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Abstract  

The emeraldine base form of the polymer can be varied from insulating 
(a ~ 10 1°ohm 1 cm-1) to conducting (a ~ 10°ohm ' c m  1) states through 
protonation. Based upon extensive magnetic, optical and transport data, we 
demonstrate that  the resulting emeraldine salt is metallic with a finite density 
of states at the Fermi energy. The roles of a novel bipolaron-to-polaron lattice 
transition and phase segregation into conducting and non-conducting regions 
are discussed. 

Introduct ion 

The polyaniline family of polymers provides a means of systematically 
studying the electronic structure of polymers as a function of both the number 
of electrons and the number of protons on the polymer chain [1, 2]. Though 
polyaniline has been known for the past century [3], there has been in- 
creased interest recently [4 - 6] due to achievement of a highly conducting 
polymer as a function of the degree of protonation and oxidation/ 
reduction. The emeraldine base form of polyaniline is proposed [2] to have 
equal numbers of reduced [--(C~H4)--(NH)--(C~H4)--(NH)-- ] and oxidized 
[--(C~Hn)--N----(C~H4)----N--] repeat units, Fig. l(a). Upon treatment with 
acids of varying pH, protons are added to a fraction of the formerly unproto- 
nated nitrogen sites [2 - 21]. For example, treatment of the emeraldine base 
with aqueous HC1 of pH = 0.0 yields nearly complete protonation, i.e., the 
emeraldine salt [2]. As a result of this treatment, the d.c. conductivity 
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Fig. 1. (a) Emeraldine base polymer (unprotonated); (b) schematic bipolaron lattice; (c) schematic 
polaron lattice. 

increases from 10 -:0 ohm-:  cm- :  to 10 ° ohm- :  cm-:  [2, 21, 22], despite the fact 
that the number of electrons on the chain has not been altered. Hence the 
protonation must lead to a significant change in the electronic structure of the 
polymer [23 - 29]. The conducting form of emeraldine can also be synthesized 
through the electrochemical oxidation of the fully-protonated leucoemer- 
aldine form of polyaniline [1, 2, 21]. The determination of the appropriate de- 
scription of the resulting conducting state and its relationship to the concepts 
of non-linear phenomena in polymers [30, 31] with differing repeat units (the 
' - - A - - B - - '  polymer [32]) and non-degenerate ground states [33 - 35] is an 
objective of this study. 

In this report we summarize the results of magnetic, transport  and opti- 
cal studies of the emeraldine form of polyaniline as a function of protonation. 
Our experimental results show the development of a metallic density of states 
with protonation, together with phase segregation into small metallic parti- 
cles. Results of temperature and electric field-dependent transport experiments 
are consistent with charging energy-limited tunneling [36] among the small 
metallic particles. It is proposed that the observed transition to the metallic 
state is a transition from isolated bipolarons to a polaron lattice. 

Experimental techniques 

The preparation of emeraldine and its protonation are described else- 
where [2, 21]. Experiments were performed in an anhydrous atmosphere or in 
vacuum. The magnetic susceptibility was measured via a Faraday technique 
[37] and electron spin resonance. The reflectance for emeraldine was measured 
with a Michelson interferometer in the far infrared and a grating monochro- 
mator in the infrared and visible [38]: the frequency-dependent conductivity 
was determined by Kramers-Kronig analysis. The temperature-dependent d.c. 
conductivity and its electric field dependence were measured together with the 
thermoelectric power in a previously described apparatus [39]. 
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Experimental results 

The t empera tu re -dependen t  s ta t ic  magnet ic  susceptibi l i ty ,  ~M, of repre- 
sen ta t ive  samples of emera ld ine  as a func t ion  of p ro tona t ion ,  Fig. 2, can be 
decomposed into a sum of a t empera tu re - independen t  term, Z . . . .  + Z P"u~i, and 
a t empera tu re -dependen t  term, X C u r i e  = ns(T)C/T, where  C is the Curie  con- 
s tan t  and ns(T ) is the number  of localized spins. After  sub t rac t ion  of Z . . . .  
[40], the va r i a t ion  of zP,u~ and ns(T) as a func t ion  of degree  of p ro tona t ion  
(expressed as y = C1/N) was obtained,  Figs. 3 and 4. At the h ighes t  protona-  
t ion level (y = 0.5) a Z P~u~ of + 110 x 10 ~ emu/mole per two rings is observed,  
more  than  twice the Z e~l~ repor ted  [37, 41] for the metal l ic  phase of poly- 
acetylene.  

The conduc t iv i ty  increases  with pro tona t ion ,  a l though  the func t iona l  
dependence  of the conduc t iv i ty  upon t empera tu re  changes  l i t t le  for y > 0.3, 
Fig. 5. Pa ramet r i z ing  as a 0 exp(-(To/T)~/2) ,  the To term is found to va ry  l i t t le  
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Fig. 2. Magnetic susceptibility vs. temperature for emeraldine at representative protonation 
levels. 
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Fig. 3. Pau l i  suscep t ib i l i ty  vs .  y ( n u m b e r  of  p ro tons  added per  two rings).  
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Fig. 5. Log ~ us. T i/2 as a function of protonation level. 

for y > 0.3 (Fig. 6), while a strong dependence of the sample resistance upon 
applied electric fields is observed (see inset to Fig. 6). The room-temperature 
thermopower is small and negative for y > 0.3. At high protonation levels, the 
band gap absorption remains at energies greater than 3.5 eV, and two new 
in-gap absorptions appear at 1.5 eV and 2.9 eV, Fig. 7. 

D i s c u s s i o n  

The nearly linear increase in Z PauH (/~N(EF) where N(EF) is the density 
of states at the Fermi energy) with y is suggestive of phase segregation into 
metallic and non-metallic regions. The concentration dependence of the abso- 
lute conductivity and its temperature dependence are in accord with a percola- 
tion threshold among these particles at y -~ 0.3. For y > 0.3, barriers between 
these particles appear to continue to dominate the transport behavior with 
a ( T  ) oc exp(-(To~T) 1/2) at low electric fields and a ( E )  oc exp(-Eo/E)  at high 
electric fields (E 0 is a constant), consistent with charging energy-limited tun- 
neling [36] between the small metallic polyaniline particles. 



68 

t -  

O m 

x 

~o 

2 - 

I - -  

o 
o 

e l  I 
12.5 

O:  11,5 

I I 
f 

j e  ° 

,o.% ~ ,~ ~ 8 
I/E x I03, CM/V 

I I I I 
0.1 0.2 O.3 0.4 0.5 

Y 

Fig. 6. T o vs. y for  data of  Fig. 5 assuming ~ = a 0 exp[ -(To~T)1~2].  The inset is log resistance vs. 

E ~ for  the y = 0.5 sample at 50 K. 

The presence of a finite density of states at the Fermi energy for the 
protonated polymer reflects a change in the electronic structure of the poly- 
mer upon protonation. Addition of two protons at the (previously unproto- 
nated) nitrogen sites on either side of the quinoid rings results in a spinless 
bipolaron defect, Fig. l(b), inconsistent with the measured magnetic suscepti- 
bility. It has been proposed [22, 40, 42] that there is a transition to an ordered 
array of polarons, as shown schematically in Fig. l(c). X-ray photoemission 
spectroscopy results [43] support the idea that  the polarons are centered on 
alternate nitrogen sites. The transition from bipolarons to a polaron lattice is 
not energetically favored [35, 44], though it may be stabilized by the energy 
gained through reduced Coulomb interaction and delocalization [44]. In addi- 
tion, three-dimensional coherent ordering [45], Coulomb interaction with the 
interstitial dopants and dielectric screening may stabilize the polaron lattice. 
From the measured N(EF), a polaron bandwidth W P of 0.37 eV is obtained. 
Using the results of the continuum model expression for W p (assuming Cou- 
lomb repulsion = 0, all C and N are identical and that both phases of bond 
alternation have the same energy) [44], we obtain [40] a polaron decay length 
of 0.4 of the N - - N  spacing. 

The two new absorptions in the optical spectrum are in agreement with 
those expected [34] for a polaron lattice. There is relatively little change in 
the infrared vibrational spectrum upon protonation, in qualitative agreement 
with predictions [46] for a polaron lattice. 
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Fig. 7. Conductivity vs. frequency for y = 0.5. 
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In addition to Z Pauli, the number of 'Curie' spins increases with protona- 
tion. For each protonation level the number of 'Curie' spins increases as the 
temperature is lowered, reaching a maximum at a temperature T m ~ 50 K 
then decreasing as T is further decreased, Fig. 4. It has been suggested [40] 
that  this is due to localization at low temperatures of polarons at the surface 
of the small metallic particles formed upon protonation of emeraldine. Below 
T m, pairs of these polarons, if in sufficient proximity, may combine to form 
spinless bipolarons. 

Summary 

The protonation of emeraldine results in a transition to a metallic poly- 
mer. The magnetic, optical and transport studies support the idea that  the 
transition is to a polaronic metal with phase segregation of the metallic re- 
gions from the insulating regions. Charge transport is limited by the electron 
transitions between the small conducting polymer regions. 
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