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The correction of phase error in Fourier transform spectro-
scopy is discussed. Phase error is corrected by multiplying
the inverse transform of the measured interferogram by
e-1¢(w) | where ¢(w) is the phase error in the spectrum.

This error is determined from a Tow-resolution, two-sided
interferogram. It is absolutely essential that the trunca-
tion-apodization function which multipties the interfero-
gram have an even part which is symmetric about the x=0
position. If this function is not properly Tocated, Targe
errors in the corrected spectrum can occur.

Key words: Fourier transform spectroscopy, phase correc-
tion, interferometry.

I. Introduction

This paper presents a discussion of a technique for
correcting phase error, one of the errors which arise in
Fourier transform spectroscopy. Phase error occurs for a
variety of reasons: systematic error in the measurement of
the optical path difference, misalignment of the interfer-
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ometer, or intrinsic asymmetry o
between the interferometer o g
arms. These errors produce an M“?%T”” X/2
interferogram which is asym- T e
metric about its central maxi- )
mum and whose Fourier trans-

form is inherently a complex Source

function of frequency. The Fixed Mirror
goal of any phase correction Beam spitter 4
scheme is to recover, as far
as is possible, the original
spectrum. g Detector

IT. Background Figure 1. A simple Michelson
interferometer. The arm
A. The ideal Fourier numbered 2 is x/2 longer than

transform spectrometer the one numbered 1; light in
the second arm travels an
A simple Michelson extra path difference x.

interferometer is shown in

Figure 1. Light leaving the

source strikes the beam splitter where part of the amplitude
is transmitted into one arm of the interferometer and part
is reflected into the other arm. These two rays travel to
the end mirrors and return to the beam splitter where they
recombine; the combined beams go off to the detector. This
1ight is (more or less) a TEM e1ectromagne%1g wave, with
Fourier components having the form E , where }k] =
w (in vacuum) in units where ¢ = 1. Thus if w 1s 1n sec—1
-> . . . .

[r| will be a time; if w is 2n (frequency in cm- v s
in cm. The phase of the electromagnetic wave advances as
it moves through the interferometer; the phase is also
modified by the beam spl tter, which has amplitude trans-
mission cogff1c1ent ty, e ?t and amplitude reflection coeffi-
cient rye ; and by the end mirrors, wh1ch have amplitude
reflection coefficients r; el and ro e*®2_ At the detector,
the total electric field amp11tude is the sum of the ampli-
tudes from the two interferometer arms;

E:§1+—E)2 (1)

with

fl = Es(m)tbei¢t rlei¢1 rbei¢r eluR {2)
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-

where R is the total optical path Tength for both rays and
x is the extra path difference for ray 2.

The 1dea1 1nt$rferomet$r has identical arms with per-
fect mirrors (r,e™"1 = rye -1) and a perfect beam
sp11tter (one wh1ch sends equa] energy into both arms:

= ty, = 1/v2). The total intensity at the detector is

1(x) fdwlﬁy 14)

lédew S(w) P + COS(mXﬂ (5)

where S(w [E w)|? is the power spectrum. At zero path
d1fference, the 1ntens1ty at the detector is

=ﬁdw S (w) (6)

At zero path difference all of the source intensity is
directed to the detector; none returns to the source.? At
large path differences the intensity at the detector is
just half the zero path difference intensity

= %.7Zdw S(w) (7)

because as x> the cos(wx) term averages to zero, i.e. it
is more rapidly varying with frequency than S(w).

il

The interferogram is the quantity [I(x) - Iw}; it is
the cosine Fourier transform of the spectrum. It turns out
to be convenient to factor out the integrated source inten-
sity I,. We define a normalized spectral intensity P(w) by

P(w) = S(w)/I, (8)

interferogram is

so that, by eguation (6),‘/gdm P(w) = 1. The normalized
] (9)

v(x) = [1x) - L ]n
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with these definitions, equation (5) becomes

v(x) = »zfdw P(w) cos(wx) (10)

The spectrum can be recovered by the inverse cosine Fourier
transform of ~v(x).

Plw) = %fdx y(x) cos(uwx) (11)

There are no phase errors in this ideal case. Only the
inverse cosine transform is calculated. Because y(x} is
symmetric {or even) about x = 0, v(-x) = y(x), the same P(w)
will be returned by an inverse complex Fourier transform:

Plo) = = [ax y(x)etox (12)

where the factor of 2 comes from our having extended the
Tower 1imit of the integral to -=. P(w) remains a real
function because the symmetry of y(x) about x = 0 causes
the sine transform to be zero.

B. Phase errors

In a real interferometer, the assumptions made in the
previous section do not in general hold. The beam splitter
is not perfect; nor are the two arms of the interferometer
perfectly matched. The beam splitter efficiency, ey, 1S
defined to be:

e, T AR, T, = 4]rbei¢r|2|tbei¢t|2 (13)

The phase shifts on transmission and reflection do not play
a role in the interferogram {(assuming the beamsplitter to
be homogeneous) because each beam was once transmitted and
once reflected by the beam splitter. The beam splitter
efficiency may be incorporated intg the power spectrum by
redefining it to be S(w) = sb(m) |[Eg(w)]?. The other fac-
tors which modify the spectrum, sucn as filter and window
transmittances, detector spectral responsivity etc., may be
included in exactly the same way by regarding S{w) to be
the instrumental power spectrum. ({Note, however, that
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those factors which modify the phase response of the system,
such as the ac electrical phase shift of the detector and
preamplifier of a rapid-scanning interferometer, cannot be
accounted for in such a simple way. Indeed, these phase
shifts must be corrected in the same way as other phase
errors.)

If the two arms are not identical, then ¢, # ¢,. (We
will assume that r; = r, = 1; any small differences in the
reflectance of the two mirrors will not affect the phase.)
Let ¢ be the difference in phase between the two arms; i.e.
let ¢, = ¢7 + ¢. Then the total intensity at the detector
is

1x) = % [ dolEglu)]2ey(0) ry?[2rel® e2¢()

+ e-—imx e—iqb(w):l (14)
=% Tdos 1+ 15
/203 (w){ COS[wX+ ¢(w)]} (15)

Notice that when x=c,
I =% [dosS 16
o= [ dos(w) (16)
=l (17)

0

while when x=0,

o0

1(0) = %‘/gdw S{w) [1 + cos¢(w)] (18)

If ¢(w) # 0, then I{0) < I; all the source intensity is
not sent to the detector. "Thus, when phase errors are pre-
sent the zero path difference intensity is Tess than twice
the large path difference value. A signature of phase
error is an interferogram whose maximum intensity is less
than twice the intensity at very Targe path differences.

With the definitions {(8) and (9}, equation (15) becomes
v(x) = %fdw P(w) cos [wx + d)(w} (19)
o}

Because v{x) is a real function, P(w)ei¢(w) must be Hermi-
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tian, i.e.

P(-w)el?(9) = p(y)e 19 (w) (20)
making equation (19) become

v(x) =% [do plu)el®® elox (21)

The inverse Fourier transform of v(x) gives the spectrum
and phase:

ple)ei®(®) _ %7@ x)emiox (22)

C. Phase correction

Suppose ¢{w) is known. Then

P(y) = e"10W) %fdx Y(x)e iox (23)

The spectrum P(w) is found by mu]EiE1ying the Fourier trans-
form of the interferogram by S ACY I T procedure is
-the basis of the multiplicative technique first proposed by
Mertzlb»3 At least two alternative methods are used to
eliminate the phase from equation (22). In one*, the power
spectrum is calculated

1P(0)e™ ) 2V ()2 + P,ylw)2

where Py(w) = P(w)cose(w) and Po(w) = P{w)sing(w) are the
real and imaginary parts of the transform. This technique
does correct phase errors but has a non-linear effect on
noise and requires measurements for an equal distance on
both sides of zero path difference.

The second alternative is tq %oyvo1ve the interferogram
with the Fourier transform of e %% ¢4 produce a symmetric
interferogram.® The cosine inverse transform of this sym-
metric interferogram gives the spectrum. This convolution
technique should be equivalent to the multiplicative tech-
nique; a common belief, however, is that the convolution
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technique works well whilst
the multiplicative one leads
to baseline errors and other
distortions in the spectrum.®, i l ‘ l ‘ \l
Even the fairly detailed

studies by Sanderson and Bell® 0 X
of the multiplicative tech-

nique find residual errors

around 0.5%, an unacceptably @

large value.

III. Sampling error is just
another kind of phase

reit=—|
error she
2
. ib o piw
In all experiments, the b x o e

actual recorded interferogram
is a sampled interferogram.
The intensity is measured at
points separated by uniform «=0-
steps of length &. Unless “E(wle” ™ —Elole™ e
some care is taken, it is
almost certain that the zero 'Figure 2a) The sampled inter-
path difference position will ferogram is the product of
be missed; the amount of the the continuous interferogram
miss is € < 6/2. Neverthe- and a set of equally spaced
Tess, as we show below, so delta functions.
long as the spacing between
sampled points is fine enough Figure 2b) A hypothetical
to avoid aliasing, the samp- mirror (dashed 1ine) whose
1ing procedure introduces no amplitude reflection coeffi-
additional complications into cient is rei¢ = -eiwe and
phase correction. which is located at x/2 is
equivalent to a perfect

The sampling procedure mirror {solid Tine) with
is represented mathematically coefficient reid = -1 which
by multiplying the interfero- is located at (x+e)/2.
gram by a "Dirac comb" or
infinite sum of delta func-
tions

o0

vg(x) = v(x) k;2;6(x—a-k6) (24)

which picks out points at the sampling positions, as shown
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in Figure 2a. The Fourier transform of this product is
found by substituting vy, for v in equation (22).

Ps(m)ei¢(w) = %iérdx v(x) k;?;f(x—e—ké)e"iwx (25)

When the sum and the integral are interchanged, the inte-
gral may be done immediately, leaving the spectrum as the
Fourier sum:

=<}

Ps(m)ei¢(w) - % kaY(k6+€)e—iwk6 omive (26)
or
P lw) = 2 o= [¢ (@rtue] k;y(km)e-mks (27)

Equation {27) is an example of the shift theorem; shifting
the origin of the Fourier transform by an amount e intro-
duces an overall phase factor e-1%€ in the transform. Note
that P (w) remains continuous but is now periodic:
Ps(w‘f'ZTr/cS) = Ps(m) .

Another way of viewing the errors introduced by miss-
ing the origin is to consider the interferometer mirror
shown dashed in Figure 2b., Instead of being a perfect
mirror at (x+e)/2, having rel¢ = -1, it is a mirror at x/2
with rei¢ = -eiwe, Then the phase shift introduced by this
mirror is ¢ = we, and its interferogram is given by equa-
tion (21) with ¢{w) = we. The inverse Fourier transform of
this interferogram is

P(p)elve = %—~/hx yv(x)e iux (28)

This phase shift is just what the light traveling in that
arm of the interferometer would have picked up on going on
to the perfect mirror at {x+e)/2 and then returning to the
beam sptitter. Thus the interferometer with linear phase
error pe and the interferometer which has a systematic
error ¢ in its path difference produce the same signal.
The techniques used to correct phase errors in the contin-
uous interferogram will also correct phase errors in the
sampled interferogram.
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IV. Phase correction and apodization
A. The effects of truncation

The values of path difference which an actual inter-
ferometer can produce are finite:

L £ x < Ly (29)

where we assume that one Timit is on the negative side of
zero path difference and the other is on the positive side
and, for convenience, that L,>L;. This truncation is
equivalent to multiplication of the interferogram by an
apodization-truncation function A(x):

val(x) = v(x)A(x) (30)
where
O X < —Ll
A(x) = {finite -Li < x < Ly
0 X > LZ

The well-known!,%,10 effects of interferogram truncation
are twofold: The instrumental resolution is Timited to

hw = 1/L, and sidelobes or feet are introduced in the
vicinity of sharp spectral features. The size of these
feet may be reduced by wise choice of A(x) over the range
where it is finite, at the cost of further loss of resolu-
tion.

The Fourier transform of the product of any two func-
tions is equal to the convolution of the Fourier trans-
forms of the individual functions, so that

Pal)et 8 < 2 [ (x)a(x)emiom (32)
= [lwet* ] satu) (33)

(34)

1
a,
e
v
[
~—
@
H
-9~
~
)
<
s}
£
i
£
~—
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alu) = 5 [ dxA(x)e 3% (35)

is the instrumental Tineshape a

)
10
function. AQ)E__
0 1

It is this convolution L, o ta X
which makes difficult the b — el
phase correction process. If A T ok
L. # L, then A(x) is not an o ; L,
even function of x and a(w) _O5L . P0 +, X
is complex: UL L,

alw) = aj(w) +1 ay(w) (36)

Figure 3a) An off-center box-
Because a(w) is complex, car function. The function
oalw) differs from the actual A(x) is unity over the range
phase ¢(w). Even in the case -L1, Ly and zero elsewhere.
where the actual phase error

is zero, off-center trunca- Figure 3b) The even (solid
tion causes a loss of con- 1ine) and odd {dashed Tine)
trast and a distortion of the parts of the off-center box-
baseline of the computed car function.

spectrum.

As an example, consider the off-center boxcar trunca-
tion function of Figure 3a. Here, A{x) = 1 over the inter-
val -L;, L,. The even and odd parts of A(x), given by

Ao(x)
Ao(x) = 3 [A(x) - A(-x)] (odd),

[A + A(- ] {even) (37)

are shown in Figure 3b. The real part of a{w) is the

Fourier transform of A_(x), which in this case is a super-
position of two centered boxcar functions, one from -L; to
+L, and the other from -L, to +L,. This Fourier transform
is

Lo
a(w) = f; J[ dxe~10% 4 %; ‘[dxe”i‘”X (38)
-l L,
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sin{wly) . sin{wl,)

ar(w) = 2Tw 2w (39)

The convolution of P(w) with a;(w) returns a spectrum that
is the sum of a Tow resolution spectrum {Aw = 1/L;) and a
high resolution one {Aw = 1/L,). The broad side lobes from
the {mostly) unresolved features in the first spectrum cause
baseline distortions; the lack of resolution jtself causes
loss of contrast.

A particularly sad case occurs when L1 = &, the samp-
1ing interval of the interferogram. Now, the wings of the
sin{wl;)/2mw function extend above the aliasing freguency,
wpax = 1/28, and are folded back into the spectrum, where
they can pass through it several times.'! As shown by
Mertz®, this difficulty is alleviated by using an apodiza-
tion function which does not double-weight the twice-
measured portion of the interferogram between -L; and +L;.

The imaginary part of the instrumental line shape,
ar(w), can be neglected when ¢{w) = 0; the spectrum can be
taken as the real part of Palw). When ¢{w) # 0, however,
both real and imaginary parts of a{w) can contribute to the
shape of the final spectrum.

B. Assumption of slowly varying phase.

We will assume in this section that the phase ¢(w) is
a slowly varying function of frequency. This assumption,
if true, will enable us to determine the phase from a Tow-
resolution two-sided interferogram, which extends from -l
to +L;, and then use this phase to correct the high resolu-
tion interferogram, which extends to +L,. This assumption
is conventionally made in discussing phase correction pro-
cedurests3:5-8: if it is not true, a full two-sided inter-
ferogram would have to be measured.

We begin with equation (34) for the apodized spectrum
and suppose that the phase ¢ (w') which appears in this
equation varies slowly so that it can be expanded about
frequency w in a power series, and that only the first two
terms need be kept
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$o') = ole) + 921 (4'-w) (40)

w Tw
Note that we are not requiring that ¢(w) have Tinear slope
for all w, only that it can be taken as linear about » for
the range of frequencies where a(w-w') # 0, i.e. for a few
resolution widths. Then, with the definition

oly) = delu’) (41)

equation (34) becomes 1
Pulw) 1¢A(w) - dew Pl [b(w)+8(w)(w ~wﬁ alw-w’) (42)

Notice, ?ag( l¢(?) may be brounht outside the integral and
that et W% has the same argument as the argument of
alp-w') (except for sign). Thus, equation (42) is equiva-
Tent to

Pylo)e 8 = 0@ o]« fague ] (a3)
= e o)) ra%(u) (44)

The second term in the convolution is

aB(w) - a(w)e—iBw _ -1Bw 1 fA p-iux
1

o«

7= ) Al (x-8)e 1%y (45)

8\3

where the shift theorem has been invoked to move the
origin (or center) of the apodization function to x=8.

This result shows that the effects on the convolution of a
Tinear phase error Bw may be eliminated by choosing the
origin of the apodization function at x=8. 1If the phase
error comes from a sampling error e, than 8=e and the
correct origin is the actual point of zero path difference.

Note that in going from equation (42) to equation (44)
we have dropped the argument of B, so that the frequency-
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dependent function B(w) now
appears to be a constant g.
In principle, the frequency
dependence remains in equa-
tions (44) and (45), appar-
ently requiring a separate
Fourier transform of the
apodized interferogram

v(x) [Alx-B(w))] at every
frequency w. Because by
hypothesis g(w) only
varies over frequency
intervals characteristic of
the Tow resolution spectrum
{(i.e. Aw ~ I/L ) this
requirement is even achiev-
able in practice. OQOur test
calculations show, however,
that perfectly adequate
results are obtained when g
is taken as constant and ¢(,)
soaks up the remaining fre-
quency dependence of the
phase.

Phase correction of
truncated and apo-
dized interferogram.

For conceptual purposes,
we consider apodization to be
a two-step process. i.e.,

(x)

A(x) = AI(X)AII

First, the central portion of
plied by a ramp given by:

X+l

2(8+L,)

285

al o
Al /
0O 1y ¢ >
-L, 0 L#28 L, X
Bt
b) 10~
Alx) L _
0 ¢ ey I >
_05__L2_____:‘:J,//O L+28 L, X
284 K 0
c) — Ae(x)
A(LO)— - - AO(X)
XL
-05% ———-—-——_'I’;"’/ +L' Ls X

Figure 4a) The ramp through
the origin gives proper
weight to those interferogram
points that were measured
twice.

Figure 4b) The even {solid
1ine) and odd {dashed line)
parts of the left ramp.
Figure 4c) The even (solid
Tine) and odd (dashed 1ine)
parts of a mislocated left
ramp. The structure between

-L, and + distorts the
spectrum.

(46)
the interferogram is multi-
—L1§XSL1+28

XZLl‘}'ZB

Otherwise
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Note that Ay(x) =% at x=B. The use of this ramp through
the origin follows, essentially, the recommendation of
Mertz and is shown in Figure 4a). Figure 4b) shows the
even and odd parts (about x=g!) of this "left ramp". Note
that the even part is a boxcar function which extends from
-L,+28 to +L,. Figure 4c) shows the even and odd parts of
a left ramp which is not properly located. The structure
near the origin in A;.(x) and A; (x) distorts the spectrum.

The second step in our apodization procedure is to
multiply the data by the desired apodization function,
Arz(x). This function, whether triangular, Filler?, Nor-
ton-Beerl?, or some other, is chosen so that its origin is
also at x=g and so that it is strictly an even function
about this point, A;;(-x-8) = A;;(x-8). For example, our
triangular apodization function 7s

1-{1"—21 SL,¥28 < x < Ly
-
Arr(x) = (48)

0 otherwise

Note that A;p(x) =1 at x=8 and goes to zero at x = -L, +
28 and at x=tL,. This choice of slope means that the peri-
odic continuation of A(x) has period 2(L,-g) (which is
twice the actual maximum optical path difference)} and has

a simple triangular waveform.

The inverse Fourier transform of the apodized inter-

ferogram can then be phase corrected. The phase corrected
spectrum is

Pati) = Re {e7) 2 () AGxeg)e™f  (a9)

where the real part has been taken to eliminate the convo-
Tution of the spectrum with the imaginary part of the
instrumental line shape, a,(w).

According to eguation (44) this spectrum is

P,w) = Plu) * af(w) (50)

To show explicitly that equation (49) does correct for



Phase Errors in Fourier Spectroscopy 287

phase error, we consider the case of an intrinsically sym-

metric interferogram with a systematic error ¢ in the path

difference (due, for example, to sampling errors). Accord-
ing to equation (28)

<I>(w) = we

and B=¢ at all frequencies. We use the convolution theorem
on the right-hand side of equation 49 to find:

Re{e"im %fdx v(x) A(X—B)e'i‘”x} =
el o2 Lo e =L [aarc-me ]}

- Re {e—iwe [P(w)eiwe]*[aﬁ(w)]}

Igwghe instrumental 1ine shape, aB(w), is sharp enough that

e is constant over the range of frequencies where
a®(w-u') = 0, then the term e % comes out of the convolu-
tion, and

PA(w) = Re {P(w)*ag(w)}

Because P{w) is real, the real and imaginary parts of the
instrumental lineshape do not mix in the convolution so that

P, () = Plu)*af(u)

This result is the spectrum gith high resolution, Aw = 1/L,,
determined by the width of aj(w).

V. Details of the procedure

A. Finding the phase

e determine ¢(w) in the conventional way, by trans-
forming a short interferogram which extends for nearly

equal distances on either side of zero path difference.
This short interferogram is picked out of the full inter-
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ferogram y(x) by multiplying v(x) by Ap(x) where

0 X < -Ll
Ap(x) = {finite -l ex 2Ly o+ 280 (52)
0 X > Ll + 28'

As in the case of the apodization function for the high-
resolution interferogram, A_(x) should be centered as
closely as possible at zero path difference. We estimate
this location by a parabolic fit to three points: the
interferogram maximum and the points on either side of it.
The parabola has a maximum at x=g'; we use this point as
the center of our short interferogram. The Fourier trans-
form of this short interferogram gives an amplitude and
phase:

Pp(w)ei¢(w) J[Hx v(x) Ay(x)e” dox Pp1 + Ppo

(53)

with resolution ~ 1/Ly. The phase is calculated from

qb(w) = tan"l(Ppl/sz) (54)

If P,y < 0, then = is subtracted from ¢(w) when P_, < 0 and
7 is added to ¢(w) when P p2 > 0, giving a range o?
+1 for ¢(w).

Note that because phase correction only requires
e~10(w) it is quicker to calculate

~i¢ () - ,
e (o = (Ppl - 1'Dp2)/ pr + Pp%

than to take the inverse tangent, put ¢ into the proper

quadrant, and exponentiate. However, we also need ¢(w) to

estimate B, the coefficient of the linear term of the phase.
B. A note on the FFT

The fast Fourier transform (FFT) routine® calculates
the inverse transform of an array i by computing
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M
ia. ol
Pje b5 ~ kzl Y e 2mikj /N (55)

for M (= a power of 2) values of j. In this equation we
are Tabeling indices as in FORTRAN. Formanl2 has shown
that in order to retrieve the phase, v, should contain the
first interferogram point for which x » 0. The other
points from the positive x side follow in order. The re-
maining data (all of which has x < 0) are put into the top
of the array. The last element, Yy contains the point
that was originally adjacent to Yy The elements between
the Tast point with x > 0 and the first with x < 0 are set
to zero. Flipping the interferogram about the origin in
this way is tantamount to assuming a periodic interfero-
gram, with period M; the array contains the first period
along positive x, Figure 5 shows how a schematic interfer-
ogram is set up for the FFT and phase retrieval.

LZ LI
| 3 M3

Figure 5a) Interferogram v(x) as recorded, extending from
-Ly to Lo. The sampled points are shown near the origin.

Figure 5b) Interferogram v(k) set up for the FFT. There
are M (a power of 2) points, with the array elements
between *L and M - L1 being zero.

§ §
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The number of points in the high resolution spectrum
is M > 2L,/8 (8§ is the sampling interval), while the number
in the low resolution spectrum (used to obtain the phase)
is Mp > 2L,/6. Because the phase is needed at every point
of the high resolution spectrum, it is convenient to take
M_ = M; this choice Teads to a "zero~filled" interferogram
and 1nterp01ated low-resotution spectrum.

C. Thirteen steps.

Our procedure for obtaining phase-corrected spectra is
outlined in the following list:

1. Record a sampled interferogram from x = -L, to
X = +L,. L; should be large enough to resolve the broad
features of the spectrum while L, gives the ultimate reso-
Tution.

2. Suppress the average value (I,) of the interfero-
gram,

3. Search for the maximum interferogram point and fit
a parabola through this point and the two adjacent ones.
The peak of this parabola gives g', the first estimate of

the origin.
4, Pick out a two-sided interferogram with an equa?l
number of points on either side of x = g'. This interfer-

ogram has N, = 2(L,+g')/s points.

5. If this interferogram is to be apodized, the apo-
dization function should be centered at x=g'.

6. The minimum number of points where the phase is
required is N = 2(L,-g"')/s. Determine M, a power of 2
which is larger than N. Put the two-sided interferogram in
an M-point array with the first point for which x z g' as
the first array element followed by the other points with
X > g'. The remaining data points are put at the top of
the array, with the last element being the last point for
which x < g'. The center of this array contains many
zeroes,

7. Compute the inverse complex Fourier transform.

8., Calculate the amplitude and phase spectra. Using
a least squares fit weighted by the amplitude, find the
constant g in ¢(w) = ¢, + Bu.

9., Multiply the center section of the full interfero-
gram by a ramp which is zero at x = -L;, % at x = g and 1
at x =L, + 2g.

10. Apodize {about g!).
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11. Set up an M-point array with the first element
being the first data point with x > B and continuing to
x = +L,, The array has zeroes where the data for
-L, € x < -L; would have been. The data for -L; < x < 8
are in the top of this array.

12. Compute the inverse Fourier transform, getting a
complex array Py(w) + i P,(w).

13. Calculate the phase corrected spectrum.

Plw) = Re{e_i¢(w) [Pl(w) + 9 Pz(wﬂ}

Because the phase calculated in step 8 was interpola-
ted, to M points, there will be a value for the phase at
every point where the spectrum was calculated.

VI. Examples. 0

We have used the syn-

thetic spectrum illustrated =
in Figure 6 to test our E
phase-correction procedures. Qgs
This spectrum is supposed to &

represent a narrow emission

peak at low frequencies and

a broad continuum containing L
an absorption Tine at higher Og

frequencies. The spectrum 20 40 60
was synthesized at 1024 FREQUENCY

points, and reflected about Fiqure 6. Synthetic spectrum
w =0 [P(-y) = P(w)] to give for testing the phase-cor-

a 2048 point symmetric spec- rection technique.

trum. This spectrum was

phase shifted by multiplying

by ei¢(w), [4(-u) = -¢(w)] . A complex FFT of this array
gave a 2048-point interferogram which was real but asymmet-
ric. A part of this interferogram, extending from -L; to
+L,, was the input interferogram for the phase correction
process. The number of points in this test interferogram
was always less than 1024, typically 512 on the positive
side of the origin and a somewhat smaller number on the
negative side,
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A. Proper phase correction

Figure 7 shows the amplitude and phase calculated from
a 100 point two-sided interferogram which hada relatively
large (e = -0.96) Tinear phase error. No apodization was
used, so large sidelobes appear on the lower frequency line,
which-was not resolved. The phase has been suppressed at
frequencies where the original spectrum had zero intensity.

The upper panel in Figure 8 gives the real and imagin-
ary parts of the uncorrected spectrum, obtained from a
1024 point transform of y(x), where 508 < x < +5128. The
linear phase error, truncation, and ramp through the center
all conspire to give a very disturbed spectrum. The Tower
panel shows the fully corrected spectrum. It is almost an
exact replica of the original.

04— T T T T

—— Real port
Figure 9 shows the resi- L ~ — — Imaginary port |
dual error remaining after
phase correction. (The resi-
dual error is defined here

as the absolute value of the
difference between the ori-

ginal spectrum and the

Q

| | =~ 1Sl 4

A t T T t
10 M=1024
L=508

UNCORRECTED SPECTRUM

I
o
w

3
% t €=-0.95
P
= o
g EO.E‘;
< h
e
jasd
o
U F
0 ™ 0 i -
0 20 40 60 0 20 40 60
FREQUENCY FREQUENCY
Figure 7. Low-resolution Figure 8a) Real (solid line)

amplitude (solid Tine) and and imaginary (dashed 1ine)
phase (dashed 1line) spectrum parts of the Fourier trans-
calculated from 100 points of form of an asymmetric inter-
an asymmetric interferogram  ferogram that was truncated
and interpolated to 1024 out- with the "left ramp" apodiza-
put points. tion function

Figure 8b) Phase corrected

spectrum.
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corrected spectrum and is expressed as a percentage of the

spectrum maximum,

Fine structure in the residual error has
been smoothed over in making these plots.)

The dashed 1ine

gives the error (about 1.5%) when the ramp is centered on
the highest point of the interferogram (rather than x+g)
while the solid Tine shows the error (about 0.02%) when the

ramp is properly centered.

The dotted 1ine shows the error

when the power spectrum vP¢ + P% is calculated from a com-

plete double-sided interferogram.

At many frequencies, the

power spectrum has larger errors than the phase-corrected
spectrum, suggesting that in both cases these residual

errors result from round-off errors in the computer.

Note

these ~0.02% errors are substantially smaller than the

20— ————————
| ==— Uncentered ramp
L— Centered ramp 5 wA ey 1
....... Power specfrum,' Kt \ ,'r \\
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Figure 9. Residual error re-

maining after phase correc-
tion of an interferogram
which had Tinear phase error.
The solid Tine is found when
the ramp is properly cen-
tered; the dashed Tine occurs
when the ramp is improperly
located; the dotted 1ine is
from a power spectrum.

~0.5% errors reported by
Sanderson and Bell.®

For the incorrectly cen-
tered ramp, the residual
errors scale with the magni-
tude of the phase error. In
every case, however, the resi-
dual error is substantially

S Sa— T T T

J
M=1024

- or L=i00
e T $ (@) 7
% 3 —— Centered ramp 4
T L —— = Uncentered ramp |
ac
L L
|
= os|
P
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%
9 L
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Ok
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FREQUENCY

Figure 10. Residual error

remaining after phase correc-
tion of an interferogram

which had quadratic phase
error. The solid line gives
the error which occurs when the
the ramp is properly centered
while the dashed 1ine gives

the error when the ramp is
improperly located,
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reduced when the ramp is centered.

Figure 10 shows the residual error which occurs when
there is a quadratic phase error, ¢ = w(w?/w?,,,). Witha
quadratic phase, the least squares fit to the phase pro-
duces a straight line through the curved quadratic phase
error. Even though there is no well-defined origin of the
interferogram when the phase error is quadratic, centering
the truncation-apodization function at x = B gives smaller
residual error because the function is centered at the
effective zero path difference ("point of stationary
phase") of the most intense fringes.

B. Mistakes

In this section we show
ways in which phase correc-
tion can go wrong. Through-
out we use a modest value for
the phase error, ¢ = 0.18
rather than the value of 0.96
used previously. Neverthe-
less, these mistakes produce
large errors. Figure 11
shows two examples of mis-
weighting the interferogram
center. The apodization func-
tions used are shown at the
bottom of the figure. The
spectrum with the solid Tine

CORRECTED SPECTRUM

was produced when the inter- ° %%EQUENcﬁo
ferogram only included points o -

x >0, i.e., only a half- AL

sided Fourier transform was !

done. This procedure pro- Ot "
duces the dreaded baseline ! 2
tilt which has given the Figure 11a) Corrected spec-
multiplicative technique a trum (not residual error!)
bad name.4,6-8 for truncation at x=0 (solid

line) and for boxcar weight-
For the dashed Tines in 1ing of entire interferogram
Figure 11, all interferogram (dashed line).
points were used without
weighting at all; the apodiza-Figure 11b) Truncation func-
tion function is unity from tions used to produce the
-L1 to +Ly,. This function spectra given above.
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and +L1,

producing the sum of a high-resolution spectrum and a Tow

resotution spectrum.

The result is a Toss of intensity in

the sharp features and extra structure near them.

Figure 12 shows in the solid line the result of using

too few points for the two-sided interferogram.
128 as opposed to the value of 508 used earlier.

Here L; =
Severe

distortions occur near sharp features in the spectrum
because of poor resolution in the phase, even though the

ramp was properly centered.
special case e = 0,5,

(An anomaly occurs for the
For this value of phase error, the

phase spectrum is very accurate; and a good corrected spec-
trum, shown as the dashed line in Figure 12, is obtained.

O  M=1024 = -
% L =128 i
x e=0.18
B[ ---e058 :
[} - d
[a
w - 4
O
o5k -
= L
@)

i)
% - |
S I 1
!— =
2 L A i i ‘.
o5 40 60
FREQUENCY
10
A(U{V /
1
© -, OL+28 L, x

Figure 12a) The corrected
spectrum obtained when £=0.1¢
and when only 12 points are
taken before x=0 is shown as
the solid 1ine. The correc-
ted spectrum obtained when

e = 0.56 is shown as a dashed
Tine.

Figure 12b) Truncation-apodi-
zation function used to
obtain the above spectra.

O m=i1024 .
L,=508 1
=018

CORRECTED SPECTRUM
&
Of~ r—r—T—T—7 1

o T
20 40 60
FREQUENCY

-Ly O L+28 L, %

Figure 13a) The corrected
spectrum found when a step is
used as the truncation-apodi-
zation function.

Figure 13b) The solid Tine
shows the truncation-apodiza-
tion function used to obtain
the above spectrum. The
dashed Tine shows an equiva-
lent truncation-apodization
function when the interfero-
gram is sampled at the values
of x circled on the x-axis.
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This anomaly occurs because the interferogram with ¢ = 0.5
is symmetric about x=0, although no point corresponds to
x=0.) In general, we have found that L; = 508 produces
good correction of linear phase error, with only small
improvements if L; is increased. The correction of quadra-
tic phase error seemed to require somewhat more points.
There was a substantial improvement on going from L; = 50¢
to L, = 1004, with only small improvements beyond this
value.

One might think that multiplying the portion of the
interferogram between -Lj; and +Li by one half should work
as well as the ramp which we have been using. The result
of this procedure is shown in Figure 13. The step weighting
produces strong ripples in the .spectrum. These ripples are
the result of the attempt to make a step between two Sampling
points. As far as the interferogram is concerned, the
apodization function contains two small ramps, as shown in
the dashed line in the lower panel. These ramps are pinned
to sampling points (shown as circles) and therefore cause
structure to occur in the even part of the apodization
function Ae(x) at x = = Ly, which, when Fourier transformed
and convolved with the spectrum, produce the ripples seen
in Figure 13.

VII. Conclusions.

We have shown that a phase-corrected spectrum can be
produced with an accuracy of + 0.02%. To achieve this
accuracy, it is essential that the truncation and apodiza-
tion functions be properly located. The centers of the
even parts of these functions must be at the best possible
estimate of zero path difference.
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