE = 9wc2{§ and CM = 8w 3 I{i /5¢c and v = w/2nc is the frequency in

cm—l. Considering electric dipole alone, one obtains

g, o :
da = ¢ 82 () [ 1s_m - 1) (115)
E %" (o, 10)% + (o,_Jo)?
: 1s" 'n » 28’ 'n -
while for the magnetic dipole case,
2 s
AaM = Cva qnéa——-— 1) : (116)
n

Calculations for these two cases are shown in Fig. 22. The electric
dipole case has AaE>O when the frequency is a little larger than 2A. The
magnetic dipole case has the opposite behavior. However, for grains larger
than 50 A the magnetic dipole term is expected to be larger so that the
absorption coefficient in the superconducting state is predicted to be smaller
than in the normal state. Grain size distributions have little effect on the
normal state properties because both electric and magnetic dipole absorption
follow vz. The superconducting state is more complicated because these
absorptions become quite different and may actuaily compete. This competition
would be a problem when the mean grain size falls in the reglon of crossover
from electric to magnetic dipole domination, about. 50 A.

3. Thin granular films

The fraction of area occupied by metal in a 2-d granular metal'fiié

is typlcally large, on the order of 507 or higher. Therefore these systems

are not in the dilute limit, so that simple expressions for the effective
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response are not available. In fact the initial premise of effective medium
theories, that each grain is immersed in a uniform effective field, becomes
questionable not only because of the dipolar fields from neighboring grains
but also due to the presence of‘a substrate, Still,bwe may expect to
determine at least qualitative behaviors and note the success of effective
medium théories in explaining normal state properties at near infrared and
optical frequencies (see section V-A-2 and V-A-3). The metal grain shape in
many granular films is not spherical but instead more of an oblate spheroid’
(pancake). This shape leads to a change in the depolarization factor for the
grain, which, in the EMA, causes the dc percolation concentration to move from
1/3 to around 1/2. Other‘results for the effective theories show the same
general trends as found for the 3—& case,

4, Superconducting/normal-metal composites.

Recently, Garner and Stroud (1983) used the EMA to calculate the
optical conductivity for a superconductor—-normal metal mixture. As might be
expected, the presence of the normal component gives a non-zero conductivity
even at frequencies less than the bulk energy gap of the superconductor.
Especially striking behavior occurs near the percolation concentration where
the EMA predicts a very large conductivity for w<2A. This effect can be
understood qualitatively as follows: for frequencies well below the gap, a
superconductor better screens applied fields than does a normal metal.
Therefore, the field outside an inclusion increases when the inclusion becomes
superconducting. An absorptive component adjacent to the superconductor
“sees” more field and absorbs more energy. The absorption can be affected by
increasing the volume fraction of superéonductor (whiéh improves the
screening) or by increaéing the amount of normal metal (which provides more

absorptive material). Of course there is a trade—off between the two effects
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with the maximum absorption, perhaps not surprisingly, occurring at the
percolation concentration.

The MGT also can be appiied éo this system; the results reflect the
asymmetry between the host and inclusion. The case of normal metal host aﬂd
superconducting inclusions gives results qualitatively similar to the EMA
results. On the other hand, for a superconductor host and normal metal
inclusion, the large real conductivity for w<2A is not observed, because the’
superconductor tends to exclude the fields from the normal inclusioms. )

Lastly, mixtures of two differing superconductors can be
considered. Above the gap for both superconductors, the material appears
metallic with a conductivity representing an aQerage of the two components.
For m<2Am1n, (ZAmin is the smaller of the two gaps) the real conductivity is
zero. In the intermediate region, the material appears as a mixture of

superconductor and normal metal for which large values for o, can occur near

percolation.
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c. Experimental studies of inhomogeneous superconductors.

As of the present, only a few far-infrared experiments have been
performed on inhomogeneous superconductors. These experiments investigated
compoéites of superconducting small particles with insulating grains and
granular superconducting filmg.

1. Superconducting small particles.

Free standing‘(unsupported) granular tin “"smoke" was investigated by
Tanner et al (1975). Sn is a superconductor with T, = 3.7 K and 2A = 11.3 ;ev
=9 cm_l. The smoke, which consisted of small metal grains and voids, was
produced by a standard inert gas evapofation ;echnique.’ Soﬁe oxygen was
included in the gas to produce a thin oxide layer on the grains. The method
produced single crystal grains with mean radius near 70 A. The smoke was
collected from the evaporator and placed between spaced sheets of polyethylene
for far-infrared studies. The volume fraction was about 0.618, a typicai
value for small ﬁetal particle smokes produced by evaporation. As noted in
Sec. V, the metal particles tend to form an open network of chain-like
structures, most likely due to Van der Waals attractive forces between the
particles. A combination of lamellar_grating interferometer and a 3He cooled
bolometer allowed transmission measurements to below 4 cm—l. From these data,
the absorption coefficient was computed.

The normal state absorption at T=4.2 K was surprisingly large and
increased as wz, as described in Sec. V. Transmission measurements for
temperatures below 3.7 K were expected to show the effects of
superconductivity. In pafticular, the absorption coefficient was expected to
vanish below 9 emt because ols(w)=0 when w¢2A. However, no change was

observed even for temperatures well below the bulk transition temperature

(T, = 3.7 K). Because the grain size was significantly less than the
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coherence 1ength‘(€°=2300 A for Sn), this result could be due to fluctuations,
which are significant in zero—dimensional grains for témperatures even far
below T, and provide for absorption at low frequencies. A second explanation
however, 1s that in the vicinity of 24 both normal and superconducting
absorptions were nearly zero fbr these samples. Hence, any change due to the
superconductivity may have gone unnoticed.

Systems of small Sm or Pb particles embedded in KCl were
investigated by Carr et al. (1979, 1983). The far-infrared spectrometer
consisted of a lamellar grating interferometer and low temperature
bolometer. To manufacture these samples, a mixture of metal smoke, produced
by inert gas-evaporation and finely grouad (a=10 um) KCl were compressed into
a solid wafer. The compression took place in an évacuated press at a pressure
of 10 kbar, sufficient to make the KCl flow. The resulting composite wafer
was extracted from the press; reground and re-pressed several times in an
effort to improve uniformity. Unfértunately, it was difficult to determine if
this technique was entirely successful.

Sn samples which had average particle radii in the 50 to 300 A range
were studied. Fig. 23 shows the absorption coefficient of two composite
samples. The norm#l state absorption is large and increases as vz. The
superconducting state absorption coefficient is notably different from the
normal state result. The differences between superconducting and normal state
absorption are shown more clearly in Fig. 24. At frequencies well below
2A, the superconducting state absorption is less than for the normal state
(though not always zero), while for frequencies at and above the gap, the
sﬁperconducting absorption is typically 50% larger than the normal state
absorption. Similar results for small Pb particles in KCl were observed,

although the absorption below the gap was much closer to zero, while the
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absorption increase above the gap was smaller than for the Sn.

The non-zero value Of'als below the gap for Sm particles can be
understood by invoking fluctuations effects. Although the grain size was
.comparable for both the Sn and Pb composites, fluctuations willvbe more
prominent fo; the Sn due to the larger size for the clean-limit coherence
length (2300 A for Sn, 1000 A for Pb). This difference may explain why the
absorption below the gap was closer to zero for the Pb composites.

- The absorption increase above the gap is not so easily reconciled
with theoretical predictions. The results shown in Fig. 22 should be compared
with the ﬁredictions of Figs. 20 and 21.. It is also worth summarizing the
theoretical predictions aﬁd the experimental results for the normal state
absorption. Although the theoretical magnitude is not correct to explaih the
normal state absorption, the magnetic dipole term is closer in magnitude and
is also in better agreement with the grain size and frequency debendence of
the absorption than the electric dipole term. The results for the
superconducting state agree with neither term (magnetic nor electric dipole),
although there is some resemblance to the electric dipole term. An adequate
explanation for this peculiar effect is still not available; One clue may
come from the depeundence of the superconducting absorption increase on the
amount of oxide on the gra;ns of tin. During the smoke evaporation process, a
controlled amount of oxygen.was admitted into the bell-jar in order to improve
electrical isolation between the grains. Those smokes made with a relatively
large amount of oxygen displayed a reddish-brown color, rather than the
typicai black. This color change waé attributed to a thick oxide layep on the
surface of each grain. Composites made with such Smoke had a smaller

absorption increase in the superconducting state, as compared to the

composites made from less oxidized black smokes, suggesting that interactions
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between the grains may play an important role.
2. Granular films.

The far infrared properties of thin granular superconducting films
have been investigated by Carr et al., (1983) Perkowitz (1982) and Karecki et
al (1983). Muller and Pomerantz (1981) and fomerantz and Muller (1981) have
investigated such films in the microwave region. Granular superconducting
films differ from the composites described above not only in their
intrinsically 2-d nature, bu; also in the close proximity of their grains to
one another. This proximity makes the sheet resistance, or resistance per

square,

Ry =1/0,d . (117)

the most useful characterizing quantity for granular films.

Granular films are typically produced by some form of vacuum
deposition, such as evaporation, rf sputtering, e-beam deposition and ion beam
deposition. In most cases, the material "beads up” as it is deposited onﬁo
the subsfrate. The degree of granularity can often be affected by changes in
substrate temperature, evaporation rate, and the residual pressure of inert
gas or inmert gas/oxygén mixture.

Muller and Pomerantz (1981) made cavity shift and loss Qeasurements‘
of granular Al films (30-50 A diameter grains séparated by Al,03) at 9.4 GHz
(0.3 cm"l), a frequency lower than the zero temperature energy gap of Al
(about 2 cm—l). The films were flash evaporated onto glass substrates and had
dc sheet resistances in the range of 100-1000 ohm/Cd . During the transition
to superconductivity, the cavity resonance frequency shifted by an amount

proportional to on whereas the loss was proportional to o This shift aund

1s°®
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the loss were measured as a function of temperature (see Fig. 25). As the
temperature was geduced, the film became superconducting and the frequency
shift saturated. The loss (which depends on ols) typically decreased but did
not become zero. In one sample, the loss initially increased as the ‘
temperature passed through T. for the grains. The loss which remained after
the frequency shift had saturated was~attributéd to normal conducting regions
between many of the superconducting grains. Even théugh a connected
superconducting path across the sample existed, ac fields would still be
sensitive to the presence of any remaining normal regions. The temporary
increase in the loss with decreasing temperature may have been due.to the
overall change in the sample's impedance. The absorption By a thin metallic
film on a substrate does not always iﬁcrease monotonically with the sheet
conductance. These data were interpreted in terms of fluctuation effects.

Granular Pb films, with Ry in the range 10-1000 ohm/(J, have been
investigated between 5 and 40 cm”1 by Carr et al. (1983). These films were
formed by ion beam depoéition of Pb onto sapphire substrates. A layer of 510,
was deposited on top to improve the stability of the Pb against oxidation in
the atmoéphere. The grains observed by a scanning electron microscope were
irregular in shape and about 1000 A in size. The less granular samples
(having large, extended grains with poorly defined voidé between them) had -
values for Ry <50 /0 while the more granular ones (consisting of smaller
isolated grains) had Ry > 500 Q/a .

The dc.transport properties were studied to provide additional
characterizing information. The resistive transitions were typical of
granular superconducting films; the resistance did nof abruptly disappear at
the bulk T., but instead gradually approached zero at some lower

temperature. The I-V properties below T, revealed reduced critical curreats
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and voltage steps. These steps are characteristic of Josephson devices,
providing evidence that the superconducting coupling between the grains was
weak.

The measured quantities were the normal state transmission and the
superconducting to normal state transmission ratio (T,/T.). For the films '
with.RU < 50 /00 , normal state transmissions were frequency independent,
consistent with the Drude model for metals with wi{<l. The superconducting to
normal state transmission ratios had a peak near 2A (22 cm"1 for Pb), )
consistent with the results from the Mattis-Bardeen célculation that were
shown in Fig. 19, although the measured peak was often not as high as the
predicted one. In contrast, as shownlin Fig. 26 the films with
Ry > 50 /0 had normal state transmissions which decreased with incrgasing
frequency; This decrease implies that the optical conductivity increases with
frequency, a behavior inconsistent with the Drude model. The measured
transmission ratios,‘Ts/Tn, were very surprising; Several are shown in Fig.
27. The usual peak-near 2A was found to be severely suppressed and shifted to
higher frequencies. At and below the gap, the ratio became less than one,
suggesting that the superconducting state absorption was actually greater than
the normal absorption (assuming a value for Oyg MO larger than for the bulk
case). Because the Mattis—Bardeen calculation predicts zero absorption below
the gap, it is incapable of describing these results.

Granular NbN has been investigated by Perkdwitz (1980) and by
Karecki et al. (1983). Granular NbN sample preparation differs from most
techniques in that it begins by making a uniform polycrystalline layer of NbN
by reactive sputter deposition. Afterwards, an electrochemical etching
process converts NbN at crystal boundaries into oxides of Nb, principally

NbyOg. The crystalline graiﬁs become electrically isolated from one another,
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producing a high resistivity.mixturé of NbN and insulator. NbN is a strong
coupled superconductor with T, = ;4 K and 2A(0) = 35 em~ L.

Perkouitz (1980) measured the transmission properties of NbN using a
far-infrared laser. Two samples were investigated, one homogeneous with Ry=
78 /0 and one highly granular with Ry= 21000 £/J . The grains were
determined from TEM photographs to be about 80 A across and 30 A in
thickness. The laser technique gave the transmission as a function of
temperature for a particular‘laser frequency. These results were then
compared to the temperature dependent calculation of Mattis and Bardeen. For
laser frequencies greater than the gap, Km}ZA, reasonable agreement bhetween
theory and experiment was achieved. At lower frequencies, however, the'fits
were not satisfactory, especially near Teo where the transmission was too
low. Including the contribution to tﬁe conductivity from fluctuations
4 immensely improved the fit for the highly granular sample. As described
earlier, fluctuations increase the conductivity at low frequencies and for
temperatures near T.. This increase in conductivity would cause the
transmission to decrease, as observed.

| In the work of Karecki et al (1983), four films of grauular NbN were
studied, including the highly granular film investigated by Perkowitz
discussed above. These films were all deposited under siuilar conditions to
produce comparable crystallite sizes. However, each was anodized for a
differing amounts of time ylelding samples with ij's of 206, 313, 715 and~-
21000 /00 . The resistive transitions and I-V propérties were similar to
those found by Carr et al (1983).

A Michelson type interferometer with a low temperature bolometer wao
used to measure hoth the transmission and reflection for each film. From

these measurements, the real part (and in many cases the imaginary part) of
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the optical conductivity was determined for direct comparison with the
theory. The less granular films (Rg= 206 9/D and 313 2/0) had frequency.
independent transmissions consistent with the Drude model for wr=0.
Measurements in the superconductive.state gave values for ols/on and ozs/cn
which followed the calculation of Mattis and Bardeen. The more granular
samples (Ry = 715 /0 and 21000 2/C0 ) had normal state transmissions which
decreased with frequency, inconsistent with the Drude model. In the
superconducting state, the real part of the optical conductivity, 0,42 Was ;o
longer zero below the bulk gap frequency. This result is shown invFig. 28.
In particular, the optical conductivity for the Saﬁple with the largest Ty was
actually largéi in the superconducting state than in the normal state for
frequenéies below the gap.

The results for the optical conductivity for highly granular NbN can

be compared to the EMA or MGT calculations discussed in sections VI-B-3 and

‘VI-B—A. The mixture of superconducting NbN grains with insulating NbZOS

suggests using a S-I mixture, but neither theory for these two constituents
gives absorption (non—-zero Uls) below the gap. However, comparison with the
EMA results for S-N mixtures shows some qualitative agreement. Actually, it
may turn out that the experimentai system is better described as a S-N mixture
whose normal component is only weakly conducting, leading to tunneling or
hopping between the grains. The conductivity ratios computed from the EMA
show the large lqw frequency increase even for a weakly conducting normal
component, as long as the system is clbse enough to the percolation
concentration. Similar results apply to the MGT for a normal metal host with
superconducting inclusions except that the large low frequency absorption

occurs only for supevconducting volume fractions near unity.
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VII. Discussion of the anomalies.

A number of ideas that have been advanced to explain the anomalous
far infrared absorption in small metal particles will be discussed‘in this
section. These ideas include the influence of oxide cbatings on the
particles,'the role of interactions and clustering, interparticle hopping, and
quantum size effects.

A. Oxides

Simanek (1977) proposed that the far infrared ébsorption takes pldce
in an amorphous oxide layer éoating the particles. In his model these coated
particles are stuck together to form needlelikeistructures. He calculated
first the dielectric function of the needles using the ﬁGT for spherical metal
partiéles embedded in an oxide host material. Next, hg used what is
- essentially the MGT for infinite cylinders (g=0) embedded in a medium with
dielectric constant e€=] to find the absorption coefficient due to the
needles. These calculations were compared to the measurements of Grangvist et
al (1976). Two factors in Simanek's model enhance the far infrared
absorption. First, the presence of the metal particles in the oxide magnifies

the absorption by the oxide (see qu 62). Secound, the aggregation of the
particles into cylinders (having g=0) increases the electric field inside the
oxide and hence the absorption. The calculated absorption was further
increased by the assuﬁption that the volume fraction of oxide plus metal in
the composite materlial was larger than the metal volume fraction (ie, that the
oxide does not grow at the expense of the metal constituent). He found that'

the absorption coefficient is

a =K fv (118)
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.

2. This value would be reduced to Kox=1'SXIO-2 if one assumes

where K_ ~4x10
ox

that the specified metal volume fraction of the sample includes both the

metallic particles and the metal-oxide coating. Because the volume fraction

is determined in most samples by weighing the particles, this second

assumption is probably the more reasonable one. (Fpr further discussion of

this point, see Carr et al, 198l1.)

A number of difficulties with Simanek's model have been pointed out

by Russell et al (1981), Carr et al (1981) and Sen and Tanner (1982). Firsg,

many samples have absorption coefficients that exceed the predictions of this
model by a factor of ten to thirty. Secound, oxides themselves do not show
such a high far infrared absorption. Third, unoxidized small particles (Au
and Pd) also show a high far infrared absorption. Fourth, because each metal
particle is.a;sumed to be coated with an insulator, the composite would never
become conducting, even if ;he volume fraction and geometry allowed
percolation. If conduction eventually did occur, the transition would be
expected to occur at a relatively high valqe of metal volume fraction, as
happens for example in the case of the cermets (vhere the metal gfains are
coated with insﬁlator and the tramsition occurs at volume fractions exceeding
0.5)7 |

In an extension of Simanek's model that overcomes the last
objection, Ruppin (1979) used the EMA to describe the individual clusters, so
that the clusters became conducting when the Volume fraction of metal in them
exceeded 1/3. He found an absorptidn that was larger than that of Simanek;
but the frequency dependence was too stfong; the absorption coefficient went

as v3 rather than v2.
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B. Interactions and clustering. i

Although the role of the oxide was the principal focus of Simanek
"and Ruppin, clustering played an important role in their models. The effects
of clustering were considered in some detail by Sen and Tanner (1982). Botﬁ
needle-shapeq and spherical clusters were investigated; the effects of
conducting (ie, absorbing) coatings surrounding the individual particles were
also discussed. Sen and Tanner found that if the individual small particles
were first coated with a poorly conducting (o~10 n—cmnl) layer and then
organized into needle-shaped clusfers there could be a high far infrared

1/2

absorption but with a v rather than v2 frequency dependence. None of the
paraméteré tried could cause the model simultaneously to give the correct
frequency dependence and the observed magnitude of the absorption coefficient.
. Cl&sters of particles made from ionic compounds were considered from
a lattice dynamics point of §iew by Clippe et al (1976). This model was
extended by Ausloos and Clippe (1978), and has been used by Ausloos (1979),
Gerardy and Ausloos (1979, 1982a, and 1982b), and Clippe and Ausloos (1982).
Clusters containing as many as 21 grains have Seen wofked out. The central
result is that interactions among neighbofing particles shift the surface
phonon peak (the equivalent of the MGT resonance in a metal sphere) from the
frequency at which it occurs in the isolated grain, with the direction and
amount of the shift determined-by the geometry of the cluster. The lowest
resonance frequencies'were at approximatelle.SwMGT in long chains of
particles while the highest were at approximately szGT for large clusters
with cubic symmetry. On the basis of this calculation, a composite conta;n—
ing many different kinds of clusters would be expec;ed to have a much broa@er

MGT resonance than one with isolated particles. This result suggest that the

broad resonance predicted by the EMA may result from the effective medium
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surrounding each grain playing the role of the neighboring grains in a
cluster.

The reason that clustering affects the effective response of the
medium is that the dipolar field from neighbors can make the external field at
a particle differ from the average field. To estimate the distance necessary
for this effect to be important, we consider the 1nteraétions bf two spherical
grains separated by a distance d in the direction of the average field, Eo’

In the presence of a field, each particle acquires|a dipole moment whiéh,

according to Eq. (25) is

p=ay ®

e ext (119)

where f 1s the particle volume and ﬁéxt is the total electric field applied to
the particle. This field is the sum of the average field and the field from
the neighboring particle

>
o
B = By v 5 (120)

The dipole moment of the particle is thus given by

Qy
e [
= a Eo (121)
1 -~ 2Ye ——5
a-

Dipolar coupling may be ignored as long as the second term in the denominator

of Eq. (121) is not important, ie as long as

d >» (-—Sg—— Ye)l/3 a _ (122)
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where a 1s the particle radius. According to Eq. (26),

3
Ye < 4 eo
so that our criterion becomes
a> (2¢ )% s | (123)

This criterion does not necessarily limit us to low volume
fractions. For example, suppose that the particles are arranged on a simple
cubic lattice with lattic constant d (an unrealistic model). The volume

fraction is f=lma3/3d3 and our requirement is

4
f 680. 0.5 (124)

with € =~ 4.8,
o

C. Hopping conduction
The treatment of metal-insulator mixtures using effective field

theories given in section III presumed that the inSulétor had zero
conductivity. If the insulating layer between two conductors is very narrow,
elecfrons may tunnel between the grains; this tunneling constitutes an
addiﬁional conduction mechanism that is not included in the classical model.
The effects of tunneling are most noticable just below percolation, where the
electrons are normally localized to a particular conductor. The process of

electron transfer from one localized state to another is termed hopping.
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Much of the formalism on hopping has been developed to model
conduction in amorphous and doped semiconductors. In these systems, electron
localization is due to disorder, rather than the grain boundaries found in
granular metals. Hopping traasport in such systems has been considered by
Scher and Lax (1973) using a model based upon a random walk on a lattice,
which they showed to be approximately equivalent to a random walk between
random sites once tﬁe averaging over the siﬁes is carried out. More recently,
Odagaki and Lax (1981) and Odagaki, Lax and Puri (1983) have.combined the

random walk model with the coherent potentiai approximation (CPA) and the

bond-percolation model to give expressions for the conductivity as a function

‘of frequency. For low frejuencies, they find a conductivity which typically

increasés as a power of w. For instance, on a 2-d square lattice, the real
part of the conductivity initially increases as mz for p<pc, where p ié the
average probability that a given bond exists and pc=1/2. For p>p., the real
conductivity initially increases as w. In either case, the conductivity
rapidly approaches a constant for higher frequencies, becoming indistinguish-
able from bulk conduction mechanisms. Results for other dimensions are

similar.

In granular metals, the hopping probability can not be treated as

" entirely random because there is a minimum threshold energy for the process.

The hopping process requires the removal of an electron from a neutral grain,
leaving it in a charged state. By considering the charged grain and the
surrounding polarizable medium as a capacitor, Sheng (1973), Abeles (1975) and
Chui (1981) have shown that the minimum energy required for the hopping‘

process should be

2
e

Eo = el(O)a
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where e is the electronic chérge, a is the grain radius, and el(O) is the
static dielectric constant of the medium. This energy may be available as
heat (thermally activated hopping) or from extefnal illumination (photon
assisted hopping). Besides the charging energy requirements, the hopping
conduction process also depends on the distance between grains and the
electron density of staﬁes on the grains, the latter possibly influencedlby
size quantization effects in very small grains. | )
Muqh of the evidence for hopping is due to temperature dependent dc
conductivity measurements on granular metal films by Sheng (1973), Abeles
(1975), Chui (1981) and Sichel (1982). Grénular films with metallic
concentration below percolation (p(pc=1/2),‘sh0w a negative temperatufe

coefficient of resistivity. Detailed analysis has revealed that the majority

of data for the conductivity follows
a
¢ =0 exp(-A/T )

with o close to 1/2.

Calculations for the temperature dependent conductivity are usually
based on a bond percolation model. The distribution of grain sizes and inter-
grain distances in these granular films gives a distribution of hopping
probabilities, and likewise, inter-grain conductances. The system's
conductivity can then be determined By finding the critical percolation
conductivity, as deVeloped by Ambegaokar et al. (1971). This method'has been
used by Simanek (1981) and Sheng and Kalfter (1983), resulting in temperature
dependent conductivities of the form observed in the experiments.

Additionally, Sheng has found that the exponent, a, can vary from 1/4 to near
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1, dependiné on the distribution of grain sizes, with a=1/2 holding over a
large temperature range if one chooses distributions similar to those found in
actual samples.

There are, at present, no specific treatments on hopping as applied
to the far-infrared properties of mixtures containing small metal particles.
The effect of charging energy has not been incorporated into any calculations
which yleld frequency dependent conductivities. It is not even clear whethef
hopping is an important.mechgnism in the far-infrared, compared to single
grain conduction mechanisms. Still, several qualitative features can be
expected. First, one would expect hopping to be gnimportant in mixtures for
which the metallic concentrations are well above Pes due to a lack of
localized electrons and the dominance of normal conduction processes. At the
other end of the scale, samples with very low concentrations have large
. average distances between graims, which make the hopping.process unlikely.

One therefore expects hopping to be most important for metallic concentrations
near p, where one has a large number of isolated grains (or grain clusters) in
reasonable proximity to one another. Second, one should expect a conductivity
.which initially increases with frequency as «® with 2<s<1/2 (as found from
considerations of random hopping). Whether or not hopping conduction is ever
comparable in size to single grain conduction remains to be answered.

D. Quantum size effects.

The conduction electrons in a bulk metal have an electronic spectrum
which is for all practical purposes a continuum. This continuous range of
energies is responsible for the ordinary electrical properties of metals. The
wave functions of the conduction electrons are usually thought of as'
completely delocalized, extending throughout the metal. In contrast, the

energy spectrum of a single atom consists of discrete, well-defined levels.
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The wave functions of the electrons in the atom are, of coursé, localized in
the vicinity of the atom. These two views of electronic states are completely
different, and the question of crossover from one regime to the other, which
should occur for small particles, is a fascinating one.
1. The gap. |

The electronic energles of a small parficle are neither continuous
as they ére in a bulk metal nor are they as widely spaced as.in an isolated
atom. Frohlich (1937) was the first to point out that the presence of the )
surface leads to energy levels quantized at certain discrete values with no
allowgd #tates at intermediate energy values. Thus, there will be an ehergy
gap § between the highest occupied level and the lowest unoccupied one; the
presence of this gap is expected to lead to dramatic effects in the electronic
properties of these particles when thé energy range investigated is comparable
to the gap value.

There ére two opinions about the value of tﬁe gap. According to one
(Kawabata and Kubo, 1966, Wood and Ashcroft, 1982 ) the stafes of an electron
confined within a small volume are worked out explicity and themn these states
are filled, beginning with the lowest one and continuing until all the
electrons in the particle are used up. The energy difference between the
highest oécupied and the lowest unoccupied levels is the gap. If the shabe of
the particle is taken to be spherical, the electronic wave functions are
products of spherical harmonics and spherical Bessel functions; for cubical
particles, the wave functions are products of sinusoids. As discussed by Wood
and Ashcroft, the energy spectrﬁm of a cube and sphere at large values of the
quantum numbers (i.e., near the Fermi level) differ only by geometrical

factors of order unity and the cubical wave functions are much easier to

use. For the cube, the wave functions are
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w=Asin(kxx)sin(kyy)sin(kzz) | ' (125)

The boundary conduction that the wave function vanish on the surface of the

éube, which has edge L, allows only certain values of the wave vector ke

ka-iﬂ ‘ kyszn kzL=2w (i,3,%2)=1,2,3,... (126)

The energy levels are given by

2 . 2.2
g, =0 2 HT_ 32,42,,2 (127)
fnp 2m ,szz

~The Fermi energy is determined by the electron density n and not the

number of electrons, just as in the usual free electron model (Kittel, 1976)

2
, h 2
EF = EE'(3W n)

2/3 (128)

The energy of the unoccupied level just above the Fermi level is E(kp+w/L) so

that the gap is

2

6 = E(kF+1r/L)-—EF = (iE;DEF (129)

(Note that in Eq. 129 we have neglected Ak=w/L with respect to kp. Because
the particle size, L, is substantially larger than the interatomic spacing,
' 3,1/3
) /

this approximation is justified.) Finally, using kF=(3n2N/L > the gap

becomes
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LIS} 3
- &Y (130)
which is of order of & = E /NI/3
A contrasting view is that of Kubo (1962) and Gor'kov and Eliashberg
(1965). These authors argué that the surface of any actual particle will be
rough on an atomic scale and that this roughness will 1ift all of the
degeneracies (except for spin) existing in the electronic energy spectrum.
The gap will just be the inverse of the single spin density of states,
evaluated at the Ferml energy:
where V is particle volume. Because the Ferml energy is determined by the
electron density, n, rather than the total number of electrons in the particle

N, (Eq. 128) this gap is

2E

)

(132)

<)
=4

There are two important consequences of the assumption that surface
roughness 1ifts all of the degeneracies in the electronic system. First, it
is no longer possible to obtain the electronlic wave functions as it was for
the case of cubes and spheres. Second, small variations in the shape of
individual particles making up a compésite system will lead to significant
differences among the energy levels of these particles. It then becowes
necessary to invoke statistical arguments about energy level_spécings to

determine the properties of the composite. We will return to this second

point shortly.
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The magnitudes of the gaps predicted by Egs. (130) and (132) differ
by a large amount. Consider a 75 A radius silver particle, containing 100,000

1 yhile that from Eq.

electrons. The gap predicted by Eq. (130) is 1900 cm
(132) is only 0.3 cn !, Friedel (1977) has argued convincingly fo; the
correctness of the smaller, or Kubo, gap. This argument ié similar to
Peierls' theorem about the instability of a one dimenéional metal towards a
lattice distortion, rgsulting in an insulating state. It goes as follows:
Suppose that the highest occupied level is in fact highly degenerate and
partially filled. (That it be partially filled is the most likely case; if
the number of states having this energy is M, then only 1/M of the time will
the level be completely filled.) Now, because the energies and the
elgenstates are determined by the boundary conditions, it is possible to 1lift
the degeneracy by an elastic deformation of the particle. In pafticular, it
will be possible to find some deformations which raise the energy of the
unoccupied states while lowering the energy of the occupied states, thereby
-lowering the electronic energy. The cost of bfeaking the degeneracy 1is the
‘elastic energy associated with the deformation; however, because the scale of
elastic energies (the Debye energy) is always much smaller than that of
electronic energies (the Fermi energy), the system will alway§ find it
favorable to deform and break the degeneracy.

2. The static dielectric corstant.

The static.dielgctric constant turns out not to depend on the model
chosen to find the gap. 1In the case of a cube with edge L, Wood and A;hcroft
(1982) find

1 2

L o
£,(0) = 1 + 5 kFao(—é—o—) (133)
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while for a sphere (Gor'kov and Eliashberg; 1965; but see also the comment by
Strassler, Rice, and Wyder, 1972) _
4 a 2
€,(0) = 1 + = kFao(—a—;) - (134)

The quantity a, appearing in Egs. (133) and (134) is the Bohr radius:
ao=K2/me2. If the cube and sphere have equal volumes (i.e. the same number of
electrons) then the dielectric constants are the same to within about 10Z.

Eq. (134) may be rewritten as

12 2 ‘
el(O) =1+ 52 (13?)

where q§=3w§/v§ is the Thomas-Fermi wave vector. (See Kittel, 1976, p 296.)
A comparison of Eq. (135) with the general Thomas-Fermi expression for the

zero—frequency, q-dependent dielectric function,

el(q) =1 + (136)
q
suggests that the dominant wave vector for a small particle is q = /5/a.
(Strassler, Rice, and Wyder (1972) show that the factor of 5 comes from an

integral of r2

over the volume of the sphere.)
3. The frequency-—dependent dielectric function.

The presence of a level distribution in a small particlg will modify
in a significant way the infrared and optical properties of the particle. We
would expect optical absorption when the photon energy of the light eduals the
difference in energy between a filled and an empty level. If the levels were

uniformly spaced with separation 6 then the absorption spectrum would be a

series of sharp peaks, such as occur in the rotation spectrum of a polar
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diatomic molecule. However, there are two reasons why this type of spectrum
is not observed. First, the samples studied consist of many individual
particles with small variations in size and shape, so that there are also
variations in level spacing. Secoud, the gap § is only the average distance
between the levels; the dielectric function depends on the statistical
distribution of levels. |

Gor'kov and Eliashberg (1965) applied a theory of random matrices
due to Dyson (1962) and Mehta and Dysonv(1963) to the optical propertiés of
small particles. Readers interested in the subject should also consult the
work of Devaty and Sievers (1980), Strassler,‘Rice and Wyder (1972) ;nd
Maksimenko, Simonov, and Lushnikov (1977) for corrections to the original
Gor'kov and Eliashberg paper. The review by Perenboom, Wyder, and Meier
(1981) gives a good description of this theory. The theory of random
matrices, originally developed to investigate excitations in heavy nuéleii,
uses a statistical description of an ensemble of identical (in size and shape)
particles. Because the underlying Hamiltonian must be invariant under
particular symmetry operations, a group—theoretical analysis shows that there
are only three classes of ensembles: the orthogonal, symplectic and unitary
groups. Physically, the orthogonal group corresponds to particles with small
spin—-orbit coupling (1ight elements), the sympletic group to those with large
spin—-orbit coupling theavy élements), and the unitary group to particles in
strong static magnetic field, uBB>>6.

To determine the frequency—dependent part of the dielectric
function, Gor'kov and Eliashberg averaged the electric dipole matrix element
over the three ensembles of level distributions. Their result applies to

particles where the bulk electronic mean free path is larger: than the particle

‘radius. (If the mean free path is short with respect to the particle size,
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Maksimenko et al. (1977) show that the classical result is found.) It also is
applicable only at low frequencies, w << 1/1'c = vF/a. The dielectric function

is given by:

=1+ q’a +4nQA(w) a3
where
12007"a k :
oF

and where A(w)=A1(w)+iA2(m) is a dimensionless quantity which is determined by
the particular ensemble chosen. This quantity may be written conveniently as

a function of the dimensionless argument

with w and 6 in the same units. (Note that Gor'kov and Eliashberg and Devaty
and Sievers use n = z/2 as argument of A for the orthagonal and unitary

cases.) It is also convenient to write the dielectric function as

.3 22 139 A(z)
e(w) = 1 + 5 prc [1 + 50 “Te 2 ] (139)

where T, = a/vF is the classical value for the scattering time. The A(z) for

the three ensembles are
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Orthogonal:
o
A, (2)

]
N

- ) B o)

A(z)(z) =z -é— sinz(-;-) - Z[Si(-;-) - 12'-] [% sin(;_-) - cos(i—)]

(140b)

Symplectic:
Ai(f) = 2 --E% sin(2z) - Si(z) [% cos(z) + Sin(z)] (141a)
) .
85(2) = z - ) _ 5105y [Latnz) + cos(z)] 4D
Unitary:
2%z) = 2 - 2 sin(2) '
1 "z - (142a)
Ag(z) =z - % sinz(z) . (142b)

Here, Si(z) and Ci(z) are the sine and cosine integral functions.

- Fig. 29 shows the functions ééil, the absorption coeffients, and the
derivatives of the absorption coefficient for the three ensembles. In these

calculations, the particle dielectric function was evaluated from the quantum

' mechanical expression, and then the absorption coefficient of a composite was

found using the MGT., The quantity x is the particle diameter; the absorption
coefficients were calculated using a volume fraction of 0.02 and parameters
appropriate to Al. Note that only for the sympletic ensemble are visible
oscillations in the absorption coefficient predicted by the theory. As
pointed out by Granqvist (1978) and Devaty and Sievers (1980), even these

oscillatons are washed out when any distribution in particle size is

. assumed. This washout occurs because the gap (Eq. 128) is such a strong

function of particle radius.
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4. Comparison to classical models
Finally, we would like to compare this quantum mechnical theory with
the classical expression for the dielectric function. 1In the limit as 6+0 (or
as z+°), A(z)/z+i, and
3 22
el(w) s 1 + T O T,

P
o (o) = 417 223 (143a)
1 1800 "p ¢ (143b)

If we use the low-frequency Drude model (Egs. 18 and 19) the comparisoh

fails. Note that even the sign i1s wrong for the real part of the dielectric
function. The failure occurs because the quantum mechanical theory is in
effect a theory for e(q,w) at é finite wavevector q while the Drude model is a
strictly q=0 limit. Starfiﬁg with the Boltzmann transport equation, Harrison

(1979) gives a élassical expression for e(q,w):

l] - iwt + iquT

, Wt
3w2 J 2qv. In (1 - iwt - iquT
e(q,w) = 1 + —F ]+ —2L
’ 2 2 i 1 - it + iqv_T (144)
q Vg 1 F

+ in |
2qur 1l - iwT iquT

Eq. (144) is valid as long as q<<Zkg. If qu<<!w+i/T[, the logarithms may be .

expanded, to find

2

I , . 2 :

e(q,w) =1 - 5 P { 3wt(l 1wT)2 2} (145)
w” + iw/T 3wt(l - iwt)” + (quT)

As q+0, we recover the Drude model (Eq. 14) while as w*0 we obtain the Thomas-
Fermi dielectric function (Eq. 136). At this point 1f we let

w<<1/t but keep leading terms in w, we get
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e(q,w) = 1 + 2" 5 [1+1 —921-—2-] (146)
q Vg (qvpT) .

At zero frequency, Eq. (146) is the same as Eq. (136). If, now, we take

q = Y5/a and Tc=a/v Eq. (146) becomes

F’
el(q,m) =1 + %-wircz . (147a)
9 223
ol(q,w) = 100+ wpm T, ‘ (147b)

Except for numerical factors, Eq. (147) is the same as Eq. (143). Thus, when w>ds,
the quantum-mechanical treatment is the same as the classical treatment
with q » ¥5/a, except that the conductivity is a factor of 2.5 larger.

This comparison with the classical theory suggest that the quantum '
size theory agrees with classical theory when w>>8, as it should. When w=§,
the quantum theory predicts a somewhat reduced absorption,vas shown by
Grangvist et al (1976), and Devaty and Sievers (1980). Thu#, the anomalously
large far—infrared absorptioﬁ cannot be explained as due to quantum effects.

5. Obsefvation of quantum size effec;s

The possibility that quantum size effects might be observed in far
infrared experiments is a facinating one. Such an observation would give
fundamental information about the crossover of electronic properties from
those of a solid to those of an atom or molecule. These observations have
eluded experiments for more than twenty years. . (See the review by Perenboom,
Wyder, and Meler, 1981.) The quantum theory ﬁredicts structure in the far
infrared absorption by a collection of identical émall particles. Because any

sample contains particles with varying sizes and shapes, this structure would
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become washed out. .Most authors (Devaty and Sievers, 1980; Grangvist et al,
1976) have concluded that these effects are not observable by far infrared
studies.

There remains one effect,.however, that is not washed out so long as
the particle size distribution is reasonably narrow. This effect is the gap
between the highest occupied level and the lowgst unoccupied one. At
frequencies smaller than the gap, a particle should not absorb far infrared
energy. A collection.of particles_whose size distribution is relatively
narrow should exhibit a threshold for absorption at the gap frequency. The
size and shape distribution will blur this threshold a bit, but should not
make it disappear entirely. Early experiments (Tanner, Sieveré, and Buhrman,

1975) were suggestive that this gap might occur, but to date, no other -

experiments have proved this issue.
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VIII. Another inhomogeneous material: Layered semiconductor systems

Modern semiconductor technology makes heavy use of layered
semiconductors in different forms. The most common type is a thin epitaxial
film of semiconductor usually a few microns thick, grown on a semiconductor
substrate. Many of these structures involve III-V compounds such as.InAs on
GaAs, AlGaAs on GaAs, and InGaAsP on InP, but combinations like one alloy of
PbSnTe on another or even polar-non polar systems like GaAs on Ge have also
been fabricated. A second type of system is the so-called "quantuﬁ well” or
superlattice in which very thin layers of two semiconductors alternate. A
prevalent example is AlGaAs alternating with GaAs. All of these structures
exhibit a form of spatial inhomogeneity in the direction perpendicular to the
surface, because the semiconductor properties change more or less drastically
at eacﬁ interface; This inhomogeneity is better controlled than what we have
encountered, for instance, in granular films, because it'exists in only ome
dimension and because the layer;to-layer spacing is fixed and is often very
well known. Nevertheless, the existence of boundaries between different
materials has a profound effect on the electrical and optical properties of
these systems. |

In optical terms, a uséful way to determine the scale of the
inhomogeneity is to compare it to the penetration depth of the radiation. .A
typical penetration depth fqr UV-visible radiatioh in a semiconductor is less
than 1 ym, so reflection data taken on an epitaxial layer more than a few
microns thick does not sample as far as the first interface. Far infrared
radiation, on the other hand, can penetrate tens of microns so that for a
typical film it may return informatipn about one or more interfaces. In the
remainder of this section we show how this kind of spatial inhomogeneity plays

a role in far infrared measurements. A careful analysis of far infrared data
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can give useful information about the sample interfaces, although extremely
sophisticated analyses have not yet béen carried out.

| The main features of this one-dimensional spatial variation can
easily be included in an optical theory. The basic idea is to represent each
layer as a slab of semiconductor having a spatiélly constant dielectric
function and then to assume.that the interfaces between layers are perfectly
abrupt. The frequency dependence of the dielectric function for both the
lattice and free carrier responses of the semiconductor is well known in the
far infrared (Perkowitz, 1983, Jénsen, 1983). For the j'th layer, the complex
dielectric function ej determines the qomplex index of refraction,
Nj = nj + in = /E;. As Fig. 30 shows, it is then a straightforward agalysis
to follow the incident light beam through the sample layer—by—layer and to
calculate the effect of each interface as it is encountered. For the
calculation of reflectivity, for instance, the amplitude reflection
coefficient betweén the j'th and j+1'th layer is given by

N - N,

(<t Nj) (148)

X. =

A summation over all the layers then yields the net reflection coefficient.
Similar methods give the net transmission coefficient. It will be seen that.
departures of the data from this simple model contain interesting information
about spatial vafiations near the interfaces.

A pioneering effort in layered syétems was made by Tennant and Cape
(1976) who examined the far infrared reflection of a low carrier density
(= 1016/cm3), 8 um—thick film of Pby ggSng ;,Te on a high carrier density
(= 1018/cm3) Pby 5gSng 9pTe substrate. Their reflection data, given in Fig.

31, shows clearly by the presence of interference fringes the existence of a
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definite optical interface within the saﬁple. Further details became apparent
when they fitted the data with the abrupt interface model. The figure shows
that tﬁis,procedure did not give a good fit at the higher frequencies. The
fit became satisfactory only when the assumption of abrupt change was replaced
b& a fit that allowed the carrier concentration to vary continuously over the
interface region. This variation was modeled by defining many thin slabs to
approximate the carrier gradient. Such grading is likely to occur because of
carrier diffusion during the growing of the film. :

Further evidence of the effect of inhomogeneity in semiconductor
structures was obtained by Amirtharaj et al. (1977 and 1979) who examined a
12 ym thick film of InAs grown on a GaAs substrate. As seen in Fig. 32, these
data also show interference fringes arising from the InAs film. Again,
however, a fit using a two layer—abrupt interface model was unsatisfactory.
An acceptable fit could be produced only by including additional spatial
variation near the interface. Rather than introduce a graded region as
Tennanﬁ and Cape had done, a'third layer, representing the transition region
between the epitaxial layer and the substrate, was included in the fit. The
properties of this transition region were varied to provide the best fit and
it turned out that a 1 um thick interface layer composed of the ternary InGaAs
vastly improved the fits to both reflection and transmission data. Later
measurements (Wagner, 1976) on sister samples using Auger spectroscopy and
energy-dispersive x-ray analysis confirmed the existence of such a ternary
interface layer énd predicted a thickness of about 2 um, reasonably close to
the estimate made using far infrared techniques.

With the addition of this third iayer the fit values of lattice and
free—carrier parameters in each layer became satisfactorally close to known or

measured results. Fig. 32 shows one other factor in the spatial analysis. It
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is known that InAs can develop thin surface accumulation layers with high
cérrier concentrations. The figure illustrates how the addition of a

0.1 um surface layerw ith 1017>cm"3 carriers further enhances the fit
especially at the highest frequencies. This extension requires several
additional fitting parameters and should not be considered definiti§e without
corroborating evidence, but it shows that far infrared data are sensitive to
as little as 1000 A of semiconductor layer.

These analyses and others made by Durséhlag and DeTemple (1981) in a
superlattice system and by Palik and coworkers (1979) in GaAs systems have all
modelled the sample as a stack of layers, each with an appropriate classical
bulk dielectric function. This approacﬁ is probably inadequate as probe of
detalled microscopic behavior at the interface. Two analytical improvements
are needed. One is to use a more general solution for Maxwell's equations,
such the one developed by Hild and Grofsic (1978), for the case where the
optical parameters are spatially varying. The other is to introduce the
modifications in the bulk dielectric functions due to such factors as enhanced
surface scattering in thin layers, band bending near the interfaces, and
modified band structure in the case of.the superlattices. Such‘improved
analytic tools combined with infrared and other optical probes like Raman
spectroscopy should give exceptionally useful results for layered

semiconductors.
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IX. Summary

The qualitative the far-infrared properties of inhomogenebus
materials are reasonably well understood; they are in agreement with the ideas
of the effective medium approximation. The effective complex dielectric
fuﬁction which characterizes these materials depends on the concentrations of
the constituents, the properties of the individual constituents, thelr sizes,
and the method of preparation of the sample. Three regimes can be
identified: 1low concentrations, concentrations near the percolation
transition, and high concentrations.

At low concentrations of metal in insulator; the dielectric function

. 1s mainly real with a real part which is close to that of the insulating

constituent. The absorption coefficient (or conductivity) increases as the
square of the frequency so long as the particle size is smaller than the
electromagnetic skin depth. Near percolation, the real dielectric constant is
much larger than that of the insulator; the absorption is also largé.

Finally, at concentrations well above percolation, the properties resémble
those of a dirty or disordered metal.

In contrast to this qualitative understanding, the magnitude of the
far—infrared absorption in low-volume-fraction composites (f < 0.05) is
mysteriously large. The discrepancy between the observed absorption and model
calculations which consider only electric dipole absorption (i.e., the
dielectric functions of Eqs. 46 or 57) is about a factor of 105, When eddy
current absorption is included in the model (and when the most favorable
parameters are used in the calculation) the discrepancy is a factor of 10 to
100, even though the eddy current absorption correctly predicts the frequency,
concencratio;, and size dependence_oflthe absorption. Note that at small
concentratiohs and low frequencies, both the MGT and the EMA give essentially

-
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identical numerical values for the absorption, so thét the aﬁomaly is not
dependent upon the effective medium model chosen. Finally, in supercondu;ting
samples the frequency dependence of the observed absorption also disagrees
with calculations.

| In addition to these anomalies,‘the major unanswered question in
this area has to do with quaﬁtum size effects. Although ﬁhere 1s a general
'belief tﬁat quantum size effects should become important in very small
particles, there has been no unambiguous observation of these effects. Thus‘
there is no experimental information about the magnitude of the energy gap or

the details of the level distribution in small particles, despite the

fundamental importance of these issues.
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Captions

-

(right panel).

Transmission of gold black in the far infrared (from Harris,

1961).

Schematic pictures of the MGT and EMA views of an inhomogeneous
medium.

Frequency—dependent conductivity calculated from the Maxwell-
Garnett theory (left panel) and the effective medium approximation
Electric dipole contribution to the far-infrared absorption
coefficent. Curveé are shown for three particle sizes, 10, 100,
and 1000 A. | |
Magnetic dipole contribution to the far-infrared absorption
coefficient. Curves are shown for three partiéle sizes, iOO, 300,
and 1000 A,

Magnetic-dipole contribution to the far—irfrared absorption
coefficient of a £ = 0.01 sméll—particle composite. The pérticle
radius is 1 ym (10,000 A). Curves are shown for three values of

the conductivity.

1 absorption

Magnetic dipole contribution to the 70 cm
coefficient. Curves are shown for three values of particle
conductivity over paf&icle radii from 100 to 10% A. The arrows
indicate the value of the skin depth of the metal.

Concentration dependence of characteristic frequencies of a metal-
insulator composite. w, and w_ are the impurity band limits, as

calculated in the EMA, Heavy lines at w = 0 and

" w = w_are the two percolation modes, w. and w, are the
imp imp

impurity band centroids. Finally, the dashedvline denotes the
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peak in —Ime;;f (w), as computed in the EMA. Right-hand scale
expresses the correspondence between the frequéncy and the
alternate variable em/ei. (From Stroud, 1979.)

Figure 9 Frequency-dependent conductivity for a coated‘metal particie
according to the EMA. The parameter Q=1~(oxide thickness)/
(radius). Thus Q = 1 is for no oxide. Note that £=0.4 > :
(From Wood and Ashcroft, 1977.)

Figure 10 Measured absorption éoefficient for Al smoke versus frequency. )
The solid line is calculated from the orthogonal ensemblé and
applied to either specimen. The instrumental resolution is
shown. (From Tanner et al.; 1975.)

Figure 11  Absorption coefficient of 24 A radius Al smoke versus frequency.
The voiume fraction of metal in this unsupported smoke was
f = 0.015. (From Grangvist et al., 1976.)

Figure 12 Far-infrared absorption coefficient of l-um—radius Pd particles in
KC1, shown on a log-log scale. Data are shown for Pd volume
fractions of 0.003, 0.01, 0.03, and 0.1. (From Russell et al.,
1981.) B

Figure 13 Far-infrared absorption coefficient divided by the volume fraction .
for Pd particles in KCl. Data are shown for Pd volume fractions
of 0.001, 0.003, 0.01, 0.03, and 0.1. (From Russell et al.,
1981.)

Figure 14 Far-infrared absorption coefficient of Pd and Au small particles
in an Al,04 host. The absorption by the host has been subtracted

from the data. A fit to a quadratic curve is also shown. (From

Carr et al., 1981.)
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Figure

Figure

Figure

Figure

Figure

Figure

Figure

15

16

17

18

19

20

21

Far-infrared absorption coefficient of 450-A radius Al partic1§3'
in KCl. Data are shown for metal volume fractions of 0.003, 0.01,
and 0.03. (From Carr et al., 1981.)

Far-infrared dielectric constant of composite samples of Al in
KCl, inferred from the period of the internal reflection interfer-—
ence pattern, versus metal volume fraction. (From Carr et ai.,
1981.)

The real and imaginary parts of the frequency-dependent conducti;—
ity of a superconductor. |

Experimentally determined real and imaginary parts of the
frequency—dependent conductivity of NbN. Dashed line is ﬁattis-
Bardeen theory;‘solid line is Leplae theory. (From Karecki et
al., 1983).

Ratio of superconducting state transmission to normal state
transmission for a NbN film. Curve a: fif from Leplae theory.
Curves b and c: fits from Maﬁtis—Bardeen theory with two different
sets of parameters. (From Karecki et al., 1983.)

MGT prediction for the absorption coefficient of 250 A Sn small
particles in an insulating host. The volume fraction of metal was
assumed to be 0.01. Eddy current (magnetic dipole) effects domin—
ate the absorption. The solid line shows the normal-metal absorp-
tion whereas the dotted line gives the result when the Sn is
superconducting.

MGT prediction for the absoprtion coefficient of Sn small
particles at a volume fraction of 0.0l when only electric dipole

absorption is included. The particle radius was taken to be

25 A. The solid (dotted) line shows the normal (supercondudting)
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Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

22
23
24
25
26
27
28

29

30

state absorption.

Calculated difference between superconducting and normal-state

- absorption for electic~dipole and magnetic—dipole absorption.

Far-infrared absorption by small Sn particles in KCl. (From Carr

et al., 1983.)

" Difference between the superconducting and normal-state absorption

for Sn small particles in KCl. (From Carr et al., 1983.)
Microwave response of a granular aluminum film. (From Muller and
Pomerantz, 1981.)

Far-infrared transmission of granular Pb films at T = 10 K (the A
normal state). |

Ratio of superconducting-state transmission fé normal-state
transmission for granular Pb films. (From Carr et al., 1983.)
Real part of the frequency-dependent conductivity of a NbN
granular film. (From Karecki et al., 1983.)

Upper panels: The function A(z)/Z for the Gor'kov and Eliashberg
theory as éalculated by Devaty and Sievers (1980). Results are
shown for the three ensembles. The solid line shows the real
part; the dashed line the imaginary part. Middle Panels: The
absorption coefficient predicted by the model. Lower Panels: The
frequency derivative of the absorption'coefficient. |
A schematic layered semicondﬁctor structure showing one or more
thin films of different materials grown in sequence on a
substrate. The net reflection and transmission coefficient R and
T relative to the incident light intensity I, are calculated by

applying appropriate electromagnetic boundary conditions at each

interface.
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Figure 31

Figure 32

Reflectivity of an 8 um thick Pby ggSng 15 Te film on a substrate
of Pb0.788n0.22 Te. Interference fringes are apparent above 120

en~l. The fitting curves arise from the following models: curve
A, two layer, abrupt interface; curve B, graded interface, linear

variation of carrier concentration; and curve C, graded interface

'exponential'variation of carrier concentration. (After Tennant

and Cape, 1976).

Reflectivity of a 15 um thick InAs film on a GaAs substrate. Frée
carrier effects appear below 50 cm_l; interferencé fringes are
apparent between 50 and 200 cm_l; and lattice modes dominaté above
200 cm"lf Curve a: best fit with two layer abrupt interface
model. Curve b: bést three layer‘fit with added 1 uym-thick
interface layer of InGaAs. Curve c: best four‘iayer fit with

added 0.1 um-thick sutface accumulation layer of InAs with 1017

carriérs/cm3. (After Amirtharaj and Perkowitz, 1979).
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	Source: Infrared and millimeter waves, Vol. 13, pp. 171-263, Orlando, FL, Academic Press, Inc. (1985)


