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ab-plane anisotropy in single-domain BisSrpCaCuz0z high-temperature su-

perconductors
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The anisotropy of the ab-plane optical conductivity and dc resistivity of single-domain BisSroCaCusOg
crystals has been measured between 20 and 300 K. There is a modest normal-state anisotropy, optical
anisotropy below T., and an unexpected anisotropy in the resistive transition.

1. INTRODUCTION

A key structural element of the high-T, su-
perconductors is the quasi-two dimensional CuQO,
plane. In materials like BisSrpCaCusQOg, this
layer is nearly square, and thus should have almost
isotropic electrical and optical properties. How-
ever, there is a weak superlattice distortion! (gen-
erally associated with defects in the BiO layer),
and hence the structure is formally orthorhom-
bic, which permits anisotropic behavior. We have
measured the optical conductivity and resistivity
along the a and b axes of single domain crystals
of BizSroCaCu20g (T, = 83 K) as a function of
temperature.
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Fig. 1. The optical conductivity along the a axis
of a single-domain BizSreCaCugOg crystal.

2. OPTICAL CONDUCTIVITY

Figures 1 and 2 show the optical conductiv-
ity, obtained by Kramers-Kronig analysis of re-
flectance; the ab plane is anisotropic both above
and below T..2 In the infrared, the normal-state
conductivity is higher for E || a by about 10%.
Fits to a two-component picture find that this
difference can be attributed to anisotropy of the
scattering rate 1/7; the Drude plasma frequencies
are nearly the same.

Below T, there is a definite anisotropy to the
far-infrared conductivity. As the frequency de-
creases below ~400 meV, the conductivity for E ||
b increases. The a-axis conductivity, in contrast,
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Fig. 2. The optical conductivity slong the 9 axis
of a single-domain Bi2SraCaCu2QOg crystal.

0921-4534/94/507.00 © 1994 - Elsevier Science B.V. Al rights reserved.

S$SDI 0921-4534(94)01125-7



1124 M.A. Quijada et al./Physica C 235-240 (1994) 1123-1124

400 T
. 3
Bi_Sr,CaCu,04
—_ e a axis &
—~ 300} b axis
B
&
3
e
s 200 .
poar
&
2
.2
n
Q
EEY ] =
0....1...l.‘..l....l....l....
0 50 100 150 200 250 300

Temperature (K)

Fig. 3. Resistivity along the principal axes of a
single-domain Bi2SrzCaCu30g crystal. The
zero-frequency extrapolation of optical con-
ductivity is shown as the open symbols.

is decreasing, giving a factor of two difference in
o1(w) at the lowest frequency. This anisotropy
could be due either to anisotropy of the supercon-
ducting gap or to anisotropy of the midinfrared
component of the optical conductivity.

3. RESISTIVITY

The anisotropy in the ab plane resistivity, mea-
sured by the van der Pauw method.? is shown in
Fig. 3. At 300 K, py/pa = 1.15, as determined by
both infrared and transport measurements. From
the linear slopes of the temperature dependence
of p, and p;, we deduce coupling constants of
Aa ~ .35, and Ay ~ .31. Linear extrapolations
to zero temperature yield a zero intercept for the
a axis, while for the & axis this intercept is finite.
Note that our resistivity differs from that of Mar-
tin et al,® who reported a larger resist.vity along
a but in is accord with the results of Yamaya et
al b

There is also an unusual anisotropy in the re-
sistive transition, illustrated in Fig. 4. Note that
this shows the resistance, not resistivity. When
the current flow is predominately along a, the re-
sistance falls to near zero about 3 K higher than
when the current flow is predominately along b.
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Fig. 4. Expanded view of resistance versus tem-
perature,

This effect has been seen in several samples and is
independent of measuring current for a factor of
100 or so in current. The ¢ axis appears to have its
resistive transition at the same temperature as a.
At present, we have no explanation for the effect.
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