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The correct ion of phase error in Fourier transform spectro- 
scopy is discussed. Phase error is corrected by mul t ip ly ing 
the inverse transform of the measured interferogram by 
e-• where +(~) is the phase error in the spectrum. 
This error  is determined from a low-reso lu t ion,  two-sided 
interferogram. I t  is absolutely essential that the trunca- 
t ion-apodizat ion funct ion which mu l t ip l ies  the in te r fe ro -  
gram have an even part which is symmetric about the x=O 
posi t ion.  I f  th is  funct ion is not properly located, large 
errors in the corrected spectrum can occur. 

Key words: Fourier transform spectroscopy, phase correc- 
t ion ,  inter ferometry.  

I .  Introduct ion 

This paper presents a discussion of a technique ~or 
correct ing phase error ,  one of the errors which ar ise in 
Fourier transform spectroscopy. Phase error occurs for a 
var ie ty  of reasons: systematic error in the measurement of 
the opt ical  path d i f ference,  misalignment of the i n te r f e r -  
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ometer, or i n t r i n s i c  asymmetry 
between the in ter ferometer  
arms. These er rors  produce an 
in ter ferogram which is asym- 
metr ic about i t s  centra l  maxi- 
mum and whose Fourier t rans-  
form is i nheren t l y  a complex 
funct ion  of frequency. The 
goal of  any phase co r rec t ion  
scheme is to recover,  as far  
as is  poss ib le ,  the o r ig ina l  
spectrum. 

0 
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~ r2ei~2 
Movincj mirror i | / • 

" / ~  " " Fixed Mirror 
Beam splitter l (~ 

J 
~ Detector 

I I .  Background 

A. The ideal Fourier 
t ransform spectrometer 

A simple Michelson 
in te r fe rometer  is shown in 
Figure I .  L ight  leaving the 

Figure I .  A simple Michelson 
in te r fe rometer .  The arm 
numbered 2 is x/2 longer than 
the one numbered 1; l i g h t  in 
the second arm t rave ls  an 
extra path d i f fe rence  x. 

source s t r i kes  the beam s p l i t t e r  where part  of the amplitude 
is t ransmi t ted in to one arm of the in ter fe rometer  and part  
is re f l ec ted  into the other arm. These two rays t ravel  to 
the end mi r rors  and re turn  to the beam s p l i t t e r  where they 
recombine; the combined beams go o f f  to the de tec to r .  This 
l i g h t  is (more or less)  a TEM electromagnet i~ wave, wi th 

i c " i(Z.r) ~ : Four er omponents having the form ~(~)e , where Ikl 
m§ vacuum) in un i ts  where c = 1. Thus i f  m is in #ec ' I ,  
I r l  w i l l  be a t ime; i f  m is 2~ (frequency in cm-1), I r l  is 
in cm. The phase of the electromagnet ic wave advances as 
i t  moves through the in te r fe romete r ;  the phase is also 
modif ied by the beam s p l i t t e r ,  which has ampli tude t rans -  
mission cQ~f f i c ien t  tb ez~t and ampli tude r e f l e c t i o n  c o e f f i -  
c ient  rbem~r; and by the end.mi r rors ,  ~bich have amDlitude 
r e f l e c t i o n  c o e f f i c i e n t s  r l e  z~L and r2e z92. At the de tec to r ,  
the to ta l  e l e c t r i c  f i e l d  ampli tude is the sum of the ampli-  
tudes from the two in te r fe rometer  arms; 

: ~1 + ~2 (1) 

wi th  

[i : [s(~)tb ei%t rl ei%l rb ei}r ei~R (2) 
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~-2 = gs(m) rb e i~r  r2 ei$2 tb eiSt eimR eiWX (3) 

where R is the to ta l  opt ical  path length for both rays and 
x is the extra path d i f ference for  ray 2. 

The ideal in~erferome~er has ident ica l  arms with per- 
fect  mirrors ( r l  emil = r2e I~2 = - i )  and a perfect  beam 
s p l i t t e r  (one which sends equal energy into both arms: 
r 5 = t b = 1 / /2 ) .  The to ta l  i n tens i t y  at the detector is 

oo  

I (x )  = I d m l ~ 1 2  (4) 

co  

s(~) [1+ COS(~X)] (5) 
j o  

§ 2 where S(m) = [Es(m) l is the power spectrum. At zero path 
d i f fe rence,  the i n t ens i t y  at the detector is 

(6) I o j o  

At zero path d i f ference a l l  of the source i n tens i t y  is 
d i rected to the detector ;  none returns to the source. 2 At 
large path d i f ferences the i n tens i t y  at the detector is 
j us t  hal f  the zero path d i f ference i n tens i t y  

I~ = �89 /-d~ S(~) (7) 
Jo  

because as x§ ~ the cos(~x) term averages to zero, i , e .  i t  
is more rap id l y  varying wi th frequency than S(~o). 

n ] 
quant i ty  I ; i t  is The intefiferogram is the u ( x )  l~Jturns 

the cosine Fourier transform of the spe6trum. o u t  

to be convenient to fac tor  out the integrated source inten- 
s i t y  I o. We define a normalized spectral i n tens i t y  P(~) by 

P(~) = S(~)/I o (8) 

co  

so tha t ,  by equation ( 6 ) , / j d ~  P(~) = 1. 
interferogram is 

y(x) = [l(x)- Io~]/I o 

The normalized 

(9) 
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with these d e f i n i t i o n s ,  equation (5) becomes 

= �89 cos( x) 
0 

(10) 

The spectrum can be recovered by the inverse cosine Fourier 
t ransform of  y (x ) .  

P(~) = ~ f d x ~  y(x) cos(~ox) (11) 
0 

There are no phase errors  in t h i s  ideal case. Only the 
inverse cosine transform i s  ca lcu la ted .  Because y(x) is 
symmetric (or even) about x = O, y(-X) = y(X) ,  the same P(~) 
w i l l  be returned by an inverse complex Four ier  t ransform: 

= 2 [dx - -  y(x)e - i~x  (12) P(~) 
J 

where the fac to r  of 2 comes from our having extended the 
lower l i m i t  of  the in tegra l  to -~. P(m) remains a real 
funct ion because the symmetry of y(x) about x = 0 causes 
the sine transform to be zero. 

B. Phase er rors  

In a real in te r fe rometer ,  the assumptions made in the 
previous sect ion do not in general hold. The beam s p l i t t e r  
is not per fec t ;  nor are the two arms of  the in ter fe rometer  
pe r f ec t l y  matched. The beam s p l i t t e r  e f f i c i ency ,  Sb, is 
defined to be: 

s b =_ 4 R b T b _ 41rbeiq~rl21tbe• 2 (13) 

The phase s h i f t s  on t ransmission and r e f l e c t i o n  do not play 
a ro le  in the in ter ferogram (assuming the beamspl i t ter  to 
be homogeneous) because each beam was once t ransmi t ted and 
once re f l ec ted  by the beam s p l i t t e r .  The beam s p l i t t e r  
e f f i c i e n c y  may be incorporated in t~  the power spectrum by 
redef in ing  i t  to be S(~) ~ sh(~) IEs(~)] 2. The other fac- 
t o r s  which modify the spectrum, sucn as f i l t e r  and window 
t ransmi t tances,  detector  spectral  respons iv i t y  e t c . ,  may be 
included in exact ly  the same way by regarding S(w) to be 
the instrumental  power spectrum, (Note, however, that  
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those factors which modify the phase response of the system, 
such as the ac e lec t r i ca l  phase s h i f t  of  the detector and 
preampl i f ie r  of  a rapid-scanning in ter ferometer ,  cannot be 
accounted for  in such a simple way. Indeed, these phase 
s h i f t s  must be corrected in the same way as other phase 
e r ro rs . )  

I f  the two arms are not i d e n t i c a l ,  then r ~ #2. (We 
w i l l  assume that  r I = r 2 = 1; any small d i f ferences in the 
ref lectance of the two mirrors w i l l  not a f fec t  the phase.) 
Let r be the d i f fe rence in phase between the two arms; i . e .  
l e t  r = #i + r Then the to ta l  i n t e n s i t y  at the detector 
is 

l(x) = ~yodmI[s(m) 12Sb(m) r12[ 2+eimx eir 

+ e - i~z  e- i r  (14) 

= �89  S(m) i + cos mx + r (15) 

Notice that  when x = ~ ,  

I| = �89 S(m) (16) 

z �89 I (17) 
0 

while when x=O, 
co  

(]s) 

I f  #(w) J O, then I (0  < Io ;  a l l  the source i n t e n s i t y  is 
not sent to the detector .  Thus, when phase errors are pre- 
sent the zero path d i f fe rence i n t e n s i t y  is less than twice 
the large path d i f fe rence value. A signature of phase 
error  is  an interferogram whose maximum i n t e n s i t y  is less 
than twice the i n t e n s i t y  at very large path d i f fe rences.  

With the d e f i n i t i o n s  (8) and (9) ,  equation (15) becomes 
c o  

Because y(x) is a real  f u n c t i o n ,  P(co)e iqb(~ must be Hermi- 



2"/8 

t ian,  i .e .  

p(_m)ei# (m) = p(m)e-i#(m) 

Porler and Tanner 

(20) 

making equation (19) become 

T(x) = 91d~ P(~)e i*(~) e iWx (21) 

The inverse Fourier transform of y(x) gives the spectrum 
and phase: 

P(m)e i~(m) = ~ ~dx u -imx (22) 

C. Phase correction 

Suppose #(m) is known. Then 

p(~) : e-i*(m) ~Id x~ Y(x)e -imx (23) 

The spectrum P(m) is found by mLjl~iplying the Fourier trans- 
form of the interferogram by e -1m~mJ. This procedure is 

.the basis of the mul t ip l i ca t ive  technique f i r s t  proposed by 
Mertz Ib'3 At least two al ternat ive methods are used to 
eliminate the phase from equation (22). In one 4, the power 
spectrum is calculated 

IP(m)ei#(m) I m{P1(m) 2 + P2(m) 2 

where Pi(m) = P(m)cosr and P2(m) = P(m)sinr are the 
real and imaginary parts of the transform. This technique 
does correct phase errors but has a non-linear effect on 
noise and requires measurements for an equal distance on 
both sides of zero path dif ference, 

The second al ternat ive is tQj~oovolve the interferogram 
with the Fourier transform of e -zmtm) to produce a symmetric 
interferogram, s The cosine inverse transform of this sym- 
metric interferogram gives the spectrum. This convolution 
technique should be equivalent to the mul t ip l i ca t ive  tech- 
nique; a common bel ief ,  however, is that the convolution 
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technique works well whi ls t  
the mu l t i p l i ca t i ve  one leads 
to baseline errors and other 
d is to r t ions  in the spectrum. 6, 
Even the f a i r l y  detai led 
studies by Sanderson and Bell 8 
of the mu l t i p l i ca t i ve  tech- 
nique f ind residual errors _ # ' ~  
around 0.5%, an unacceptably o) 
large value. 

w(x) 

0 • 

I I I .  Sampling error is jus t  
another kind of phase 
error 

In al l  experiments, the b) • 
actual recorded interferogram 
is a sampled interferogram. 
The in tens i t y  is measured at 
points separated by uniform ~:o- 
steps of length 6. Unless -E{~)e i~ . . . . .  E(~)e~:'e i ' '  

/ - re i r  

. - r e i ~ : - e  i~ 

some care is taken, i t  is 
almost certain that the zero IFigure 2a) The sampled in te r -  
path dif ference posi t ion wi l l ' ferogram is the product of 
be missed; the amount of the the continuous interferogram 
miss is s ~ 6/2. Neverthe- and a set of equally spaced 
less, as we show below, so delta functions. 
long as the spacing between 
sampled points is f ine enough Figure 2b) A hypothetical 
to avoid a l ias ing,  the samp- mirror (dashed l ine)  whose 
l ing procedure introduces no amplitude re f lec t ion coe f f i -  
addit ional complications into cient is reir = -eimC and 
phase correct ion,  which is located at x/2 is 

equivalent to a perfect 
The sampling procedure mirror (sol id l ine)  with 

is represented mathematically coef f i c ien t  reir  = -1 which 
by mul t ip ly ing the in ter fe ro-  is located at (x+E)/2. 
gram by a "Dirac comb" or 
i n f i n i t e  sum of delta func- 
t ions 

oo  

Vs(X) : ~(x) =~_~(x-~-ka) 
k 

(24) 

which picks out points at the sampling posi t ions,  as shown 
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in Figure 2a. The Fourier transform of th i s  product is 
found by s u b s t i t u t i n g  ~s for  u in equation (22).  

Ps(~)ei~(~~ ~7 u -_--:oo~176 e -ic~ : - _  dx k X ~ ( x - c - k ~ )  (25) 

When the sum and the in tegra l  are interchanged, the i n te -  
gral may be done immediately, leaving the spectrum as the 
Fourier sum: 

ps(~)e i~(~) - ~ =~_f(k6+~)e - i~k~ e - i ~  (26) 
k ~  - 

o r  

ps(~ ) = ~2 e - i  ~ (~ )+~  k=- ~(k~+c)e-i~k~ (27) 

Equation (27) is an example of the s h i f t  theorem; s h i f t i n g  
the o r i g i n  of the Fourier t ransform by an amount ~ i n t r o -  
duces an overal l  phase fac to r  e -ime in the t ransform. Note 
that  Ps(m) remains continuous but is now per iod ic :  
Ps(m+2~i6) = Ps(m). 

Another way of viewing the errors  introduced by miss- 
ing the o r i g i n  is to consider the in te r fe rometer  m i r ro r  
shown dashed in Figure 2b. Instead of being a per fect  
m i r ro r  at (x+E)/2, having re• = -1, i t  is a mi r ro r  at x/2 
wi th  re• = -e• Then the phase s h i f t  introduced by th i s  
m i r ro r  is  # = m~, and i t s  in ter ferogram is given by equa- 
t ion  (21) wi th  #(m) = me. The inverse Fourier t ransform of  
th i s  in ter ferogram is 

= [ /dx ~(x)e -i~x (28) 
% _ w ~  

This phase s h i f t  is j us t  what the l i g h t  t r ave l i ng  in that  
arm of the in ter ferometer  would have picked up on going on 
to the per fect  m i r ro r  at (x+e)/2 and then re tu rn ing  to the 
beam s p l i t t e r .  Thus the in te r fe rometer  wi th  l i nea r  phase 
er ror  mE and the in ter fe rometer  which has a systematic 
e r ro r  E in i t s  path d i f fe rence  produce the same s igna l .  
The techniques used to cor rec t  phase errors  in the cont in -  
uous in ter ferogram w i l l  also cor rec t  phase er rors  in the 
sampled in ter ferogram. 
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IV. Phase co r rec t ion  and apodizat ion 

A. The e f fec ts  of  t runca t ion  

The values of  path d i f f e rence  which an actual 
ferometer can produce are f i n i t e :  

-L l  i x i +L2 (29) 

i n t e r -  

where we assume that  one l i m i t  is on the negative side of 
zero path d i f f e rence  and the other is on the pos i t i ve  side 
and, for  convenience, that  L2>L I .  This t runca t ion  is 
equiva lent  to m u l t i p l i c a t i o n  of  the in ter ferogram by an 
apod i za t i on - t runca t i on  funct ion  A(x) :  

where 

YA(X) = y(x)A(x)  

A(x) = l i  i n i t e  
X < -L 1 
-L1 i x i L2 
X > L 2 

(30) 

The we l l -known l ,9 ,  I~ e f fec ts  of  in ter ferogram t runcat ion  
are twofo ld :  The instrumental  reso lu t i on  is l im i ted  to 
A~ = I / L  2 and sidelobes or feet  are introduced in the 
v i c i n i t y  of  sharp spectra l  fea tures .  The size of these 
feet  may be reduced by wise choice of  A(x) over the range 
where i t  is  f i n i t e ,  at the cost of f u r t he r  loss of reso lu-  
t i on .  

The Four ier  t ransform of  the product of any two func- 
t ions  is equal to the convolut ion of  the Fourier t rans-  
forms of  the ind iv idua l  func t ions ,  so that  

PA(~)e i~A(~) - ~ f d x  y (x )A(x)e  - i~x  (32) 

- 7dco' p(w')e i~(~~ 
_oo 

(33) 

a(m-m') (34) 
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where 

1 7 d x A ( x ) e - i ~ x ( 3 5 )  a(~) = 2-~ 

is the instrumental l ineshape 
funct ion .  

I t  is th i s  convolut ion 
which makes d i f f i c u l t  the 
phase correct ion process. I f  
L 1 ~ L 2 then A(x) is not an 
even funct ion of x and a(m) 
is  complex: 

a) 

'{I A( [ 
i 

-m I 

b) 
I'OF F A(x)~ [ 

_o.~ . . . . . . .  
- L  z -L~ 

I 

O +L2 X 

- -  Ae(x)  
] --- Ao(• 

[ L i, 

0 +L~ +L  z 'X 

a(m) = al(m) + i a2(m ) (36) 

Figure 3a) An o f f - cen te r  box- 
Because a(m) is complex, car func t ion .  The funct ion 
#A(m) d i f f e r s  from the actual A(x) is  un i t y  over the range 
phase #(m). Even in the case -L I ,  L2 and zero elsewhere. 
where the actual phase error  
is  zero, o f f - cen te r  t runca- Figure 3b) The even (so l id  
t i on  causes a loss of  con- l i ne )  and odd (dashed l i ne )  
t r a s t  and a d i s t o r t i o n  of the parts of  the o f f - cen te r  box- 
baseline of  the computed car func t ion .  
spectrum. 

As an example, consider the o f f - cen te r  boxcar trunca- 
t ion  funct ion of Figure 3a. Here, A(x) = 1 over the i n t e r -  
val -L i ,  L 2. The even and odd parts of  A(x) ,  given by 

Ae(X) = �89 + A(-x) ]  (even) (37) 

Ao(X) : �89 - A(-x) ]  (odd), 

are shown in Figure 3b. The real part of  a(~) is the 
Fourier transform of Ae(x),  which in t h i s  case is  a super- 
pos i t ion  of two centered boxcar func t ions ,  one from -L 1 to 
+L 2 and the other from -L 2 to +L 2. This Fourier transform 
is L i L 2 

al(~) = 4~ fdxe-i~x + 4~ fdxe-i~x (38) 
-L~ -L2 
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az(m) 
sin(roLl) + sin(mL2) 

2~m 2~ (39) 

The convolution of P(m) with al(m) returns a spectrum that 
is the sum of a low resolut ion spectrum (Am = 1/LI)  and a 
high resolut ion one (Aw ~ I /L2) .  The broad side lobes from 
the (mostly) unresolved features in the f i r s t  spectrum cause 
baseline d i s to r t i ons ;  the lack of resolut ion i t s e l f  causes 
loss of contrast .  

A pa r t i cu l a r l y  sad case occurs when L1 = 5, the samp- 
l ing interval  of the interferogram. Now, the wings of the 
sin(mL1)/2Tm funct ion extend above the a l ias ing frequency, 
~max = 1/2~, and are folded back into the spectrum, where 
they can pass through i t  several times, t l  As shown by 
Mertz 3, th is  d i f f i c u l t y  is a l lev ia ted by using an apodiza- 
t ion funct ion which does not double-weight the twice-  
measured port ion of the interferogram between -L I and +LI. 

The imaginary part of the instrumental l ine  shape, 
a2(m), can be neglected when ~(m) = O; the spectrum can be 
taken as the real part of PA(m). When #(m) { O, however, 
both real and imaginary parts of a(w) can contr ibute to the 
shape of the f ina l  spectrum. 

B. Assumption of slowly varying phase. 

We w i l l  assume in th is  section that the phase ~(~) is 
a slowly varying funct ion of frequency. This assumption, 
i f  t rue,  w i l l  enable us to determine the phase from a low- 
resolut ion two-sided interferogram, which extends from -L 1 
to +L l ,  and then use th is  phase to correct the high resolu- 
t ion interferogram, which extends to +~ .  This assumption 
is convent ional ly made in discussing phase correct ion pro- 
cedures; ,3,s-8;  i f  i t  is not t rue,  a fu l l  two-sided in te r -  
ferogram would have to be measured. 

We begin with equation (34) for the apodized spectrum 
and suppose that the phase~(~')  which appears in th is  
equation varies slowly so that i t  can be expanded about 
frequency ~ in a power ser ies,  and that only the f i r s t  two 
terms need be kept 
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= +  'li (40) 

I 

Note that we are not requir ing that r have l inear slope 
for al l  m, only that i t  can be taken as l inear about m for 
the range of frequencies where a(m-m') / O, i .e .  for a few 
resolut ion widths. Then, with the def in i t ion  

~(~) = dr (41) 
dm' 

l 

equation (34) becomes 

PA(w)e iCA(m) =/dm' P(w')e i (m)+8(m)(m'-m a(m-m')(42) 
_ c o  

qotice ~hat e~ r may be brouqht outside the integral and 
that e im~mT(m -m) has the same arqument as the argument of 
a(m-m') (except for sign). Thus, equation (42) is equiva- 
lent to 

pA(co)eiCA(m) = eir176 * [a(w)e-i#c~ ] 

= eir (~) [p(~)] *a 5(w ) 

(43) 

(44) 

The second term in the convolution is 

aB(m) = a(m)e-i~m = e-iBm _/12~ Z A(x)e- imx_ dx 

1 fA(  ~)e -i~x 2~ x- dx (45) 

where the sh i f t  theorem has been invoked to move the 
or ig in (or center) of the apodization function to x=5. 
This resul t  shows that the effects on the convolution of a 
l inear phase error ~m may be eliminated by choosing the 
or ig in of the apodization function at x=B. I f  the phase 
error comes from a sampling error e, than 5=s and the 
correct or ig in is the actual point of zero path dif ference. 

Note that in going from equation (42) to equation (44) 
we have dropped the argument of #, so that the frequency- 
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dependent funct ion ~(~) now 
appears to be a constant B. 
In p r inc ip le ,  the frequency 
dependence remains in equa- 
t ions (44) and (45), appar- 
ent ly  requi r ing a separate 
Fourier transform of the 
apodized interferogram 
y(x ) [A(x -B(~) ) ]a t  every 
frequency m. Because by 
hypothesis #(m) only 
varies over frequency 
in tervals  charac te r i s t i c  of 
the low resolut ion spectrum 
( i . e .  A~ ~ I /L  ) th is  
requirement is even achiev- 
able in pract ice.  Our test  
calculat ions show, however, 
that  per fec t ly  adequate 
resu l ts  are obtained when B 

a) 

b) 

c) 

4 
0 L 

-L~ 0 L,+2/2 L 2 • 

] - ] 
o -L2 -L .-'6"'" L ,+2~  L 2 X 

_O,SL I ........ " 

2 p ~  k- 0 

-- Ae(x) 

i.o L FI - - - Ao I• A(x) ~ ... 

-o5L : - L r l "  +L  r L 2 X I . . . . . . . .  " 

�9 - L2  

Figure 4a) The ramp through 
the or ig in  gives proper 
weight to those interferogram 
points that  were measured 

is taken as constant and r twice. 
soaks up the remaining f re -  
quency dependence of the Figure 4b) The even (so l id  
phase, f i n l a n d  odd (dashed l ine)  

parts of the l e f t  ramp. 

C. Phase correct ion of 
truncated and apo- 
dized interferogram. 

For conceptual purposes, 
we consider apodization to be 
a two-step process, i . e . ,  

Figure 4c) The even (so l id  
l i n ~  and odd (dashed l ine)  
parts of a mislocated l e f t  
ramp. The st ructure between 
-L I and +L I d i s to r t s  the 
spectrum. 

A(x) = Ai(x)Ail(X ) (46) 

Fi rs t ,  the central port ion of the interferogram is mul t i -  
pl ied by a ramp given by: 

AI(x) = 

x+L1 

-LIsx~Lz+2@ 

1 x~LI+2B (47) 

0 Otherwise 
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Note that Al(x) = �89 at x=6. The use of th is ramp through 
the or ig in fol lows, essent ia l ly ,  the recommendation of 
Mertz and is shown in Figure 4a). Figure 4b) shows the 
even and odd parts (about x=B]) of th is " l e f t  ramp". Note 
that the even part is a boxcar function which extends from 
-L2+2~ to +L 2. Figure 4c) shows the even and odd parts of 
a l e f t  ramp which is not properly located. The structure 
near the or ig in in Aze(X) and Aio(X) d is tor ts  the spectrum. 

The second step in our apodization procedure is to 
mul t ip ly  the data by the desired apodization function, 
A i i ( x ) .  This function, whether t r iangu lar ,  F i l l e r  9, Nor- 
ton-Beer l~  or some other, is chosen so that i ts  or ig in is 
also at x=6 and so that i t  is s t r i c t l y  an even function 
about th is  point, A l ( -x -~ )  = A (x-B) For example our 

�9 ~ . II " ' ' 

t r iangular  apodlzatlon function is 

1 - Ix-~' l  -L2+2~ < X < L2 
L2-~ - - 

AI (x) : 

0 otherwise 

Note that A l l (x )  = 1 at x=# and goes to zero at x = -L 2 + 
26 and at x=+L 2. This choice of slope means that the per i-  
odic continuation of A(x) has period 2(L2-~) (which is 
twice the actual maximum optical path dif ference) and has 
a simple t r iangular  waveform. 

The inverse Fourier transform of the apodized in ter -  
ferogram can then be phase corrected. The phase corrected 
spectrum is 

PA(m) = Re {e-• _2 7dxu ) A(x_~)e-imx} (49) 

where the real part has been taken to eliminate the convo- 
lut ion of the spectrum with the imaginary part of the 
instrumental l ine shape, a2(~). 

According to equation (44) this spectrum is 

PA(m) = P(~) * a~(m) (5o) 

To show e x p l i c i t l y  that equation (49) does correct for 
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phase error,  we consider the case of an i n t r i n s i c a l l y  sym- 
metric interferogram with a systematic error ~ in the path 
difference (due, for example, to sampling errors).  Accord- 
ing to equation (128) 

and ~=s at a l l  frequencies. We use the convolution theorem 
on the  r ight~hand s ide  of  equat ion 49 to f ind :  

Rele_i~ 2 ~ f d x  u A(x-~)e-i~xl = 
_ c o  

co  co  

-Re{e-i  [ fdx 
_ o o  _ c o  

I# the instrumental l ine shape, a~(~), is sharp enough that 
e zmc is constant over the range of frequencies where 
a~(m-m ') : O, then the term e zm~ comes out of the convolu- 
t ion,  and 

P (m)= R e A  { P(m)*ag(W)} 

Because P(m) is real ,  the real and imaginary parts of the 
instrumental lineshape do not mix in the convolution so that 

PA(~) = P(m)*a~(m) 

This resul t  is the spectrum ~ith high resolut ion, Am = 1/L2, 
determined by the width of al(ml. 

V. Details of the procedure 

A. Finding the phase 

We determine #(m) in the conventional way, by trans- 
forming a short interferogram which extends for nearly 
equal distances on either side of zero path difference. 
This short interferogram is picked out of the fu l l  in ter-  
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ferogram u by mu l t i p l y ing  ~(x) by Ap(X) where 

0 x < -L 1 

Ap(X) = f i n i t e  -L 1 <_ x <_ L~ + 25' 

0 x > L I + 2~' 

Porter and Tanner 

(52) 

As in the case of the apodizat ion funct ion for  the high- 
reso lu t ion  inter ferogram, Ap(x) should be centered as 
c lose ly  as possible at zero path d i f fe rence.  We estimate 
this location by a parabolic f i t  to three points: the 
interferogram maximum and the points on either side of i t .  
The parabola has a maximum at x=~'; we use this point as 
the center of our short interferogram. The Fourier trans- 
form of this short interferogram gives an amplitude and 
phase: 

P,p(~)e i@(~) - ~ /dx u Ap(x)e -i~x ~ Ppl + Pp2 

(53) 

with reso lu t ion  - 1/L 1. The phase is calculated from 

~(~) = tan- l (Pp] /Pp2)  (54) 

I f  P~I < O, then 7 is  subtracted from #(~) when P-2 < 0 and 
�9 

Is added to ~(~) when Pp2 > O, g iv ing  a range o~ -7 to 
+7 for @(~). 

Note that  because phase cor rect ion only requires 
e- i~ (~) i t  is quicker to ca lcu late 

e-i+(~) : (Ppl - iPp2)/~Pp~ + Pp~ 

than to take the inverse tangent, put ~ in to the proper 
quadrant, and exponentiate. However, we also need #(~) to 
estimate ~, the c o e f f i c i e n t  of  the l i near  term of the phase. 

B. A note on the FFT 

The fast  Fourier transform (FFT) rout ine zz calculates 
the inverse transform of an array Yk by computing 
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M 
Pjeir = ~" Yk e-2~ikj/N 

k=l 
(55) 

for  M (= a power of  2) values of j .  In t h i s  equation we 
are labe l ing indices as in FORTRAN. Forman 12 has shown 
that  in order to r e t r i e ve  the phase, Yl should contain the 
f i r s t  interferogram point  for  which x > O. The other 
points from the pos i t i ve  x side fo l low in order.  The re-  
maining data (a l l  o f  which has x < O) are put in to the top 
o f  the array.  The las t  element~ YM' contains the point  
that  was o r i g i n a l l y  adjacent to ~i The elements between 
the las t  po int  wi th x > 0 and the f i r s t  wi th  x < 0 are set 
to zero~ F l ipp ing the interferogram about the o r i g i n  in 
t h i s  way is  tantamount to assuming a per iod ic  i n t e r f e r o -  
gram, wi th period M; the array contains the f i r s t  period 
along pos i t i ve  x.  Figure 5 shows how a schematic i n t e r f e r -  
ogram is  set up for  the FFT and phase r e t r i e v a l .  

o)-L, 

r(• 

+Lz X 

b) 

y(k) 

L 2 

8 M 8 M 

Figure 5a) Interferogram y(x) as recorded, extending from 
-L1 to L2. The sampled points are shown near the o r i g i n .  

Figure 5b) Interferogram y(k) set up for  the FFT. There 
are M (a power of  2) po in ts ,  wi th the array elements 
between __+L and M - L__L being zero. 
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The number of  points in the high reso lu t ion spectrum 
is  M ~ 2L2/6 (5 is the sampling i n t e r v a l ) ,  whi le the number 
in the low reso lu t ion  spectrum (used to obtain the phase) 
is  M~ ~ 2L1/~. Because the phase is needed at every point  
of  the high reso lu t ion  spectrum, i t  is convenient to take 
M p = M; t h i s  choice leads to a " z e r o - f i l l e d "  interferogram 
and in terpo la ted low-reso lu t ion  spectrum. 

C. Thirteen steps. 

Our procedure for  obta in ing phase-corrected spectra is 
out l ined in the fo l lowing l i s t :  

1. Record a sampled interferogram from x = -L I to 
x = +L 2. L z should be large enough to resolve the broad 
features of the spectrum whi le L 2 gives the u l t imate reso- 
l u t i o n .  

2. Suppress the average value ( I~)  of  the i n t e r f e r o -  
gram. 

3. Search for  the maximum interferogram point  and f i t  
a parabola through th i s  point  and the two adjacent ones. 
The peak of t h i s  parabola gives ~ ' ,  the f i r s t  estimate of  
the o r i g i n .  

4. Pick out a two-sided interferogram with an equal 
number of  points on e i the r  side of x = 8'-  This i n t e r f e r -  
ogram has Np = 2(L1+~') /~ po in ts .  

5. I f  t h i s  interferogram is to be apodized: the apo- 
d iza t ion  funct ion should be centered at x=~' 

6. The minimum number of  points where the phase is  
required is N = 2 (L2-~ ' ) /~ .  Determine M, a power of  2 
which is larger  than N. Put the two-sided interferogram in 
an M-point array wi th the f i r s t  point  for  which x ~ 8' as 
the f i r s t  array element fol lowed by the other points wi th  
x > B'. The remaining data points are put at the top of  
the array,  wi th the las t  element being the las t  point  for  
which x < ~' The center of  t h i s  array contains many 
zeroes. 

7. Compute the inverse complex Fourier transform. 
8, Calculate the amplitude and phase spectra. Using 

a least  squares f i t  weighted by the amplitude, f ind the 
constant B in ~(~) = ~ + B~. 

9. M u l t i p l y  the center sect ion of the fu l l  i n t e r f e ro -  
gram by a ramp which is  zero at x = -L I ,  �89 at x = ~ and 1 
at x = L I + 2~, 

10. Apodize (about B!). 
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11. Set up an M-point array with the f i r s t  element 
being the f i r s t  data point with x Z ~ and continuing to 
x = +L2. The array has zeroes where the data for 
-L2 ~ x < -Lz would have been. The data for -L I S x < 
are in the top of th is array. 

12. Compute the inverse Fourier transform, getting a 
complex array P1(m) + i P2(m). 

13. Calculate the phase corrected spectrum. 

P(~) = Re{e -L~(~) [P1(~)+ i P2(~)]l 

Because the phase calculated in step 8 was interpola- 
ted, to M points, there wi l l  be a value for the phase at 
every point where the spectrum was calculated. 

VI. Examples. Lo 

We have used the syn- 
thet ic  spectrum i l lus t ra ted  

3 in Figure 6 to test our 
phase-correction procedures. ~o.s 
This spectrum is supposed to 
represent a narrow emission 
peak at low frequencies and 
a broad continuum containing 
an absorption l ine at higher 
frequencies. The spectrum 
was synthesized at 1024 

about 

20 40 
FREQUENCY 

T 

0 0 - -  

l 

6O 

points, and ref lected Figure 6. Synthetic spectrum 
= 0 [P(-m) = P(w~ to give for testing the phase-cor- 

a 2048 point symmetric spec- rection technique. 
trum. This spectrum was 
phase shifted by mult iplying 

~ "~ ~ # ~ - ~  = - ~ ] .  ~ ~ ~ T r ~ i t ~  ~ array v~ l ( 48 i in t  ogr m c Xw asymmet- 
r i c .  A part of this interferogram, extending From -L I to 
+L 2, was the input interferogram for the phase correction 
process. The number of points in th is test interferogram 
was always less than 1024, t yp ica l l y  512 on the posit ive 
side of the or igin and a somewhat smaller number on the 
negative side. 
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A. Proper phase correct ion 

Figure 7 shows the amplitude and phase calculated from 
a 100 point two-sided interferogram which hada re l a t i ve l y  
large (E = -0.96) l inear  phase error .  No apodization was 
used, so large sidelobes appear on the lower frequency l ine ,  
which was not resolved. The phase has been suppressed at 
frequencies where the or ig ina l  spectrum had zero in tens i t y .  

The upper panel in Figure 8 gives the real and imagin- 
ary parts of the uncorrected spectrum, obtained from a 
1024 point transform of y(x) ,  where 508 < x < +5126. The 
l inear  phase error ,  t runcat ion,  and ramp through the center 
al l  conspire to give a very disturbed spectrum. The lower 
panel shows the f u l l y  corrected spectrum. I t  is almost an 
exact repl ica of the o r i g ina l .  0 . 4 - - ,  , ~ - ,  

0:: - -  Reoi pod 
Figure 9 shows the res i -  ~ - - -  Imoginory port 

dual error remaining af ter  
phase correct ion (The res i -  o~ ~ A ~ �9 ~Z~ 0 

dual error  is defined here "' F- 
as the absolute value of the ~ " ', I 
d i f ference between the or i  m " 
ginal spectrum and the 8 ' 

m - 0 . 5  - -  I ',< ~t- I 
F -  ' , ' , ' 

I o -Pi l  ,o  / -  . , l~/  / / z iVl=1024 f ~  [-'-- 
L6508 , 

k Np= I00 / I J 0 ~ ~=-0.9~ 
I M = 1 0 2 4  I I 

cf) 

%. ~ OQ) 

0 ~___~ i L I - T r  0 i i I 
0 20 40 60 0 20 40 

FREQUENCY FREQUENCY 

Figure 7. Low-resolution Figure 8a) Real (sol id  l ine)  
amplitude (so l id  l ine)  and and imaginary (dashed l ine)  
phase (dashed l ine)  spectrum parts of the Fourier t rans- 
calculated from I00 points of form of an asymmetric i n te r -  
an asymmetric interferogram ferogram that was truncated 
and interpolated to 1024 out- with the " l e f t  ramp" apodiza- 
put points�9 t ion funct ion 

Figure 8b) Phase corrected 
spectrum. 

60 
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0 
r~ n" 
Ld 

< 

a 

Ld 

corrected spectrum and is expressed as a percentage o f  the 
spectrum maximum. Fine s t ruc ture  in the residual er ror  has 
been smoothed over in making these p lo t s . )  The dashed l i ne  
gives the error  (about 1.5%) when the ramp is centered on 
the highest point  of  the interferogram ( ra ther  than x+B) 
whi le the so l id  l i ne  shows the error  (about 0.02%) when the 
ramp is proper ly centered. The dotted l i ne  shows the error  
when the power spectrum ~P-~ + P~ is calculated from a com- 
plete double-sided inter ferogram. At many frequencies, the 
power spectrum has larger  errors than the phase-corrected 
spectrum, suggesting that  in both cases these residual 
errors resu l t  from round-of f  errors in the computer. Note 
these ~0.02% errors are subs tan t i a l l y  smaller than the 

~0.5% errors reported by 
2.0  

1.5 

1.0 

- - -  Uncentered romp 
Centered ramp ~ ~v\/" ~ [ ~  
POwer spectrum I u ~ l 

M = 1024 [ 
L1=508 [ 
~ =0.98 r 

J 

t 
[ 

i 

0.5 

0 ~ ........ J 
0 20  

i i  ] 

i I 

Sanderson and Be l l .  8 

For the i nco r rec t l y  cen- 
tered ramp, the residual 
errors scale wi th the magni- 
tude of  the phase er ror .  In 
every case, however, the r e s i -  
dual er ror  is s u b s t a n t i a l l y  

1,0 

LJ 

<~ 0.5 

O~ 

i T E I 

M =1024 
L =100 

- -  Centered romp 
- - -  Uncentered ramp 

/ "~x 

I \ 

[ I 
[ 

0 ~ 
4 0  6C 0 20  4 0  6 0  

FREQUENCY FREQUENCY 

Figure 9. Residual er ror  re-  Figure 10. Residual error  
maining a f te r  phase correc- remaining a f t e r  phase correc- 
t ion  of  an interferogram t ion  of  an interferogram 
which had l i nea r  phase er ror ,  which had quadrat ic phase 
The so l id  l i ne  is  found when er ror .  The so l id  l i ne  gives 
the ramp is proper ly cen- the error  which occurs when the 
tered;  the dashed l i ne  occurs the ramp is  proper ly centered 
when the ramp is improperly whi le the dashed l i ne  gives 
located; the dotted l i ne  is the error  when the ramp is  
from a power spectrum, improperly located. 
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reduced when the ramp is centered. 

Figure 10 shows the residual error which occurs when 
there is a quadratic phase error ,  r = ~(~2/~2max). With a 
quadratic phase, the least  squares f i t  to the phase pro- 
duces a s t ra igh t  l i ne  through the curved quadratic phase 
error .  Even though there is no wel l -def ined or ig in  of the 
interferogram when the phase error is quadratic, centering 
the t runcat ion-apodizat ion function at x = B gives smaller 
residual error because the function is centered at the 
ef fect ive zero path di f ference ("point  of s ta t ionary 
phase") of the most intense f r inges.  

B. Mistakes 
1 . 5 - -  

In th is  section we show 
ways in which phase correc- 
t ion can go wrong, Through- 
out we use a modest value for 
the phase error ,  c = 0.18 ~ i.o 
rather than the value of 0.96 
used previously. Neverthe- 
less,  these mistakes produce 
large errors.  Figure 11 
shows two examples of mis- ~o5 
weighting the interferogram o 

0 
center. The apodization func- 
t ions used are shown at the 
bottom of the f igure.  The 
spectrum with the sol id l i ne  
was produced when the in te r -  
ferogram only included points 
x > O, i . e . ,  only a ha l f -  
sided Fourier transform was 
done. This procedure pro- 
duces the dreaded baseline 
t i l t  which has given the 
mu l t i p l i ca t i ve  technique a 
bad name.4, 6-8 

For the dashed l ines in 
Figure 11, a l l  interferogram 

M=1024 
L1=508 

< : 0 . i 8  

I T 

0 2 0  4 0  6 0  
FREQUENCY 

1 A(x) ,, 

0 ....... 
- L  I 0 L 2 X 

Figure 11a) Corrected spec- 
trum (not residual e r ro r ! )  
for  t runcat ion at x=O (sol id 
l ine)  and for  boxcar weight-  
ing of ent i re  interferogram 
(dashed l i ne ) .  

points were used without 
weighting at a l l ;  the apodiza-Figure 11b) Truncation func- 
t ion function is uni ty  from t ions used to produce the 
-L1 to +L2. This funct ion spectra given above. 
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double weights the interferogram points between -L I and +L I ,  
producing the sum of a h igh-resolut ion spectrum and a low 
resolut ion spectrum. The resu l t  is a loss of in tens i ty  in 
the sharp features and extra structure near them. 

Figure 12 shows in the sol id  l ine  the resu l t  of  using 
too few points for the two-sided interferogram. Here L I = 
126 as opposed to the value of 50~ used e a r l i e r .  Severe 
d is tor t ions  occur near sharp features in the spectrum 
because of poor resolut ion in the phase, even though the 
ramp was properly centered. (An anomaly occurs for the 
special case s = 0 .5 .  For this value of phase er ror ,  the 
phase spectrum is very accurate; and a good corrected spec- 
trum, shown as the dashed l ine  in Figure 12, is obtained. 

- - T -  I 
1.0 M :1024 

L~ =[28 
~-=0.18 

P _ _  _ E = 0 . 5 8  

u') 

a L L,d 0-5 ~ 
F-- 
0 
Ld 
0:::: 
Off 
0 r 

F 
0 ~ - -  i 

\ /FREQ~U 40 60 ENCY 

"~ f ,,/ I 
A(x) A(x) 

0 ~ 0 i 
-L, 0 L,+SB L 2 

M:,024 
~- L,=50~ 

co 

b 8 o-5 f 
d 
s [ 

I 
7 - -  

frO 4 0  6O 
FREQUENCY 

/[ 
-Lf 0 L,+2/9 L 2 

Figure 12a) The corrected Figure 13a) The corrected 
spectrum obtained when s=0.16 spectrum found when a step is 
and when only 12 points are used as the t runcat ion-apodi -  
taken before x=O is shown as zation funct ion.  
the sol id l i n e .  The correc- 
ted spectrum obtained when  Figure 13b) The sol id l ine  

= 0.56 is shown as a dashed shows the t runcat ion-apodiza-  
l i n e .  t ion function used to obtain 

the above spectrum. The 
Figure 12b) Truncat ion-apodi-  dashed l ine  shows an equiva- 
zation function used to lent  t runcat ion-apodizat ion 
obtain the above spectra, function when the i n t e r f e r o -  

gram is sampled at the values 
of x c i rc led  on the x -ax is .  
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This anomaly occurs because the interferogram wi th  c = 0.5 
is symmetric about x=O, although no point  corresponds to 
x=O.) In general, we have found that  L I = 506 produces 
good correct ion of l i near  phase er ror ,  w i th  only small 
improvements i f  L I is increased. The correct ion o f  quadra- 
t i c  phase error  seemed to requi re somewhat more po in ts .  
There was a substant ia l  improvement on going from L] = 506 
to L I = 1006, wi th only small improvements beyond t h i s  
value. 

One might th ink  tha t  mu l t i p l y ing  the por t ion of  the 
interferogram between -LI  and +LI by one hal f  should work 
as well as the ramp which we have been using. The resu l t  
of  t h i s  procedure is shown in Figure 13. The step weighting 
produces strong r ipp les  in thespect rum. These r ipp les  are 
the resu l t  of the attempt to make a step between two Sampling 
po in ts .  As far  as the interferogram is concerned, the 
apodizat ion funct ion contains two small ramps, as shown in 
the dashed l i ne  in the lower panel. These ramps are pinned 
to sampling points (shown as c i r c les )  and therefore cause 
s t ruc ture  to occur in the even part of  the apodizat ion 
funct ion Ae(X) at x = • L I ,  which, when Four ier  transformed 
and convolved wi th the spectrum, produce the r ipp les  seen 
in Figure 13o 

V I I .  Conclusions. 

We have shown that  a phase-corrected spectrum can be 
produced wi th  an accuracy of  • 0.02%. To achieve th i s  
accuracy, i t  i s  essent ia l  tha t  the t runcat ion and apodiza- 
t ion  funct ions be proper ly located. The centers of  the 
even parts of  these funct ions must be at the best possible 
estimate of  zero path d i f fe rence.  
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