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The anisotropy of the ab-plane optical conductivity and de resistivity of single-domain BizSrzCaCuzOs 
crystals has been measured between 20 and 300 K. There is a modest normal-state anisotropy, optical 
anisotropy below T~, and an unexpected anisotropy in the resistive transition. 

1. I N T R O D U C T I O N  

A key structural element of the high-To su- 
perconductors is the quasi-two dimensional Cue2 
plane. In materials like Bi2Sr2CaCu2Os, this 
layer is nearly square, and thus should have almost 
isotropic electrical and optical properties. How- 
ever, there is a weak superlattice distortion I (gen- 
erally associated with defects in the BiO layer), 
and hence the structure is formally orthorhom- 
bic, which permits anisotropic behavior. We have 
measured the optical conductivity and resistivity 
along the a and b axes of single domain crystals 
of Bi2Sr2CaCu2Os (To = 83 K) as a function of 
temperature. 
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Fig. 1. The optical conductivity along the a axis 
of a single-domain Bi2Sr2CaCu2Os crystal. 
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2. O P T I C A L  C O N D U C T I V I T Y  

Figures 1 and 2 show the optical conductiv- 
ity, obtained by Kramers-Kronig analysis of re- 
flectance; the ab plane is anisotropic both above 
and below To. 2 In the infrared, the normal-state 
conductivity is higher for E II a by about 10%. 
Fits to a two-component picture find that this 
difference can be attributed to anisotropy of the 
scattering rate l / r ;  the Drude plasma frequencies 
are nearly the same. 

Below Tc there is a definite anisotropy to the 
far-infrared conductivity. As the frequency de- 
creases below ~400 meV, the conductivity for E II 
b increases. The a-axis conductivity, in contrast, 
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Fig. 2. The optical conductivity along the (~ axis 
of a single-domain Bi2Sr2CaCu208 crystal. 
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Fig. 3. Resistivity along the principal axes of a 
single-domain Bi2Sr2CaCu2Os crystal. The 
zero-frequency extrapolation of optical con- 
ductivity is shown as the open symbols. 

is decreasing, giving a factor of two difference in 
¢rl(w) at the lowest frequency. This anisotropy 
could be due either to anisotropy of the supercon- 
ducting gap or to anisotropy of the midinfrared 
component of the optical conductivity. 3 

3. R E S I S T I V I T Y  

The anisotropy in the ab plane resistivity, mea- 
sured by the van din" Pauw method. 4 is shown in 
Fig. 3. At 300 K, Pb/P~ ~ 1.15, as determined by 
both infrared and transport measurements. From 
the linear slopes of the temperature dependence 
of pa and Pb, we deduce coupling constants of 
~ --~ .35, and -\b "~ .31. Linear extrapoiations 
to zero temperature yield a zero intercept for the 
a axis, while for the b axis this intercept is finite. 
Note that our resistivity differs from that of Mar- 
tin et al., 5 who reported a larger resistivity along 
a but in is accord with the results of Yamaya el 
al..6 

There is also an unusual anisotropy in the re- 
sistive transition, illustrated in Fig. 4. Note that 
this shows the resistance, not resistivity. When 
the current flow is predominate!y along a, the re- 
sistance falls to near zero about 3 K higher than 
when the current flow is predominately along b. 
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Fig. 4. Expanded view of resistance versus tem- 
perature. 

This effect has been seen in several samples and is 
independent of measuring current for a factor of 
100 or so in current. The c axis appears to have its 
resistive transition at the same temperature as a. 
At present, we have no explanation for the effect. 
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