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Abstract

We report transmittance and conductivity measurements of aluminum-doped zinc oxide films grown by atomic layer deposition. The
results show that the films have 80–90% transmittance in the visible region and good transmittance in the infrared. To our knowledge,
this is the first time that the transmittance of aluminum-doped zinc oxide is reported to extend beyond 2500–5000 nm. Following anneal-
ing, an optimal sheet resistance of 25 X/h was obtained for a 575 nm thick film with a carrier density of 2.4 � 1020 cm�3 without com-
promising the transmittance in the visible regime.
� 2012 Elsevier Ltd. All rights reserved.
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1. Introduction

Aluminum-doped zinc oxide (AZO) is an affordable,
non-toxic and robust transparent conductive oxide (TCO)
(Suzuki et al., 1996). AZO has already found applications
in thin film photovoltaics such as CdTe and CIGS based
solar cells (Dhere et al., 2011; Vasekar et al., 2009) and is
a good candidate to replace indium tin oxide (ITO), the
current most popular TCO (Murdoch et al., 2009). The
desire to replace ITO stems from its high production cost
and the relative scarcity of indium in the earth’s crust.
The higher stability of AZO in reducing atmospheres
may also be an advantage for future applications (Minami
0038-092X/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
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et al., 1989). Furthermore, AZO films are more transparent
in the infrared (IR) than ITO films. IR transmission is very
important because increasing the long-wavelength response
is an approach to increase the efficiency of some solar
devices (Berginski et al., 2007). Thus, AZO films are ideal
replacements for ITO films in applications such as trans-
parent electrodes for solar cells, flat panel displays, LCD
electrodes, touch panel transparent contacts and IR win-
dows (Park et al., 2006).

AZO thin films can be deposited by several techniques
such as sol–gel (Tang and Cameron, 1994; Musat et al.,
2004; Radhouane, 2005; Verma et al., 2010), chemical
spray (Mondragón-Suárez et al., 2002; Islam et al., 1996),
thermal evaporation (Jin et al., 1999; Ma et al., 2000),
pulsed laser deposition (Singh et al., 2001; Mass et al.,
2003; Agura et al., 2003; Liu and Lian, 2007), DC and
RF magnetron sputtering (Berginski et al., 2007; Jeong
et al., 2003; Yang et al., 2010) and reactive mid-frequency
(mf, 50 kHz) magnetron sputtering using dual magnetron
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Fig. 1. Schematic of the atomic layer deposition (ALD) system.
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cathodes (Kon et al., 2002). The desired qualities of a good
TCO: transparency, conductivity, and surface texture,
depend on the growth technique and the growth parame-
ters. Atomic layer deposition (ALD) is a growth technique
which has recently become very popular (Yousfi et al.,
2001; Kwon, 2005; Banerjee et al., 2010; Gong et al.,
2011; Saarenpää et al., 2010; Luka et al., 2011) since it pro-
vides uniform and conformal coverage and control of the
thin film by atomic layer precision (George et al., 1996).
This technique has the potential for solar cell applications
where the deposition of solar cell layers requires good
interfaces between the n-type layer and the TCO layer.
The growth rate of the ZnO using our ALD system was
around 12 nm/min. This growth rate is low compared to
sputtering systems which can have growth rates of 15–
20 nm/min for RF sputtering (Jeong et al., 2003) and
around 300 nm/min for dual magnetron sputtering (Kon
et al., 2002). Although the growth rate of the ALD system
is relatively low, the uniformity, conformality and the com-
pactness of the film cross-section achieved from the ALD
technique are superior to those from other techniques.
The low growth rate from ALD can be compensated by
making roll-to-roll and batch processes viable for large
scale industrial production.

Two major results have been reported here. First, the
growth technique and parameters were optimized to
achieve a sheet resistance as low as 25 X/h for a 575 nm
thick film. Our results show that annealing of the film
increased the conductivity by a factor of four (100–25 X/
h). The increase in conductivity is thought to arise from
oxygen deficiencies created during the annealing process.
This suggestion was corroborated by X-ray photoemission
spectra (XPS) which showed that the oxygen content of the
films decreased after annealing. Second, optical measure-
ments showed that ALD-grown AZO films were very trans-
missive in the near-infrared. The transmittance of ALD-
grown AZO films beyond 800 nm has not been reported
in the literature since previous work was not focused on
IR transmittance (Yousfi et al., 2001; Kwon, 2005; Baner-
jee et al., 2010; Gong et al., 2011; Saarenpää et al., 2010;
Luka et al., 2011). For similar reasons, the transmittance
of AZO films grown by any other method is not reported
beyond 2500 nm; in some cases the AZO films are opaque
beyond 2000 nm and in other cases the data are not shown
(Berginski et al., 2007; Tang and Cameron, 1994; Musat
et al., 2004; Radhouane, 2005; Verma et al., 2010; Mond-
ragón-Suárez et al., 2002; Islam et al., 1996; Jin et al.,
1999; Ma et al., 2000; Singh et al., 2001; Mass et al.,
2003; Agura et al., 2003; Liu and Lian, 2007; Jeong
et al., 2003; Yang et al., 2010; Kon et al., 2002; Pflug
et al., 2004). In this work we show that the transmittance
of the films extended at least up to 5000 nm where the
float-glass substrate becomes completely opaque. Also,
the transmittance in the visible region normalized to that
of the substrate oscillated between 90% and 100% due to
constructive and destructive interference. The interference
effect in films, resembling that of a Fabry–Perot cavity,
allowed the calculation of the refractive index in the visible
region.
2. Experimental details

The AZO films were grown by an ALD system that uti-
lizes sequential self-limiting surface reactions between the
precursors to achieve atomic layer controlled conformal
thin film growth (Elam and George, 2003). The precursors
used to grow the AZO films were dimethyl zinc [Zn(CH3)2]
(DMZ), trimethylaluminum [Al(CH3)3] (TMA) and water
(H2O). Di-ethyl zinc (DEZ) is also used as a precursor
for zinc, but we have used DMZ since it has higher vapor
pressure. The precursors were purchased from STREM
chemicals. Fig. 1 shows the schematic of the growth pro-
cess for the ALD system. The AZO films were grown on
two different substrates; single crystal Si (100) and float-
glass. The growth sequence can be understood from the fol-
lowing surface reactions on a hydroxylated silicon sub-
strate. Since H2O is adsorbed on most surfaces, a
formation of Si–O–H hydroxyl group on the silicon sub-
strate is expected.

1. Zn(CH3)2 + Si–O–H = Si–O–Zn(CH3) + CH4.
2. Si–O–Zn(CH3) + H2O = Si–O–Zn–O–H + CH4.
3. Si–O–Zn–O–H + Al(CH3)3 = Si–O–Zn–O–Al(CH3)2 +

CH4.
4. Si–O–Zn–O–Al(CH3)2 + 2H2O = Si–O–Zn–O–Al–

(O–H)2 + 2CH4.

The pulse cycles of DMZ, H2O and TMA were chosen
to achieve desired compositions and thicknesses. Methane
gas, the byproduct in the reaction shown above, was
purged out after every cycle. Any unreacted precursor
was also purged at the same time, thus self-limiting the sur-
face reaction. Nitrogen was used as the carrier and purge
gas. In the ALD method, the precursors do not react with
themselves and each reaction is terminated in one layer
resulting in one monolayer. Therefore, both the growth
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rate and the film thickness can be precisely controlled. The
duration of the DMZ and TMA cycles was kept at 125 ms,
whereas the cycle duration for H2O was kept at 175 ms to
assure the formation of hydroxyl group on the surface. The
purge time between each cycle of the precursors was
300 ms. The reactor was pumped to a base pressure of
1 mTorr. During the growth cycle, the pressure was
0.6 Torr. The growth rate of the AZO film was 1.95 Å/cycle
with a cycle time of 1 s. As expected for ALD growth, the
growth rate was linear for the films with thicknesses as high
as 600 nm. The growth temperatures were varied from 150
to 325 �C. The films grown at 325 �C had the best crystal-
line quality and the highest conductivity.

The ratio of DMZ and TMA (amount of doping) pulse
cycles were varied to improve the conductivity of the AZO
film. The pulsing of 1 TMA cycle after every 20 DMZ pulse
cycles produced the AZO films with the highest conductiv-
ities. The energy dispersive X-ray analysis (EDX) con-
firmed that this ratio corresponded to 3 atomic percent
(at.%). The surface morphology of the as-grown thin films
was imaged using a Scanning Electron Microscope (SEM).
The films were relatively smooth with uniform distribution
of grains of 60–100 nm length and 10–20 nm width (Fig. 2).
The XRD spectra of the film showed all the characteristics
of the ZnO hexagonal lattice with space group P63mc
(186). No trace of impurity peaks were observed even in
the logarithmic scale. The film texture was predominantly
(100) oriented (Fig. 3). The film resistances were measured
by the standard 4-probe technique and the carrier concen-
trations were studied by Hall Effect measurements using a
Van der Paw geometry.
Fig. 2. SEM images at varying magnificatio
3. Results

3.1. Optimization of sheet resistance by annealing

For conductivity measurements, AZO films were grown
on Si (100) with a 20 nm thick buffer layer of Al2O3. The
thick buffer layer allowed an accurate measurement of
the conductivity of the AZO film. The 575 nm thick AZO
film grown at 325 �C had a sheet resistance of 100 X/h
and a carrier concentration of 1.86 � 1020/cm3. The con-
ductivity of the film was improved by rapid thermal anneal-
ing in argon (95%)–hydrogen (5%) ambient at temperatures
ranging from 350 �C to 600 �C for 5 min; and the optimal
annealing temperature was 400 �C. Since the films annealed
at 400 �C showed the lowest sheet resistance, the films were
further annealed at this temperature at varying times. The
lowest sheet resistance of 25 X/h was observed for 30 min
annealed film (Table 1). The optimal sheet resistance of
25 X/h for the 575 nm thick film corresponded to a resis-
tivity of 1.4 � 10�3 X.cm. This value of the conductivity
is comparable to the highest conductivity films grown by
ALD (Kwon, 2005; Banerjee et al., 2010; Saarenpää
et al., 2010; Luka et al., 2011) and other methods (Musat
et al., 2004; Singh et al., 2001; Mass et al., 2003; Liu and
Lian, 2007).

The improvement in conductivity in the AZO film after
annealing may be attributed to oxygen deficiency created
from annealing in a reducing environment. The annealing
process also improved the smoothness of the film.
The decrease in roughness may have also contributed to
the slight decrease in the sheet resistance. Atomic force
ns of the AZO films grown on Si(100).
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Fig. 3. XRD peaks of AZO thin films grown at 150–325 �C and annealed 30 m in argon.

Table 1
Electrical characteristics of the 575 nm thick AZO film annealed in argon–
hydrogen atmosphere at 400 �C and at different times using Hall-effect
measurement.

Annealing
time
(min)

Sheet
resistance
RS (X/h)

Resistivity
q (X.cm)

Carrier
density
(n/cm3)

Mobility l
(cm2 V�1 s�1)

Carrier
type

0 97.77 5.623E�03 1.86E+20 6.51 n-type
5 32.67 1.879E�03 2.56E+20 13.18 n-type

30 25.95 1.492E�03 2.39E+20 17.76 n-type
60 30.87 1.775E�03 2.62E+20 13.53 n-type
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microscopy (AFM) imaging of the 30 min-annealed films
showed that the roughness decreased from 7.31 nm to
6.72 nm after annealing.
3.2. X-ray photoelectron spectroscopy measurements

The films were studied using X-ray photoelectron spec-
troscopy (XPS) to gain insight into the possible oxygen
deficiencies caused by annealing. XPS was performed by
irradiating the sample with monochromatic Al Ka X-rays
of energy 1486 eV. Fig. 4 shows the survey scan of an
30 min-annealed film. The observed XPS peaks are related
to Zn2p3/2, oxygen O1s, Al2p and the common environ-
mental contaminant carbon C1s. Other peaks were also
observed. The carbon C1s line was designated to
284.8 eV (standard position) and the spectrum was shifted
accordingly. The Zn 2p3/2 binding energy of 1021.8 eV and
the oxygen O1S binding energy of 530.8 eV are associated
with the zinc oxide (ZnO) structure (Battistoni et al.,
1981; Langer and Vesely, 1970). The Al 2p binding energy
of 73.32 eV makes it difficult to determine its exact oxida-
tion state, but it is not associated with Al2O3 (Arata and
Hino, 1990). Elemental analysis was performed on films
before annealing and after the 30 min annealing. The film
surface was argon-etched until the carbon C1s peak due
to the carbon contaminant disappeared. The elemental
composition is depicted in the table in the inset of Fig. 4.
The XPS results show that the oxygen content is reduced
for the annealed film. The conductivities of the AZO films
depend on the oxygen vacancy concentration in addition to
aluminum doping. Oxygen vacancies give rise to dangling
Zn bonds and increasing conductivity as shown in Table 1.
It is also possible that the reduced roughness in the
annealed film further improved the conductivity. However,
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as the annealing time increased, the resistance of the film
started to increase (Table 1), which could be due to the
increase in residual oxygen partial pressure arising from
the oxygen impurity present in the argon gas and unavoid-
able leaks in the system.
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3.3. Transmittance measurements

The transmittance of the AZO films grown on float-glass
was measured in the 250–5000 nm wavelength range. Two
different thicknesses (250 and 575 nm) were measured. The
transmittance was measured in the mid-infrared to ultravi-
olet range by using a spectrophotometer (0.25–0.85 lm), a
Perkin Elmer 16U grating spectrometer (0.4–3 lm), and a
Bruker 113 v Fourier Spectrometer (2–20 lm). The trans-
mittance measured with the different spectrometers over-
lapped well and yielded an uncertainty of ±1%. A new
observation is that the AZO films were transmissive in
the IR up to 5 lm. The transmittance in the infrared of
the film/substrate would extend farther if it were not lim-
ited by the substrate cut-off. The transmittance of AZO
above 2 lm is another advantage of AZO over ITO - since
the latter is opaque beyond 2 lm. In the visible part of the
spectrum, the transmittance of both the 250 nm and
575 nm thick films were in the range of 80–90% (Fig. 5),
which corresponded to a normalized transmittance of 90–
100%.

The transmittance also showed oscillations in the visible
region. A simple analysis of this interference effect can give
further insight into the optical properties of these films in
this part of the spectrum. These oscillations correspond
to constructive and destructive interference between multi-
ple bounce beams and these can be used to calculate the
refractive index (Hecht, 2001). Since the spacing between
the transmittance maxima (Df) is related to the film thick-
ness d by

Df = 1/(2n�d), the refractive index n can be estimated.
The maxima spacing Df of 9000 cm�1 and 4000 cm�1 for
the 250 and 575 nm films respectively yielded a refractive
index of 2 for both films in the 0.4–1.2 lm region of the
spectrum (Fig. 6). This value is in agreement with the value
for a ZnO based system (Heideman et al., 1995).

The oscillations also yielded information about the
absorption and the imaginary part of the refractive index.
At a frequency corresponding to a maximum, the outgoing
and back-reflected waves all add in phase. If the film has no
absorption, then all the light should be transmitted at a fre-
quency where there is constructive interference. The fact
that the normalized transmittance equals one at a maxi-
mum shows that the absorption from the film itself is neg-
ligible in this spectral region.
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4. Conclusions

Highly conductive and transparent AZO films were
grown using atomic layer deposition. The conductivity of
the film was further improved by post deposition anneal-
ing. An optimum sheet resistance of 25 X was obtained
after annealing of the films at 400 �C in argon ambient.
XPS measurements showed that oxygen deficiencies caused
by annealing may be responsible for the increase in conduc-
tivity. In the visible spectrum, the normalized transmit-
tance was between 90% and 100%, and the films were
shown to be transmissive up to 5000 nm. Further measure-
ments on the optical transmittance of the AZO films on
substrates with a better IR window are on the way.
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