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PREFACE

The present book attempts to fill a need for a fundamental textbook

which explains the optical properties of solids. It is based on two short

courses I gave in the Department of Applied Science and a series of fifteen

lectures at Chalmers Tekniska Hogskola, Goteborg, Sweden presented at

the invitation of Professors Stig Hagstrom, Gosta Brogren, and H. P. Myers.

This book is meant to explain a number of important concepts rather

than present a complete survey of experimental data. Its emphasis is almost

entirely on intrinsic optical properties and photoelectric emission. Little

is said concerning imperfections, color centers, etc. However, the principles

are general, so the book serves as a stepping stone to the more advanced

review articles and papers on a wide variety of topics.

The book assumes a background in quantum mechanics, solid state

physics, and electromagnetic theory at about the level of a senior-

year undergraduate or first-year graduate student in physics. Problems

and exercises have been included to elaborate more fully on some aspects

of the physics, to gain familiarity with typical characteristics of optical

properties, and to develop some skills in mathematical techniques.

The central theme of the book is the dielectric function (a macroscopic

quantity) and its relationship to the fundamental microscopic electronic

properties of solids. The emphasis is on basic principles, often illustrated

by simple models. The necessary mathematics needed to understand the

models is generally carried through to completion, with no steps missing,

and no "it can be shown" statements. Thus, the text is intended to be suitable

for self-study, as well as for use in a one-semester first-year graduate course.

XI
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Chapter 1

INTRODUCTION

This book presents an introduction to the fundamental optical spectra

of solids. The aim is to develop an understanding of the relationship of

measurable optical properties to the dielectric function and the microscopic

electronic structure of solids.

The usual way to determine the optical properties of a solid is to shine

monochromatic light onto an appropriate sample and then to measure

the reflectance or transmittance of the sample as a function of photon energy.

Other methods, such as ellipsometry, are sometimes used. However, these

methods are of no concern here. The choice of experimental technique

is largely one of convenience, not of the basic information obtained. We
shall concentrate on reflectivity. Details of experimental technique and

methods of data analysis are left to other monographs and papers, some of

which are included in the references throughout the book. One exception

is the inclusion of a discussion of the analysis of normal incidence reflectance

data with the use of the Kramers-Kronig equations; but, the importance

here lies in the physics and great generality contained in the Kramers-

Kronig equations, not in the experimental techniques for measuring the

reflectance at normal incidence.

In recent years, photoelectric emission and characteristic energy loss

experiments have proven useful as methods of studying electronic band

structure. These experiments are closely related to optical experiments in

terms of the kind of information they provide. They are discussed at various

points throughout the book.

There are experimental techniques other than the optical types which
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provide information on band structure. These include cyclotron resonance,

de Haas-van Alphen effect, galvanomagnetic effects, and magnetoacoustic
resonance. However, even though often of high accuracy, these experiments
yield information pertaining to energy levels only within a few kT of the

Fermi surface. Ion neutralization spectroscopy and soft x-ray emission
provide information over a wide energy range, but they have not proven
as useful as optical methods.

This chapter discusses briefly the kinds of experiments that are most
typical and indicates the kind of information that can be obtained. To
provide a framework for discussions of optical measurements, photo-
electric emission, and characteristic energy loss spectra, we begin in Section

1.1 with a reminder of some of the ideas of band theory, but no more than
that. The reader is assumed to have an adequate understanding of the basic

ideas of band theory. Next is a brief introduction to optical reflectivity.

This is followed by a discussion of photoelectric emission. Since even an
elementary discussion of the physics of photoelectric emission is not

included in most textbooks on solid-state physics, it is included here.

The final section consists of a brief introduction to characteristic energy
loss spectra.

For those unfamiliar with the optical spectrum, it is suggested that Table
1.1 be memorized. Optical data are often presented in terms of frequency
or wavelength, but band structure is discussed in terms of energy (eV).

It is useful to know how to convert units easily.

TABLE 1.1 Relationship of Wavelength to Energy, Frequency, and Color

12,400A <- 1 eV «- to = 1.5 x 10 15 sec" 1

6,200A <- 2 eV «-» red

5,80OA < » yellow

5,200A < » green

4,700A < blue

1.1 Band Theory of Solids

The band theory of solids is based on a one-electron approximation.
That is, an electron is assumed to be acted on by the field of the fixed atomic
cores plus an average field arising from the charge distribution of all the
other outer-shell electrons. The atomic cores consist of the nuclei and all

inner-shell electrons not appreciably perturbed by neighboring atoms.
If the solid is also a perfect crystal, the total crystal potential energy V(r)

must have the periodicity of the crystal lattice. On the basis of this model,
the solutions of the Schrodinger equation

(h
2/2m)V2

i// + \S - 7(r)] ij/ = (1.1)
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are Bloch functions

ij/(k, r) = u k(r) exp t'k • r (1.2)

where uk(r) is a function having the periodicity of the lattice.

The simplest solution to Eq. (1.1) is for the case in which V(r) is constant

and can be taken as zero. It leads to free electrons and plane waves for wave

functions. The energy of an electron is then given by

S = h
2
k
2/2m (1.3)

If we include the periodicity of the lattice, but say that the perturbing

potential is arbitrarily weak, the energy of an electron can be expressed as

$ = (h
2/2m)

|
k + G

|

2 (1.4)

where G is a reciprocal lattice vector. The energy bands are then best

represented in the reduced zone scheme. Figure 1.1 shows the free-electron

?M

Fig. 1.1 Free-electron energy band structure in the reduced zone scheme for face-centered-

cubic lattices. The Fermi level is shown for different numbers of outershell electrons per unit

cell. The degeneracy (other than the twofold spin degeneracy) of each energy band segment

is indicated by the number of dots on the corresponding line. Symmetry points in the reduced

zone (insert) are identified by Greek or Roman letters. The lattice constant (unit cube edge)

is denoted by a. This diagram applies to such crystals as Al, Cu, Ag, Ge, and GaAs: it includes

most of the solids discussed in detail in this book. [From F. Herman, Atomic Structure, in

"An Atomistic Approach to the Nature and Properties of Materials" (J. A. Pask, ed.). Wiley,

New York, 1967.]
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energy band structure for a face-centered cubic crystal. The energy bands
are shown for a number of important directions in k-space.

In a real crystal, the finite periodic perturbation of the lattice lifts many
of the degeneracies of the free-electron model. An example is shown in

Fig. 1.2.

If spin-orbit coupling is included in the crystal Hamiltonian, degeneracies

2x3

boo ^fiod

2x4

[ooo] 2f[ioo] [oooj

Reduced wave vector along NOOJ axis

^o°]

Fig. 1.2 Comparison of free-electron, nearly free-electron, and actual energy band models
for the germanium crystal, for the [100] direction in the reduced zone. The spin-orbit splitting

has been omitted. [From F. Herman, Atomic Structure, in "An Atomistic Approach to the
Nature and Properties of Materials" (J. A. Pask, ed.). Wiley, New York, 1967.]
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will be further lifted at some points in k-space. In general, throughout this

book, however, we will speak of bands for which electrons have the same

energy independent of whether they are spin up or spin down.

The agreement between experiment and theory for a wide variety of

types of materials ranging from insulators to metals suggests that the

one-electron model for solids is generally quite adequate. Many experi-

ments point to the existence of a sharp Fermi surface in metals as expected

for a one-electron model. There are, of course, some inadequacies in the

treatment of the one-electron band model. These include the poor rep-

resentation of electron-electron correlation effects and the variation in

potential for electrons in different states. However, the general features of

the one-electron band picture are real. In fact, more sophisticated treatments

often give as much insight into the success of one-electron methods as they

do in actually improving the results.

We shall assume that the one-electron band model is correct. Besides,

it is not a model to be discarded lightly. It has the highly desirable feature

that it is possible to use the Fermi-Dirac distribution function for a statistical

description of the total electron population. It also means that when an

electron changes its energy, there is no resultant change in any of the other

electrons in the system. Thus, we can treat a change in energy of a single

electron as a change in energy of the system.

1.2 Optical Reflectivity

When light of sufficient energy shines onto a material, it induces transi-

tions of electrons from occupied states below the Fermi energy to un-

occupied states above the Fermi energy. Clearly, a quantitative study of

these transitions must provide some understanding of the initial and final

states for the transitions and hence some knowledge of the band structure.

But what sort of experiments are to be carried out, and how are they to be

interpreted?

The most common experiments consist of shining a beam of mono-

chromatic light onto a sample and measuring the fraction of the incident

beam that is transmitted or reflected. In the spectral regions of greatest

interest, optical absorption is generally quite high, so that often a negligibly

small fraction of the incident light is transmitted. For example, in the visible

and ultraviolet regions, many materials have a mean absorption depth of

the order of only lOOA. It is generally not feasible to make films that thin

which are of sufficient quality to get meaningful data. Thus, most experiments

are measurements of the reflectivity.

Figure 1.3 shows a scheme for measuring normal incidence reflectance.

The measurements must usually extend out to photon energies of at least
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Monochromator

exit slit

Sample - incident angle 8°

Ellipsoidal mirror

£
Rotation

Detector

Fig. 1.3 Schematic of optical system for near-normal-incidence reflectivity measurements.

The arrangement reduces the number of reflections to one. This is an important and valuable

feature in the vacuum-ultraviolet, where the reflectance of solids is low and the use of a multiple-

reflection scheme drastically reduces light intensity. The ellipsoidal mirror diverts the light

beam consecutively onto the sample and the detector. Continuous rotation thus produces a

sequence of "incident" and "reflected" pulses which are electronically measured and recorded.

[From T. Huen, G. B. Irani, and F. Wooten, Appl. Opt. 10, 552 (1971).]

10 eV if the major optical transitions are to be covered. Sometimes, of

course, it is necessary to go to considerably higher energies to get sufficient

data. However, most of the interesting structure usually lies at photon

energies below 25 eV. This is a spectral region that is reasonably accessible

with commercially available monochromators and light sources.

Figure 1.4 shows (hv)
2
s2 for GaAs as determined from an analysis of

the optical reflectance of GaAs over the spectral region 0-25 eV. This

curve is a measure of the optical absorption in GaAs. The peaks and valleys

in the "absorption" curve are of course related in some way to possible

transitions between states in the energy bands. However, the interpretation

of this structure is nontrivial. It is impossibly complicated without at

least some knowledge of the band structure as a starting point. Thus,

advancement in knowledge of the electronic band structure of solids has

been a joint effort of theory and experiment. That this is so should not be

surprising. Observe the band diagram for GaAs as shown in Fig. 1.5. It

is hopeless to derive such a diagram solely from optical reflectance measure-

ments. On the other hand, it is possible to determine band gaps quite ac-

curately and provide checks on theoretical calculations.

The reason that optical data are often so difficult to interpret is that they

depend on a summation over all possible transitions. For example, the

photon energy required for the transition from L3 to L 3 indicated in Fig. 1.5

is hao — 6 eV. However, if one shines monochromatic light of that energy

onto GaAs, the absorption depends on all possible transitions for which

the occupied initial state and the unoccupied final state are separated by

6 eV. Furthermore, Fig. 1.5 shows the band structure only along certain
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Photon energy, hv (eV)

4 6 8 10 12 14 16 18

6.0 7.0 8.0 9.0 10.0 1 1.0

Energy,E, above valence band max (eV)

Fig. 1.4 Illustration that much more information can be obtained from a combination of

photoemission and optical measurements than from either one alone. The upper curve,

(hv)
2
e 2 versus hv, is a plot of a function related to the optical absorption strength as determined

from a Kramers-Kronig analysis of the optical reflectivity. The lower curve gives a photo-

emission energy distribution curve for hv = 10.4 eV. Note that there is strong structure in the

energy distribution curve, whereas the optical curve is quite smooth in that energy region.

[From W. E. Spicer and R. C. Eden, Proc. 9th Int. Conf. Phys. Semicond. {Moscow, USSR)

2, 65 (1968).]

directions in k-space. It is necessary to consider transitions at all points

in the Brillouin zone. These considerations make it clear that disentangling

everything is not easy. Fortunately, it is also not completely hopeless.

Certain transitions, especially near symmetry points, are sometimes suf-
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z
tH°} m

-9 -

r x

Crystal momentum

Fig. 1.5 Energy band diagram for GaAs. Compare this diagram with Fig. 1.1 to see the
effect of the finite periodic crystal potential in GaAs. [Based on M. L. Cohen and T. K. Berg-
stresser, Phys. Rev. 141, 789 (1966).]

ficiently strong that they show up quite clearly and can be readily inter-

preted. These often provide a kind of framework for the rest of the structure.

1.3 Photoemission

When light shines onto a material, it may excite some of the electrons

to energies sufficiently high that they can escape from the material. This is
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the photoelectric effect. The optical absorption that occurs in photo-

emission is exactly the same process that we have just discussed in relation

to reflectance measurements. Thus, there is a close relationship between

the information that can be extracted from photoemission experiments and

from purely optical measurements.

In photoemission, interest is focused on the escaping electrons. These

electrons constitute current which contains information on the band

structure. Indeed, photoemission has emerged during the last decade as a

powerful tool for investigating the electronic band structure of solids.

Let us consider briefly on the basis of a simple three-step model what

happens in the photoelectric effect. First, a photon is absorbed and an

electron makes a transition from an occupied state to one of the higher-

energy empty states. The electron then moves through the crystal, possibly

suffering numerous collisions. Finally, the excited electron may reach the

surface and have sufficient momentum to escape over the surface barrier.

These steps are illustrated in Figs. 1.6 and 1.7.

Solid
Vacuum

Fig. 1.6 (a) Photoexcitation of an electron,

(b) random motion through the crystal,

(c) and electron escape. [From W. E. Spicer

and F. Wooten, Proc. IEEE 51, 1119 (1963).]

From the simple three-step mechanistic model of photoemission, it is

clear that a detailed study of photoemission from a solid should provide

information on the band structure as well as electron transport at energies

well above the Fermi energy. The difficulty lies in extracting the information

contained in the data. We shall consider some of these difficulties later.

The basic experiment in photoemission consists of shining mono-

chromatic light onto a sample (cathode) placed near the center of a spherical

collector (anode) and measuring the photoelectric current as a function

of voltage. This is illustrated in Fig. 1.8. By varying the photon energy, a

series of I-V curves can be obtained. The form of these curves and their

relationship to the energy band profile of solids are illustrated in Figs. 1.9-

1.12. However, it is not just a series of /- V curves that is desired. The point
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Fig. 1.7 (a) Photoexcitation of an electron,

(b) random motion through the crystal, and
(c) electron escape in terms of a simple

energy band diagram for a semiconductor.

The continuous loss in energy during diffu-

sion to the surface as indicated in the figure

represents energy loss from a number of

nearly elastic collisions. Loss of energy be-

tween excitation and escape contributes to

the difficulty of interpreting photoemission

experiments. [From W. E. Spicer and F.

Wooten, Proc. IEEE 51, 1119 (1963).]

(a) (b) (0

Vacuum chamber

Li F window

Collector

Photocathode
sample

Fig. 1.8 Schematic diagram of basic arrangement for photoemission measurements. The
photocathode-collector voltage is slowly varied during measurements of photocurrent
versus retarding voltage. For quantum yield measurements, the collector is biased sufficiently

positive to collect all photoelectrons. The LiF window transmits to about 11 eV; at higher
photon energies, a windowless experiment must be performed. The pressure in the vacuum
chamber must be of the order of 10

~ 9 Torr or less to maintain a clean sample surface during

measurements.

is that it is the structure in the energy distribution of photoelectrons that

is related to the electronic band structure. This information can, in principle,

be obtained by numerically differentiating the current-voltage curves just

mentioned. However, a much more satisfactory method is to electronically

differentiate the /- V curve. One way this can be done is by superimposing
a small ac voltage on a variable dc retarding voltage between the photo-
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cathode and the spherical collector. Then, as the retarding voltage is slowly

swept over the range from saturation current to zero current, the ac com-

ponent of photocurrent can be detected (see Fig. 1.13.). The ac current

component is directly proportional to the photoelectron energy distribu-

tion.

Figure 1.4 shows the photoelectron energy distribution curve for GaAs
with hv = 10.4 eV. Note that near this photon energy, there is no structure

in the optical absorption, yet there are five peaks in the photoemission curve.

This is a striking example of the value of photoemission measurements.

It illustrates the way in which photoemission helps to unravel band structure

by resolving many of the transitions which contribute to optical absorption

at a particular photon energy. Note also that since the final-state energy

of the electrons is measured, photoemission determines in an absolute

sense the energy of the initial and final states. Purely optical measurements

determine only differences in energy between states.

Photocathode Collector (anode)

Fig. 1.9 Energy profile for photocathode and collector made of different metals. The max-

imum energy for a photoelectron just outside the photocathode is hv — e<f>c , the energy of an

electron excited from the Fermi energy but losing energy ecf>c in escaping from the photocathode.

Once outside the photocathode, the electron experiences a built-in field
(f>c - <t>A arising from

the contact potential difference between the two metals. On heading toward the collector, the

electron must overcome the built-in field and thus loses more kinetic energy. It arrives at the col-

lector (if it has sufficient energy) with a maximum kinetic energy hv - e4>A . Thus a retarding

voltage of (hv/e) — <t>A is sufficient to completely cut off the photocurrent. Most electrons will be

emitted with lower energies. Those emitted with zero energy require an accelerating voltage

(f) A
—

(f)c in order to be collected. The resultant I-V curve based on this energy profile is

illustrated in Fig. 1.10.
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*A "*C—
hv

2

e -*A"

s hv.

"Ve

I,
hv.

Region of

c
a)

-*— saturat ion o
o

curren
-C

Retarding voltage

Fig. 1.10 Photocurrent versus retarding voltage for the photocathode and collector of
Fig. 1 .9. Note that the end of the region of saturation current and the beginning of photo-
current cutoff depend only on the contact potential difference. The cutoff voltage for zero

photocurrent depends on photon energy and the work function of the collector.

Semiconductor
photocathode

Meta
collector

(anode)

Fig. 1.11 Energy profile for a semiconductor photocathode and metal anode. The threshold

for photoemission from a semiconductor is from the valence band maximum to the vacuum
level, not from the Fermi level to the vacuum level. The effect is to change the cutoff voltage

for zero current. Compare Figs. 1.10 and 1.12.
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Retarding voltage

Fig. 1.12 Photocurrent versus retarding voltage for the semiconductor photocathode and

metal anode of Fig. 1.11. The cutoff voltage differs from that for a metal photocathode by

<f>F, the Fermi potential measured with respect to the valence band maximum.

Retarding voltage

Fig. 1.13 Modulation of I-V curve with small ac voltage permits direct measurement of

AJ/AV. This is the method used to obtain the energy distribution curve for GaAs shown in

Fig. 1.4.

Figure 1.4 shows a photoelectron energy distribution curve for only

one photon energy. It is necessary to repeat the measurement for many
photon energies. Then, by studying the movement of structure in energy

and its change in magnitude, one can deduce considerable information

about the band structure and selection rules. However, to compare the

magnitude of different curves requires another measurement, namely the

quantum yield. This consists in measuring the total photocurrent response

to a monochromatic light beam of known intensity. The quantum yield,

which is the number of electrons emitted per photon absorbed, is just the
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ratio of photoemission current to "photon current." Then, the energy

distribution curves are normalized such that the area under a curve equals

the quantum yield.

One of the major difficulties in interpreting photoemission data is

separating out the effects of electron scattering. In an ideal crystalline solid,

the dominant scattering mechanisms are electron-phonon scattering and
electron-electron scattering. The former is nearly elastic and mostly just

randomizes the motion of electrons; the latter can lead to large energy losses.

Both can have important effects on photoemission. Some of these effects

are discussed at appropriate points in later chapters.

1.4 Characteristic Energy Loss Spectra

There are numerous ways of exciting electrons in a solid other than by
photon absorption. One way that is related to optical spectra is the excitation

of electrons by other electrons. This is done by shining a beam of mono-
energetic electrons at a sample and analyzing the energy of the transmitted

or reflected beam. It is found that the incident electrons lose energy in

discrete amounts. The loss spectrum arises both from the excitation of single

electrons in the solid, just as happens with photon absorption, and also

from the excitation of collective oscillations called plasmons. From these

measurements, it is also possible to deduce optical constants. It is also

feasible to make measurements corresponding to a photon energy range
not always accessible by traditional optical means.



Chapter 2

MAXWELLS EQUATIONS AND THE
DIELECTRIC FUNCTION

The optical property usually available directly from experiment is the

frequency-dependent reflectance or transmittance; the property most

directly related to the electronic structure of a solid is the dielectric function.

To interpret experimental measurements in terms of the fundamental

electronic properties of the solid requires an understanding of Maxwell's

equations, the nature of the interaction between electromagnetic fields and

matter, and an understanding of the dielectric function from a fundamental

microscopic viewpoint.

We begin this chapter with a discussion of Maxwell's equations using

a notation standard in most texts on electromagnetic theory. After de-

scribing the properties of the medium, a simple case of the interaction of

light and a solid is considered. This introduces some of the basic ideas.

Then, we take a closer look at the description of fields and sources (light

or electron beams) and make some changes in notation. The new notation

differs only slightly from the old. It is made to conform with that used by

many active workers in the field and to emphasize the physics involved

in the interactions. Finally, the results are generalized and the dielectric

tensor is introduced in such a way as to make clear the relationships and

distinctions between longitudinal and transverse dielectric functions.

15
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2.1 Maxwell's Microscopic Equations

The relationship of the microscopic properties of matter to the macro-
scopic optical properties is best understood by beginning with the micro-

scopic form of Maxwell's equations. They are,

Ve = 47rp micro (2.1)

1 3b
V x e = (2.2)

c dt

V • b = (2.3)

1 de 4n
V x b = - — +

j micro (2.4)
c dt c

The equations are written in Gaussian units, the system most commonly
used in quantum mechanics and modern literature on optical properties

of solids. The vectors e = e(r, t) and b = b(r, t) are the microscopic electric

and magnetic fields, respectively; pmicro and j micro are the microscopic

charge and current densities, respectively. These equations are completely

general, applying to dielectrics as well as metals.

With the microscopic form of Maxwell's equations, one considers the

contribution of each charged particle. For example, in a classical model
in which the electrons and atomic nuclei within a system are treated as

point charges, the charge density is given by

Pmicro(r) = Z 4i<5(r - «\) (2.5)

i

where q t
is the charge of the ith particle and <5(r — r

t)
is the Dirac delta

function.

In the treatment of optical problems from a quantum mechanical view-

point, it is not possible to treat electrons as distinguishable charged particles.

Then, it is necessary to specify the charge density for electrons in terms of

the spatial probability distribution and electronic charge — e as

Pmicroelectronic(r) = ~ e¥*(r) *F(r) (2.6)

where ^(r) is the electronic wave function of the system. The atomic nuclei

can still be treated as point charges, but it is frequently more convenient

to consider a smoothed-out, positive charge distribution.

2.2 Maxwell's Macroscopic Equations

It is clearly not feasible to work with the microscopic form of Maxwell's

equations for real systems containing of the order of 1022 electrons per
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cm 3
. It is possible, though, to rewrite Maxwell's equations in terms of

macroscopic quantities and still retain the form of the microscopic equations.

This is an essential step if Maxwell's equations are to be of any use in the

study of solids. That such a step is possible is because optical measurements

provide a probe with a spatial resolution of the order of a wavelength of

light. Since a small volume element of a solid with characteristic dimensions

of the order of a wavelength of light contains many millions of atoms,

solids can be treated as continuous from the viewpoint of interpreting optical

measurements.

Macroscopic quantities can be defined in terms of their microscopic

counterparts as follows. The electric field strength E(r) and magnetic induc-

tion B(r) are

E(r) = <e(r)> = (1/A7) e(r + £) d? (2.7)

B(r) = <b(r)> = (1/AJO b(r +£)</£ (2.8)

where /</£ symbolizes $dx fdy fdz. The charge and current densities are

given by

p
total(r) = (1/A7) PmicroOr + *)# (2-9)

AV

J
total

(r) = (1/A7) WoOr + fld* (2.10)

AV

In Eqs. (2.7)-(2.10), the volume element AV is taken to be of linear dimensions

small compared with the wavelength of light but large enough to contain

many atoms. The same procedure is also valid when time dependence is

included. The charge density and current density are designated as total

densities in anticipation of separating these densities into "free" and "bound"

parts or induced and external parts.

By starting with Maxwell's microscopic equations and following the

averaging procedure just described, the following macroscopic equations

are obtained:

V • E = 47iptotal (2.11)

1 <9B
VxE= — (2.12)

c ot

V-B = (2.13)
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1 dE An tntalV x B = + Jtotal
(2.14)

c dt c
y }

It is implicit that the fields are total macroscopic fields.

No properties of the medium have yet been introduced. Before doing so,

we shall first discuss formal solutions of Maxwell's equations.

2.3 Formal Solutions of Maxwell's Equations

Imagine that an electron is suddenly moved. The moving electron con-

stitutes a current and produces a magnetic field satisfying Eq. (2.14). The
presence of a magnetic field where none existed before means there has

been a changing magnetic field. This in turn implies an electric field produced

by the time-varying magnetic field and described by Eq. (2.12). Thus, once

a field has been started propagating through free space, it is self-sustaining.

If the E field begins to collapse, it produces a B field. A collapsing B field in

turn produces an E field. We thus expect the field vectors E and B to satisfy

a wave equation. We know that such is the case, and we shall later carry

through an analysis for propagation of electromagnetic waves in a medium
which also includes an energy-absorption mechanism. For now, the treat-

ment will be somewhat more formal. We shall show that the fields E and B
are derivable from potential functions and that these potentials satisfy a

wave equation. We shall also consider certain useful properties of these

potential functions.

Equation (2.13) implies the existence of a vector potential A such that

B = V x A (2.15)

Equation (2.12) then becomes

1 8A\Vx|E +-— 1 = (2.16)

Now, a vector whose curl is zero must be the gradient ofsome scalar potential

function, thus

1 dA
E + -—-=-V0 (2.17)

c dt

Note that if B = V x A, it is possible to choose a new vector potential

A' = A + ViA (2.18)

such that

B=VxA=VxA (2.19)
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There is no unique vector potential; it can be shifted arbitrarily by any

gradient of a scalar field. Since V x V\j/ = 0, the new vector potential A'

still gives the correct magnetic induction B. The transformation described

by Eq. (2.18) is called a gauge transformation.

Since the vector potential A is also included in the expression for E,

Eq. (2.17), it is necessary if A is changed to A' = A + Vt/f to also change </>

to 4>' = (j) — (1/c) (difj/dt). Then, neither B nor E is changed.

One way to restrict A is to specify the divergence of A. A common choice

is to let V • A = 0. This is called the Coulomb gauge for reasons soon to be

made clear. A is restricted in the Coulomb gauge, but is not uniquely defined.

It is still possible to make transformations. For example, taking the di-

vergence of Eq. (2.18) in the Coulomb gauge yields V • A' = V2
i/f an<3 it is

only necessary to require that VV be zero everywhere.

The most convenient choice for A depends on the type of problem to be

analyzed. For applications to optical properties of solids, the Coulomb
gauge is usually preferable.

Substituting Eq. (2.17) into (2.11), we obtain

1 P

V2 + (V • A) = - 47rp total (2.20)
c dt

In the Coulomb gauge, V • A = 0, and the scalar potential satisfies Poisson's

equation

V2
</> = 47rptotal (2.21)

Now, we see that the scalar potential is just the instantaneous (i.e., un-

retarded) potential familiar from electrostatics. That is why the gauge

with V • A = is called the Coulomb gauge. Of course, the electric field

is not determined just by the unretarded scalar potential; it is specified

by Eq. (2.17), and the effects of time retardation must be included in the

vector potential A.

Now, return to the vector potential A. Substituting Eq. (2.17) into (2.14)

gives

1 d ( 1 dA \ An tota .

, NVxB= V<H + J (2.22)
c dt \ c dt J c

Substituting for B from Eq. (2.15) and using the identity

V x (V x A) = V(V • A) - V2A (2.23)

we obtain

1 5
2A / 1 8<t>\ An

total ^^V2A - — -—
- -VVA + -— = J

total
(2.24)

c
2

dt
2

\ c dt J c
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Choose the Coulomb gauge once again and A satisfies the equation

1 d
2A 4n total

1 d4>

V2A - -^ —^ = J
total

+-V-i- (2.25)
c
2

dt
2

c c dt

We want to discuss Eq. (2.25) in greater depth, to gain some further insight

into the significance of the Coulomb gauge and the wave equation which A
must satisfy. First, though, it is necessary to digress briefly and discuss the

resolution of fields and currents into longitudinal and transverse parts.

Recall that for electromagnetic waves in homogeneous media, the fields

E and B are prependicular to the direction of propagation, that is, per-

pendicular to the direction of maximum spatial variation in E and B;

the fields E and B are transverse! Static fields are longitudinal; E and B
are then decoupled and each is parallel to the direction of its maximum
spatial variation. The decomposition of vector fields into longitudinal and
transverse parts is discussed further in Appendix A.

For illustration, we take the case of a single plane wave

E = E exp — i(o)t — q • r) (2.26)

Taking the curl and divergence of Eq. (2.26), we get

V x E = iq x E

V • E = iq • E (2.28)

If we now write the electric field in terms of its transverse and longitudinal

parts, Eqs. (2.27) and (2.28) become

V x (E T + EL
) = iq x (ET + EL

) (2.29)

V • (E
T + EL

) = iq • (E T + EL
) (2.30)

Now, the wave vector q is parallel to the direction of propagation, as is

EL
; but ET

is perpendicular to the direction of propagation. Thus,

(2.31)

(2.32)

These in turn require that

and hence

iq x E L ==

iq- ET ==

V x EL =:

V- ET ==

V x E = V x ET

(2.33)

(2.34)

(2.35)

V-E = V-EL
(2.36)
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Similar relationships hold for any vector field (see Appendix A). It is not

necessary, for example, to use a plane wave such as Eq. (2.26) which depends

upon a third vector q.

We now return to Eq. (2.25). The term (1/c) V(d<j>/dt) corresponds to a cur-

rent density. We expect that it is related only to the longitudinal part of the to-

tal current density. Why should that be so? It is because only the longitudinal

part of the electric field is derivable from a potential function
<f>.

This is

apparent from Eq. (2.33). Because the curl of EL
is zero, it must be derivable

from a potential function. We now show explicitly that (l/c)V(d<f>/dt) is

related only to the longitudinal current density.

The solution to Eq. (2.21) is obtained from electrostatics. Thus,

0(r, t) = -j -r- dr (2.37)

J
l

r - r
I

ftflr, t)

= f (d/dt)p^\r',t)^ {2M)
dt J |

r - r'
|

Using the continuity equation

V'-J
totai= -dp^/dt (2.39)

where V indicates the operation is with respect to r', Eq. (2.38) becomes

jj=- r^^V (2.40)

dt J |

r - r'
|

Next, decompose the current density into transverse and longitudinal

parts. Then, since the divergence of a transverse vector field is zero,

V -JJoui =0 (2.41)

and Eq. (2.40) can be expressed in terms of the longitudinal current density

alone. Then, operating on Eq. (2.40) with the gradient operator V 2 =

V2
(r), the result is

V^= -V2
f

V'' J"ta'

dr' (2.42)
dt J |

r — r'|

Finally, using the property of a delta function that

1
* -47t<5(r-r') (2.43)

r — r

Eq. (2.42) simplifies as follows

V2 ^- = An (V • J|otai(r', t) S(r - r') dr' (2.44)

dt J
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5*'i - « TLV -_] = 47rV-J
t

L
otal(r,0 (2.45)

v
^T" 47rJjotal (2,46)

We see that V(d<p/dt) determines only the longitudinal part of the current

density. If we decompose the current density into its transverse and longi-

tudinal parts, and use Eq. (2.46), we can rewrite Eq. (2.25) as a wave equation
for A expressed solely in terms of the transverse current density,

o. 1 d
2A 4tt t*2A- ? ^=--J^, (2.47)

The Coulomb gauge is sometimes referred to as the transverse gauge. The
reason is now clear. In the Coulomb gauge, or transverse gauge, the vector

potential A is also transverse, so we could label the vector potential as AT

in Eq. (2.47).

2.4 Analysis of Charge and Current Densities

It is sometimes convenient to split the macroscopic charge and current

densities into two parts: a bound and a free contribution. For example,
the current density in a solid may be considered to consist of two con-
tributions, one arising from the motion of electrons bound to nuclei, and
thus restricted to localized motion, and the other arising from electrons

free to move through the solid. Such a viewpoint is common and often

helpful, but splitting current densities in this way is not unique. Electrons

which are bound at one frequency of electromagnetic radiation might
better be described as free at a higher frequency. Nonetheless, for now, we
shall write

jtotal = jfree
+ jbound ^^

We could also describe the charge density as the sum of two contributions

:

a free and a bound part. This is sometimes done. We shall not do it, because
it is confusing. What is meant by free current density does not correspond
to the movement of free charge density. This is made clear by a simple

example : Current flow in an ideal metal is the result of electrons moving
freely through the metal, but there is no charge density, free or bound,
because the electronic charge is exactly balanced by the positive background
of atomic nuclei. Charge density p refers to a net charge density.

There are two ways of obtaining a net charge density in some region of

a solid. One is the displacement of charge within the medium, building



2.4 Analysis of Charge and Current Densities 23

up net charge density at one place and depleting it in another; the second

is the introduction of a net extra charge density from an external source.

Rather than splitting the charge density into bound and free parts, we will

describe the partioning as polarization and external charge densities. Thus,

ptotal _ ppol + pext (2.49)

What is the nature of the polarization charge density? In the presence of

an electric field, the atoms in the solid are polarized. The electronic charge

distribution of each atom is displaced with respect to the nucleus. This is

illustrated in Fig. 2.1, which is a greatly simplified drawing of a region in a

solid which contains many atoms but is less than a wavelength in dimensions.

If the polarization is uniform, there is no net charge moved into or out of

the region. For nonuniform polarization, though, there is a net change in

the charge within the region. This is illustrated in Fig. 2.1(b) and is some-

times described by

p
bound = _v-P (2.50)

where the polarization P is the dipole moment per unit volume. Since

pbound
js the net charge density arising from polarization, we shall refer

to it as the polarization charge density,

pPoi = -VP (2.51)

as a reminder of the origin of this part of the total macroscopic charge

density. In the presence of a time-dependent electric field, the resulting

time-dependent polarization gives a current density

J
po1 = dP/dt (2.52)

which contributes to the total macroscopic current density.

Fig. 2.1 Idealized model of a solid, (a) No electric field, (b) Polarization in presence of a

spatially varying electric field. The charge removed from the region considered does not equal

the charge that enters.

There may also be a contribution to the current density arising from

electron spin. Such a contribution can be included in terms of the mac-

roscopic magnetization M, defined as the magnetic dipole moment per
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unit volume and corresponding to a current density contribution

J
ma

« = cV x M (2.53)

Magnetic effects are usually small. They will be of no direct concern to us,

but we shall nonetheless formally include magnetization in a modified
version of Maxwell's equations. However, the very small magnetic effects

that arise from the motion of conduction electrons, such as Landau dia-

magnetism, will be completely ignored.

Including the effects of magnetization and polarization, we have

jbound = tfp/fy + cV x M (Z54)

The current density J
free

consists of two parts. One is that contribution
J
con

arising from the motion of conduction electrons in the presence of

an electric field; the other consists of a current density J
ext

introduced into

the system from an external source. Of course, we are not so much interested

in the usual electrical conductivity of solids; we include the absorption of

photons in J
con

and think in terms of an optical conductivity which in

the limit of zero frequency equals the dc electrical conductivity. The latter

is strictly true for cubic materials; for noncubic systems, some complica-
tions arise because the optical conductivity describes the response of the

system to a transverse electric field, whereas the dc electrical conductivity
refers to a longitudinal field. These points are discussed in Section 2.9.

We now use Eqs. (2.48)-(2.54) to rewrite Maxwell's equations (2.11) and
(2.14) as

V • E = - AnV • P + Anp ext
(2.55)

_ „ 1 dE An dP An . AnVxB =-- + — + 4ttV x M + J
cond + —- J

ext
(2.56)

c dt c dt c c

Defining two new vectors, the displacement

D = E + AnP (2.57)

and the magnetic field strength

H = B - AnM (2.58)

we finally write Maxwell's equations in their common macroscopic form:

V • D = Anpen (2.59)

V x E = — (2.60)
c dt

V-B = (2.61)
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1 dD An cnn A An ext
V x H + J

cond + J
ext

(2.62)
c dt c c

It should be noted that these equations are exact.

2.5 Properties of the Medium

So far, we have little more than hinted at the properties of the medium.

It is clear that the polarization and free current density are related to the

electronic field strength and that the magnetization is related to the magnetic

induction and hence to the magnetic field strength.

Consider the polarization. The relationship of the ith spatial component

of the polarization can, for example, be expressed in terms of the electronic

field components by a power series of the form

Pi = Y,XijEj
+ Tj yijkEj

Ek + --- (2.63)

With the advent of lasers, it is now quite common to observe nonlinear

optical effects. However, the concern here is only with linear optics, and

only linear terms will be retained in expressions such as Eq. (2.63).

We now simplify the mathematics by considering only isotropic media.

Then, within the linear approximation, we make the usual assumptions

P = X E (2.64)

M = vH (2.65)

rcond aE (2.66)

where xe
is the electric susceptibility, xm is tne magnetic susceptibility,

and a is the conductivity.

Two alternative parameters which are used to characterize the medium

are defined by

D = eE (2.67)

B = /iH (2.68)

The parameter e is usually called the dielectric constant or dielectric func-

tion. The parameter \i is the magnetic permeability; it equals unity for

nonmagnetic materials.

The dielectric function introduced in Eq. (2.67) is real. It is a function of

the space and time variables because we have been working with the space-

time representation of Maxwell's equations. More precisely, it is a

response function, or linear integral operator, that connects the field
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D(r, t) with the field E(r', t') existing at all other positions and all earlier

times. Thus, in general,

C ft

dt' e(r, r', t, t') E(r', t') (2.69)D(r, = dr'

The dielectric function as a response function is treated in more detail in

Chapter 6. There, and throughout most of this book, we shall be concerned
mostly with e(q, co), which is the Fourier transform of the general response

function e(r, r', t, t').

The preceding assumptions represent an attempt to describe the properties

of matter and it should be clearly understood that we have made approxima-
tions. It should also be noted that xe , Xm > <*•> and £ are macroscopic quantities

because they are defined in terms of macroscopic quantities. Indeed, Eqs.

(2.64)-(2.68) are of little use as they stand; at this point, they represent little

more than a conviction that such relationships are reasonable. Since our
main interest is to understand microscopic properties, we must relate these

parameters to microscopic quantities that can be expressed explicitly in a

way that gives some insight into the fundamental physics involved. This is a

point to which we shall frequently return.

The properties of the medium can now be included in Maxwell's equations.

We then get the following set of equations, which is no longer exact

:

V • (eE) = 47rpext
(2.70)

u dHVxE=-^- (2.71)
c dt

V • (nH) = (2.72)

VxH = iA(dS) + ±^E + ^J«< (2.73)
c at c c

Note that the charge and current densities are not known a priori; they

must be codetermined with the solutions of Maxwell's equations.

2.6 Interaction of Light with the Medium

When we consider the interaction of light with a medium, the equations

(2.70)-(2.73) can be simplified. Since there are no external sources, p
ext = 0,

and, for isotropic media, there is no spatial variation in e. Thus,

V • E = (2.74)
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V«E=-?* (2.75)

c dt

V-H = (2.76)

e dE Ana ^
V x H = - —

- + E (2.77)
c dt c

Using the vector identity

V x (V x E) = V(V • E) - V2E (2.78)

and Eqs. (2.75) and (2.77), we get the equation

su d2E Anau dE
V(V. E) -V>E=--^--^- (2.79)

Using Eq. (2.74), we then obtain the wave equation for a plane wave propa-

gating in an energy-absorbing medium:

v2E =
s,^E

+
4n^SE

dt
2

c
2

dt

The solutions are necessarily restricted to transverse plane waves because

V • E = in the absence of a net charge density. The conductivity which

appears in Eq. (2.80) should be called the optical conductivity. This is

because the energy absorption with which we are concerned is that arising

from electronic transitions accompanying photon absorption. These tran-

sitions correspond to a transverse current density JT that does not include

the conventional current such as is obtained with a battery connected

across the sample. The latter is a longitudinal current; it originates from a

longitudinal electric field which is derivable from a scalar potential function.

Nonetheless, we shall see later that at sufficiently long wavelengths, in the

infrared, the transverse optical conductivity approaches the ordinary dc

electrical conductivity for isotropic materials. For anisotropic materials,

the optical conductivity and dielectric functions must be treated as tensors.

This is done in Section 2.9.

Since experiments on optical properties of solids are usually conducted

with monochromatic light, we shall consider first the propagation of a

single plane wave within an isotropic medium. Anticipating that the wave

vector must be complex to describe energy dissipation of the wave, we write

E = E exp i'(q • r - cot) (2.81)

where E is perpendicular to the wave vector q. Note that we may assume

a sinusoidal (plane wave) variation of E only in a region large compared

with the lattice constant. This is possible and quite satisfactory for a theory
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of the optical properties of solids, but it is not suitable for the x-ray region.

Substituting Eq. (2.81) into (2.80), we find

, co
2

( 4tict\

q
2 = n— le + i 1 (2.82)

We now define a complex refractive index h such that

q = (co/c) h = (co/c) (n + ik) (2.83)

where n is the refractive index and k is the extinction coefficient. Now we
can rewrite Eq. (2.81) as

E = E exp —
|
— k • r exp i

j
— n • r - cot) (2.84)

The first exponential factor in Eq. (2.84) describes the attenuation of wave
amplitude with distance. The absorption coefficient, which describes the

fractional decrease in intensity with distance, is defined as

1 dl
"=-j* (185)

where / is the intensity. Since the intensity is proportional to the square

of the wave amplitude, we find from Eqs. (2.84) and (2.85) that

a = 2cok/c = 4nk/l (2.86)

where X is the wavelength of the light in vacuum.
The second exponential factor is Eq. (2.84) describes a wave traveling

with phase velocity c/n, hence the earlier identification of n as the refractive

index.

Equations (2.82) and (2.83) can be used to obtain expressions for e and a
in terms of n and k. Thus,

e = (n
2 - k

2
)/fi (2.87)

Ana/to = 2nk/n (2.88)

We now define a complex dielectric function e as

e = fij + ie2 = n2
/n (2.89)

where e x is the old e of Eq. (2.87), the e that appears in the usual versions of

Maxwell's equations when the properties of the medium are included. Thus,

&l = (n
2 - k

2
)lii (2.90)

s 2 = 2nk/n = Ano/co (2.91)
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Equations (2.90) and (2.91) show that e 1 and e2 are not independent quan-

tities. We shall see later that e
x
and e2 , as well as n and k, are related in a

quite fundamental way by means of the Kramers-Kronig dispersion

relations.

2.7 External Sources and Induced Responses

We have written Maxwell's equations in a form and notation cor-

responding to common usage in many applications of electromagnetic

theory. However, Maxwell's equations can be written using a notation that

more clearly emphasizes the physics involved in studying the optical

properties of solids. For example, a light wave incident on a sample can be

described by its electric field. This electric field is an external field that

acts as a probe. It induces an electric field in the sample. The total electric

field, which is the sum of the external field and the induced field, is the

electric field E that appears in the usual version of Maxwell's equations;

however, the field that is controlled by the experimenter is the external

field. Furthermore, it is the vector potential related to the external electric

field that enters in the Hamiltonian describing the interaction of light

with the medium; that is, it is the external field that acts as a perturbation

on the system. With the use of perturbation theory, we can then calculate

the induced current and charge densities and the induced fields.

We now want to see how external and total fields as well as external and

total charge densities and currents are related. We will then rewrite Max-

well's equations so as to emphasize this viewpoint.

The presence of an external field induces a field in the medium, that is,

it polarizes the medium. Thus

Etotal = £ext + gpol
(192)

where Etotal
is the electric field E that appears in the usual version of Max-

well's equations and Eext
is the displacement that appears in Eq. (2.59).

That is,

E = Etotal
, D = Eext

(2.93)

The presence of an induced field in the medium results in an induced

charge density if the divergence of the induced field is nonzero. This induced

charge density is the same as the polarization or bound charge density

that we talked of earlier in discussing the polarization of matter.

If there is an induced charge density in the medium, it means that charge

has been depleted from some regions and added to others; there is no net

extra charge induced. Any net extra charge density must be supplied

externally, by an electron beam incident on the sample, for example. Such

a beam also supplies an external current.
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The various relationships among fields, among currents, and among
charge densities are illustrated in Table 2.1. We can use these relationships

to rewrite Maxwell's equations (2.70)-(2.73) as

V • Eext = 4npext
(2.94)

V x E .„,,=--
1 dB

dt

VB =

V x B
,U£ 3E

c

total

dt
+

4n(Tfi
Etotal +

4nfi
J

ext

(2.95)

(2.96)

(2.97)

Similar equations can be written to express relationships connecting external,

total, and induced magnetic field. This has not been done here because we
are considering only nonmagnetic materials. We have carried the magnetic

permeability n along so that the extension to magnetic effects can be made
more easily, and for conceptual clarity. The latter is made more explicit

in Section 2.8, where the relationships between n and the longitudinal and
transverse dielectric functions are discussed.

TABLE 2.1 Relationships among Fields, among Currents, and among Charge Densities

E = W
D -* Eext

+

-4tcP-Eind

J = J
t0tal =

J'
ree = {

= J'

jPol

+
jmag

»cond

+
jext ^ jext

pPol - pil

p = ptotal = t +
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2.8 Fourier Analysis of Maxwell's Equations

We have been working mostly in terms of space and time variables, r

and t. However, in Section 2.6, we described the electric field in terms of a

single Fourier component, i.e., a single monochromatic wave. The result was

that the dielectric function, as it appears in Eq. (2.82), for example, is de-

pendent on a single co and q; the dielectric function e(q, co) in Eq. (2.82) is

just the Fourier transform of the dielectric response function introduced

in Eq. (2.69). Usually, we shall be concerned only with the spectral de-

composition of e that results from temporal dispersion; occasionally, we
shall be concerned with the dependence of e on q that results from spatial

dispersion. In general, it is simplest to arrive at these results by first making

a Fourier analysis of Maxwell's equations.

We assume that all fields and sources can be decomposed into a complete

(continuous) set of plane waves varying as exp(iq • r — icot) for all q and co.

Thus, for example,

E(r, t) = \dq\ dco E(q, co) exp(iq • r - icot) (2.98)

where jdq symbolizes \dqx \dq
y
\dqz . The Fourier transform of E(r, t) is

E(q, co) = T \dr\ dt E(r, t) exp( - iq • r + icot) (2.99)

{2nf J — oo

where \dr symbolizes \dx \dy \dz. Equations (2.98) and (2.99) can be shown

to be compatible with the use of the relations

dx exp[- i(q - q') • r] = (2tc)
3

<5(q - q') (2.100)

dt exp[i(co - co')t\ = In 3{co - co') (2.101)

where 3 is the Dirac delta function.

Taking the Fourier transform of Maxwell's equations, including the

properties of the medium as given by Eqs. (2.94) and (2.97), we obtain

iq • Eext
(q, co) = 4np^ (q, co) (2. 102)

q x Etotal

(q, co) = (co/c) B(q, co) (2.103)

q-B(q,<w) = (2.104)

d, ^ •
Ml1*

it total, ^ ,

47r^ F total, ,
,

4n^ rext, .

iq x B(q, co) = - i E (q, co) H E (q, co) H J (q, co)

C C C
(2.105)
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Note that now e = £(q, co), a = <r(q, co), and \i = n(q, co). We have used the

shorter notation for simplicity.

The solutions for B and E, corresponding to Eqs. (2.15) and (2.17), are

B(q,co) = iq x A(q, co) (2.106)

E(q, co) = i(co/c) A(q, co) - iqcb(q, co) (2.107)

where E(q,co) = Etotal
(q,co) and A(q, co) = Atotal

(q, co), and the potential is

given by the Fourier transform of Eq. (2.21) as

q
2
$(q, co) = 47tptotal

(q, co) (2.108)

Note that whenever fields or sources are not identified as external,

induced, or total, they are meant to be total fields or sources.

Equation (2.105) can be separated into two equations corresponding
to the transverse and longitudinal parts of the fields and current densities.

It follows from Eq. (2.104) that BL
(q,co) = 0. In the Coulomb gauge,

AL
(q, co) = 0. We thus need only the potential function cb(q, co) to determine

the longitudinal fields and current densities. Equation (2.107) thus yields

EL
(q, co)= - iq</>(q, co) (2.109)

and the longitudinal part of Eq. (2.105) yields

/ 4lta\ .

- - ico I £ + i I EL
(q, co) + 47rJe

L
xt (q, co) (2.1 10)

Realize, though, that Eq. (2.110) represents a special case! We are still

considering isotropic media so that E and J are parallel. In general, there is

a coupling between longitudinal and transverse fields and currents. These
aspects are considered later in this chapter.

Introducing the complex dielectric function from Eqs. (2.89)-(2.91),

and expressing the external current density as the difference between the

total and induced current densities, yields

47iJL(q, co) = 47tJ t

L
otai(q, co) - icosE]:otal(q, co) (2.1 1 1)

Using Eq. (2.109) and the Fourier transform of Eq. (2.46),

coq0(q, co) - 4ttJ
t

L
otal (q, co) (2.112)

Eq. (2.111) becomes

Jind(q, co) = (ico/An) (1 - e) E ôtal(q, co) (2. 1 1 3)

An equation similar to Eq. (2.113) can be obtained for the transverse parts
of the field and current densities. Because BT

(q, co) =/= 0, it is best to first
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solve Eq. (2.106) in terms of the vector potential A(q, co). This gives

- q x [q x A(q, to)]

COfl

s + i

Ana

co

co
i— A(q, co)

c
+ **f (q,co) (2.114)

which, on introducing the complex dielectric function, and taking only

the transverse current density, simplifies to

,2 ^2
CO \n
rz) A(q, co) = Jjxt (q, co) (2.115)

Once again substituting the difference between the total and induced

current densities for the external current density gives

co 4ft

8 I A(q, 60) = [Jfotalfa. w) JL(q> «)] (2.116)

The ,total current density Jjota\(q, co) is found from the Fourier transform

of Eq. (2.47) to be

An
Jtotai(q, co) = (q

CO
A(q, co)

This, together with

ET
(q, co) = i(co/c) A(q, co)

(2.117)

(2.118)

from Eq. (2.107), can be used to rewrite Eq. (2.116) as

i-l,-
P.

co

(1-8)
47TCO T

ET
(q,co) = i^- JL(q,o) (2.119)

This is hardly an improvement in terms of simplicity. The only apparent

similarity between Eqs. (2.113) and (2.119) is that each provides a relation-

ship between a total electric field and an induced current density.

Before proceeding with a simplification of Eq. (2.119), it is worth noting

that the real dielectric function e that appears in Maxwell's equations is a

longitudinal dielectric function. It is only the longitudinal electric field

that is determined by external charge densities and for which the relation-

ship between external and total electric fields is given by

Eext(q, co) = eE ôta,(q, co) (2.120)

This is the reason for the relative simplicity of Eq. (2.113). It is clear from

Eq. (2.120) that the dielectric function appearing in Maxwell's equations is

a longitudinal dielectric function. Thus & and the corresponding complex

dielectric function e will now be designated as s
L and £

L
. Then, if a new
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dielectric function e
T

is defined by

q
2 (l-~

)
= -^V(£

T -8L
) (2.121)

Equation (2.119) can be written as

J.Tnd(q, a) = (ioi/4n) (1 - s
T
) ET

(q, co) (2.122)

Problem 2.8 shows how one is led to the definition given by Eq. (2.121).

It is clear from Eq. (2.121) that unless l//i(q, co) has poles of strength co
2
/c

2
q
2

or higher, then in the long-wavelength limit (q -> 0), the transverse and
longitudinal dielectric functions are equal. Physically, this just means that

in the long-wavelength limit (for isotropic materials), the medium cannot

distinguish between electric fields parallel or perpendicular to q.

The properties of the medium have now been accounted for by the

two functions e
L
(q,co) and e

T
(q, co) rather than the functions e(q, co)

= e
L
(q, co) and /z(q, co). Equations (2.113) and (2.122) are now of the same

form and the Fourier components of the induced current densities and
total electric fields can be written

Jki'dCq, co) = (ico/4n) [1 - 8
T ' L

(q, co)] ET
' L

(q, co) (2.123)

for isotropic media.

The description of a medium in terms of transverse and longitudinal

dielectric functions is equivalent to a description in terms of the usual

(longitudinal) dielectric function and the magnetic permeability. Such
a description is possible because the magnetization enters Maxwell's

equations only through the term V x M. Since it is only another current

term, it can be included with the polarization and conduction currents by
means of a dielectric function. This is the basis of Problem 2.8.

2.9 The Dielectric Tensor

In the preceding section, we derived two equations (2.123), relating

an induced current to a total electric field. One relates the longitudinal

induced current to the longitudinal electric field; the other relates the

transverse induced current to the transverse electric field. For nonmagnetic
isotropic or cubic materials, these are the only possibilities; it is not possible

to induce transverse currents with longitudinal fields or longitudinal

currents with transverse fields.

In an anisotropic medium, the polarization and induced currents generally

lie in a direction different from that of the electric field. It is then possible,

e.g., to induce a longitudinal current with a purely transverse electric

field. This situation can be handled by representing the dielectric function

as a tensor.
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The real part of the complex dielectric tensor is symmetric even for

an anisotropic medium. Thus, it is always possible to find a set of axes,

the principal dielectric axes, such that the real dielectric tensor can be

put into diagonal form. The conductivity tensor, which is proportional to

the imaginary dielectric tensor, is also symmetric and can be diagonalized.

However, the directions of the principal axes of the real dielectric and

conductivity tensors are not generally the same; but the two sets of principal

axes do coincide for crystals with symmetry at least as high as orthorhombic.

Only systems with at least orthorhombic symmetry will be considered here.

Thus, we can combine the real dielectric and conductivity tensors in a

complex dielectric tensor such that

e(q, co) =
exx(q, co)

ew(q» <o)

«2z(q> 03)

(2.124)

The choice of principal axes is clearly related to the crystal symmetry and

a convenient set of axes can be easily chosen in specific cases.

How is the dielectric tensor (2.124) related to the earlier dielectric func-

tions we have used? Starting with Eq. (2.105) and following the general

procedures of the preceding section, it is possible to derive an equation of

the same form as Eqs. (2.123), namely

J
ind

(q, a) = (ico/4n) [1 - e(q, co] E(q, ft)) (2.125)

It is important to note though, that Eq. (2.125) is not obtained simply by

adding Eqs. (2.123). To see the relationship of e(q, ft)) to the earlier dielectric

functions, by all means at least read Problem 2.7. Later, we shall derive

quantum mechanical expressions for the dielectric tensor. Here, we want

to see how to find s
L
(q, co) or s

r
(q, co), given s(q, ft)).

Suppose we are concerned with the longitudinal response of the system to

a longitudinal perturbation. We want to know «
L
(q, co).

A longitudinal perturbation causes a longitudinal induced current. We
can pick out the longitudinal component of the induced current density

by just taking the scalar product of J
md

(q, co) with the unit vector q/q in

the direction of propagation q. Thus

^nd(q,co) = J
ind

(q,ft))-q/^ (2.126)

where Jpnd(q, co) is a scalar quantity. We can now make a vector out of

•Jmd(q> co) by just multiplying it by the unit vector. Thus,

JU* *>) = Jind
(<l> w)

' «N/«
2

(2-127)

The product of two vectors just sitting side by side, with no scalar product

or vector product indicated, is known as a dyad. It is a useful concept
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for working in a linear vector space. Later, when working with state vectors

labeling a quantum mechanical system, we shall write dyads in Dirac

notation as e.g.,
|
k > < k|. Thus, we see that a dyad is simply a projection

operator.

In three dimensions, the product of two vectors can be written as

AB = (iAx + \A
y
+ kAz) (iBx + \B

y
+ kBz )

iiAxBx + \\AxBy
+ ikAxBz

j\A
y
Bx + jjA

y
B

y
+ \kA

y
Bz (2.128)

kiAzBx + k\AzBy
+ kkAzBz

This product of vectors gives a sum of nine dyads. The combination is

known as a dyadic. It is clear from Eq. (2.128) that a dyadic is just a tensor

written in a form that emphasizes the vector nature of the tensor rather than
its transformation properties.

The dyad which projects out the longitudinal component of the induced

current or electric field is now defined to be

1
L = qqA?

2
(2.129)

We can also define a dyad which projects out the transverse components as

1
T = 1 - 1

L
(2.130)

where 1 is the unit dyadic.

We can now find Jpnd (q, co) by operating on Eq. (2.125) with the dyad 1
L

.

If the electric field is expressed as the sum of its longitudinal and transverse

parts, the result is

JUq, co) = (ico/4n) [1
L

• 1 - 1
L

• £(q, co)] • E(q, co)

= (ico/4n) [1
L - 1

L
• S(q, co] • [1

L
• E(q, co) + 1

T
• E(q, co)]

- (ico/4n) [1
L - 1

L
• g(q, co) 1

L
] • E(q, co)

- {ico/4n) 1
L

• e(q, co) • 1
T

• E(q, co) (2.131)

It is clear from Eq. (2.131) that the dielectric tensor describing the longi-

tudinal current induced by a longitudinal field is

£
L
(q, co) = 1

L
• g(q, co) • 1

L
(2.1 32)

and that 1
L

• e(q, co) • 1
T

describes the longitudinal current induced by a

transverse field.

It is helpful to consider several simple specific cases. First, consider a

cubic crystal with light impinging at normal incidence and directed along
the x axis of the crystal. Light waves are transverse, so we want to find the
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transverse dielectric tensor. The transverse dyad is

r = i - i
L

/ii \ /ii I

= jj 0-0 0) (2-133)

\0 kk/ \0

where i, j, and k are unit vectors along the x, y, and z axes. In matrix notation,

(2.134)l
1 = 1

1

Thus, the transverse dielectric tensor is found to be

f(qx, co) --

eJy{q„co)

s
T
zz(qx , co)

(2.135)

Now, suppose an electron beam is incident upon the crystal and directed

along the x axis. The probe is now a longitudinal one, and the appropriate

longitudinal dielectric tensor is

s
L
(qx, co) = 1

L
• £{qx, co) • 1

L

For a cubic crystal,

£*(«*> co)

e]
y{qx , co) = &Zz(qx , co)

(2.136)

(2.137)

The equality holds because of the cubic symmetry of a cubic crystal.

The dielectric function for a longitudinal wave traveling in the x direc-

tion is £^(gx, co). In general,

£zz(qx,
o))

(2.138)

However, in accordance with the discussion following Eq. (2.122), we

assert that in the limit of long wavelengths, for cubic materials,

cubic

:

£~(0'
w)=W) (2.139)

For light waves and (usually) for plasmons, q x 0. Thus, the same informa-

tion concerning the dielectric properties of cubic solids can be obtained
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from characteristic electron energy loss experiments as from the more
usual optical measurements. At frequencies up to the ultraviolet regions

of the spectrum, conventional optical measurements are usually simplest;

but at higher energies, say 15 eV or more, characteristic energy loss ex-

periments may be much simpler to reliably carry out. For example, the

plasma resonance at about 15 eV in aluminum has been studied only by
characteristic electron energy loss experiments.

Now consider a uniaxial crystal with optical axis along the x axis. For
a transverse wave propagating in the x direction, the appropriate dielectric

function is
&Jy(qx , co) = tjz(qx , co), just as for a cubic material. The dielectric

function for a longitudinal wave propagating in the x direction is sxx(qx , co).

Now, however, in the limit of kmg wavelengths, the transverse and longi-

tudinal dielectric functions are not equal, i.e., for noncubic materials,

noncubk: i^Q, co) * j*°'^ (2.140)
(.£^(0, CO)

The reason for the nonequality expressed in Eq. (2.140) is simply that the

properties of the medium are in general significantly different along the

optical axis compared with a direction perpendicular to the optical axis.

Thus, the response of the medium to an electric field along the optical

axis is not the same as the response to an electric field perpendicular to

the optical axis, even at long wavelengths. Does this mean that it is not
possible to use characteristic energy loss experiments to determine the

optical properties of anisotropic materials? No! It simply requires, in

principle, a different sample orientation to get the same information as

would be obtained in an optical experiment. All that need be done is to,

say, have the electron beam incident on the sample in a direction parallel

to the y axis. Then the electric field is normal to the x axis, just as for a light

wave traveling parallel to the x axis. The characteristic energy loss ex-

periment for an electron beam parallel to the y axis determines the dielectric

function Sy
y(qy, co). The optical reflectance for light parallel to the x axis

determines e]
y{qx, co) = s]z(qx , co). For long wavelengths,

4(0, co, = {*>•»>
(2.141,

(.fi«(0, co)

The point is that, to compare longitudinal and transverse dielectric func-

tions in the long-wavelength limit, it is necessary that the polarization

of the medium be in the same direction, or an equivalent one, for both
modes of excitation. This condition is always satisfied in cubic materials;

it can sometimes be satisfied in other materials.
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PROBLEMS

2.1 Estimate the maximum velocity of electrons in a free-electron metal

having a density typical of real metals. What is a typical maximum velocity

for an excited electron when light of wavelength 600 A is used in optical

experiments? How important are relativistic corrections to Maxwell's

equations?

2.2 Show that the polarization current does not lead to energy absorption.

2.3 Derive a wave equation for the vector potential A in terms of the

properties of the complex dielectric function.

2.4 Derive expressions for n and k as functions of e 1 and e2 .

2.5 Define a complex conductivity a = a x + ia2 , where a x
is the usual

real conductivity a that appears in Maxwell's equations. Maxwell's equa-

tions, including the properties of the medium, can now be written in terms

of a complex conductivity rather than a complex dielectric function. What

is the relationship of a to £? What is the relationship of J
,nd

(q, co) to E(q, co)

in terms of <r(q, co)?

Define a transverse "optical" conductivity a 1
. What is the relationship

of <r
T

to a!

2.6 What is the ratio ofH to E? Show that whereas the electric and magnetic

field energies are equal in vacuum, where & t
= M = h the magnetic field

carries most of the energy in a metal.

2.7 With the use of Eqs. (2.112) and (2.117), show that Eq. (2.105) can be

written as

<7

2A= jU£
LE + /i \q

2
z- A + /i—# J

c \ <r / c c

With the use of the defining equation (2.121), show that this can be trans-

formed to

j
ind = ^(l-^)E + -^-(fi

L -«T)ET

By analogy with this last result, a more general dielectric tensor [the one

appearing in Eq. (2.125)] can be defined as

£(q, <») = i
L
(q, co) + [fi

T
(q, co) - l

L
(q, co)] • 1

T

so that

j
ind

(q, a,) = (ico/4n) [1 - e(q, co)] • E(q, co)
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Show that

£
L
(q,eo) = l

L
-e(q,co)-l

L

s
T
(q,co) = l

T
-£(q,co)-l

T

Show that the dielectric tensor describing the longitudinal current induced
by a transverse field is

1
LMT = 1

L
£
T

1
T

and that the dielectric tensor describing the transverse current induced

by a longitudinal field is

i
T -«-iL = r-«L -iL

2.8 From the definitions B = /M and H = B - 4nM, show that

q x 4nM = q x 1 - B

Use this result to show that Eq. (2.105) can be written as

iq x B = CO
' 2 2

CO
1 - — I + e

L E + i

CV
2

(< 1 1~L , Text

CO

1 )EL + J
e

With the aid of the scalar and vector potentials, show that this can be

transformed to

rind ICO ICO

J
,nu =— (1 -eL)EL +

4n 4tc
1 -e

2 1

aL
c 4

CO

1

V-JA

This result suggests the definition of a transverse dielectric function as

given in Eq. (2.121).

2.9 Consider a uniaxial crystal with the optical axis taken as the z direc-

tion. Determine 1
L

• e(q, co) • 1
T

for a light wave propagating in a direction

45° from the optical axis. Is the coupling between longitudinal modes and
transverse driving forces (and vice versa) likely to be strong? When is the

coupling zero? Does it depend on the direction of propagation?
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Chapter 3

ABSORPTION AND DISPERSION

This chapter consists mostly of a rather elementary treatment of absorp-

tion and dispersion. It includes some simple examples of applications to

optical properties and photoemission.

The classical theory of absorption and dispersion is due mainly to

Lorentz and Drude. The Lorentz model is applicable to insulators; its

quantum mechanical analog includes all direct interband transitions; i.e.,

all transitions for which the final state of an electron lies in a different band
but with no change in k-vector in the reduced zone scheme. The Drude
model is applicable to free-electron metals; its quantum mechanical analog

includes intraband transitions, where intraband transitions are taken to

mean all transitions not involving a reciprocal lattice vector.

Both the Lorentz and Drude models are largely ad hoc, but still useful

as starting points and for developing a feeling for optical properties. We
shall see that many features of these classical models have quantum me-
chanical counterparts which are easily understood as generalizations of

their classical analogs.

3.1 The Lorentz Oscillator

Consider an atom with electrons bound to the nucleus in much the same
way as a small mass can be bound to a large mass by a spring. This is the

Lorentz model. The motion of an electron bound to the nucleus is then

42
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described by

d
2
x dx ~

m —T + mT— + mco^r = - eE loc (3.1)
dv dt

where m is the electronic mass and e is the magnitude of electronic charge.

The field E loc is the local electric field acting on the electron as a driving

force. It is a microscopic field but is written as Eloc to eliminate confusion

with the electronic charge -e and to conform with common usage. The term

mT (dr/dt) represents viscous damping and provides for an energy loss

mechanism. The actual loss mechanism is radiation damping for a free

atom, but it arises from various scattering mechanisms in a solid. The

damping term in Eq. (3.1) is written in the form in which it often appears in

describing the electrical conductivity metals. The term mco 2
x is a Hooke's

law restoring force.

In the context of a classical model, there are two approximations in

Eq. (3.1). The nucleus has been assumed to have infinite mass, otherwise

the reduced mass should have been used. We could have simply included

the reduced mass, but our goal is to understand solids and there we can

quite accurately take the mass of the lattice as infinite. We have also neglected

the small force — e\ x b/c arising from the interaction of the electron

with the magnetic field of the light wave. It is negligible because the velocity

of the electron is small compared with c.

The local field can be taken to vary in time as e~
i<ot

; thus the solution

to Eq. (3.1) is

" eE'°Jm
(3.2)

(co
2 — co

2
) — iTco

and the induced dipole moment is

Jloc

m (co
2 - co

2
) — iTco

(3.3)

Note that it is important to be consistent in the form of the time variation

used to describe time-dependent fields. The use of a time variation e
iat

leads

to a complex refractive index n = n — ik rather than the convention

h = n + ik chosen earlier.

We now assume that the displacement r is sufficiently small that a linear

relationship exist between p and Eioc , namely

p = dc(co)Eloc (3.4)

where a(co) is the frequency-dependent atomic polarizability. From Eqs.
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(3.3) and (3.4), the polarizability for a one-electron atom is seen to be

e
2

1

a(co) = — -—j
2^

^~ (3 - 5 )m (co — co ) — u co

The polarizability is complex because of the inclusion of a damping term.

As a result, the polarization differs in phase from the local field at all fre-

quencies.

If there are N atoms per unit volume, the macroscopic polarization is

P = JV<p> = Ncc<Eloc> = XeE (3.6)

To relate the microscopic atomic polarizability to the macroscopic electric

susceptibility, it is necessary to know the relationship between the micro-

scopic field Eloc and the macroscopic field E. Except for some limiting

ideal cases, this is a problem of considerable complexity. It is discussed

briefly in Appendix B. In general, <E,oc> =£ E since <Eloc> is usually an

average over atomic sites, not over regions between sites. For free-electron

metals, though, we can argue that since the conduction electrons are not

bound, the field felt by the conduction electrons is on the average just the

macroscopic field E. Then, of course, we should let oo = in Eq. (3.1)

because the conduction electrons are not bound. The result is just the Drude
model for metals. However, what we shall do is something in between. We
will keep the restoring force term, but still assume for simplicity that <Eloc>
= E. Such a model contains all the essential features to describe the optical

properties; but it must be remembered that in the detailed analysis of

specific real solids, it is necessary to consider carefully what is the correct

field to use. Proceeding with our assumptions, then, we have

p = JVaE = *eE (3.7)

We are now ready to get an expression for the dielectric function in terms

of the atomic polarizability. But we now have an energy loss mechanism
explicitly included with the result that the atomic polarizability is now
complex. This means also that the fields E, P, and D are not in phase.

The most convenient way to handle the situation is to generalize some
earlier results. In analogy with Eq. (2.67), we define a complex displace-

ment D such that

D = eE = E + 4tcP = Eext
(3.8)

This is equivalent to defining D as

D = D + i(4n/co) J (3.9)

The physical quantities E, D, J, etc. are generally written in complex nota-
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tion as, e.g.,

D = D exp i(q • r - cot) (3.10)

because this notation explicitly shows the phase, in addition to greatly

simplifying the mathematical manipulations. Values for these physical

quantities are obtained by taking the real part of the complex expressions

used for these quantities. Although D can also be written in complex

notation, the values for the physical quantities that D represents are not

obtained by taking the real part of D. The quantity D is truly a complex

quantity and represents the two real quantities D and J. The true values for

D must be obtained from the right-hand side of Eq. (3.9) by taking the real

parts of D and J, i.e.,

D(true) - Re(D) + i(4n/co) Re(J) (3.11)

Having recognized that there is a truly complex D, we shall from here on

generally follow convention and write simply D. We shall explicitly designate

complex quantities only for properties of the medium, e.g., the complex

dielectric function e and the complex polarizability a.

Now, from Eqs. (3.7) and (3.8), we get

e = 1 + 4nNd (3.12)

Using Eq. (3.5), this becomes

4nNe2
1 ,.

1
_

&=1+ t—j 2T
=- (3-13)

m (cd - °> )
_

'rco

From Eq. (3.13) and the definitions is Eqs. (2.89)-(2.91), we get, for non-

magnetic materials,

4nNe2
(co

2 - (Q
2
) ,, 1A ,

fi = n
2 - k

2 = 1 + -

—

? 2 ,2 , r2 2
(3-14)

1 m (a> - w ) + r w

4nNe2 Tco

~m (co
2 - (jo

2
)

2 + T2af
&2 = Ink =

;
—^ ^ ^—t (3.15)

If we consider classical atoms with more than one electron per atom, we

can extend the previous results. Let N
}
be the density of electrons bound

with resonance frequency (Dy Then,

t = 1 +— I r-~2 ^ =r~ (3-16)

m j ((of — co
z
)
— iTfa

YJ
N

j
= N (3.17)
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We shall shortly derive a corresponding quantum mechanical equation

which can be written

1 +
Ane2 Wj
m j

((Oj — co' )
— iTjco

(3.18)

There is a formal similarity between Eqs. (3.16) and (3.18), but the meanings
of some corresponding terms are quite different. In Eq. (3.16), co

i
is the

resonance frequency of a bound electron, whereas in Eq. (3.18), it is the

transition frequency of an electron between two atomic states separated in

energy by hcOj. The parameter /}, called the oscillator strength, is a measure
of the relative probability of a quantum mechanical transition. We shall

show that for free atoms, it satisfies a sum rule

X// = i (3.19)

which is the quantum mechanical analogy to Eq. (3.17).

Now, return to Eqs. (3.14) and (3.15) and consider the frequency de-
pendence of g x

and e2 for a solid made of a collection of single-electron

classical atoms. The frequency dependence is illustrated graphically in

Fig. 3.1.

Fig. 3.1 Frequency dependence of ^ and e 2
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Figure 3.1 shows that except for a narrow region near co , e x
increases

with increasing frequency. This is called normal dispersion. However,

there is a region near co where £ x
decreases with increasing frequency.

This is called anomalous dispersion. We can find the width of the region of

anomalous dispersion as follows. Equating the derivative of Eq. (3.14) to

zero, we find

(co
2 - com

2
)

2 = ±co 2r2
(3.20)

where com is the frequency at which e t is a maximum or a minimum. If

the region of anomalous dispersion is reasonably narrow, wm « co ,

(Q) -<oJ=± T/2 (3.21)

and the full width of the region of anomalous dispersion is T. In the absence

of an energy loss mechanism, there is a singularity at coQ .

If
r « (3.22)

e2 versus co is a bell-shaped curve which is symmetric about co . Small

values of T compared with co cause little distortion. From Eq. (3.15), we

find that the maximum value of e2 is

e2(max) —
4nNe2/m

Fco
(3.23)

assuming the maximum occurs exactly at co . Also, the full width of the

e2 curve at half maximum is T.

Figure 3.1 shows the contribution of the electronic polarizability to the

dielectric constant. There are also other contributions. For example,

in ionic crystals, in the infrared region, there is an absorption spectrum

and polarization associated with the direct stimulation of vibrational

modes of the ions by means of electromagnetic radiation. The Lorentz

model also describes that situation.

Figure 3.2 shows the general form of the polarizability to be expected

Fig. 3.2 Frequency dependence of contributions to the polarizability arising from orienta-

tion of (a) permanent dipoles (microwave), (b) ionic lattice vibrations (infrared), and (c) dis-

placement of electrons (visible and ultraviolet).
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in a material consisting of three discrete modes of oscillation. Although
all the modes of oscillation contribute to the polarizability and to the

dielectric constant, the contributions of ionic motions are small at optical

frequencies because of the large inertia of ions compared with electrons.

We shall consider only electronic contributions to the dielectric constant.

In that context, references to the low-frequency dielectric constant of a

material will mean the dielectric constant at the low-frequency end of the

visible region but at a frequency high compared with lattice vibrations or

molecular oscillations in the crystal.

We now want to consider the implications of the frequency dependence
of ^ and &2 for the optical properties of solids. The reflectivity of solids

at normal incidence is shown in Appendix C to be given by

R =
(n - l)

2 + k
2

(n + l)
2 + k

2
(3.24)

3 4 5 6 7

-ficu(eV)

I I 12 13 14 15

Fig. 3.3 Spectral dependence of 6! and e^ The curves are calculated for the case in which
ha) = 4 eV, hT = 1 eV, and 4nNe2/m = 60. The onset of region IV is defined by e

x
= 0.
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Using Eqs. (2.90) and (2.91), we find that for nonmagnetic materials,

«={K(£i
2 + £2

2
)

1/2 + ei ]}
1/2

(3.25)

k = (i|>l
2 + ^2

2
)

1/2 - «i]}
1/2

(3.26)

Now, from Eqs. (3.14), (3.15), and (3.24)-(3.26), we can analyze the frequency-

dependent behavior of a solid in terms of whether it is primarily reflecting,

absorbing, or transparent. The results are summarized in Figs. 3.3-3.5.

In region I, co <^ (a , s2 = Ink = 0, and e l
= n

2 — k
2 > 1. We may thus

conclude that k = 0, n > 1, and e x
= n

2
.

Insulators, such as KC1, typically have a refractive index of about 1.5

in region I. Thus, region I is characterized by high transparency, no ab-

sorption, and a small reflectivity for insulators. This is illustrated in Fig.

n,k

-«2fir*-

3.4

3.2 /\
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i
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12 13 14 15

Fig. 3.4 Spectral dependence of n and k. The curves are calculated from the values of e,

and £2 given in Fig. 3.3. The regions I, II, III, and IV can be seen to be primarily transmitting

(T), absorbing (A), reflecting (R), and transmitting (T), respectively. These results follow from

consideration of Eq. (3.24) and the realization that strong absorption takes place only in the

neighborhood of a transition frequency.
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R(%)

9 10 I I 12 13 14 15

Fig. 3.5 Spectral dependence of reflectivity. The curve is calculated from the n and k values

given in Fig. 3.4.

3.6 for the reflectivity of KC1. Of course, since the treatment developed

here does not include local field corrections, it is not quantitatively ap-

plicable to highly ionic materials. However, for highly polarizable materials

such as Si and Ge, there is probably no need to include local field corrections.

The difficulty with applying the present formulas to real materials,

even in the absence of local field corrections, is that real materials cor-

respond to a collection of Lorentz oscillators with different frequencies

spread out over bands. Nonetheless, if we think of the frequency of a Lorentz

oscillator as corresponding to the transition frequency across the band
gap of an insulator or semiconductor, we can make some estimates of

the optical properties. We can even include approximate band structure

effects by using an effective mass rather than the free-electron mass. For
example, Fig. 3.7 shows that the reflectivity of Si rises sharply at about

3 eV. This corresponds to a frequency a> = 4.5 x 1015 sec
-1

. If we take

this as an approximate value for the average spring frequency to be used

in Eq. (3.14), and assume four valence electrons per Si atom, each with the

mass of a free electron, then e^oj -* 0) = 15. That is in fairly good agreement

with the experimental low-frequency value £ x
= 12.
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Fig. 3.6 The spectral dependence of the reflectance of KC1. The region of transparency

extends to about 7 eV. Above 7 eV, there are a number of sharp peaks related to narrow energy

bands and excitons. [From H. R. Philipp and H. Ehrenreich, Phys. Rev. 131, 2016 (1963).]

The refractive index for more highly polarizable materials such as Si

and Ge is higher than for ionic insulators. For Si, n = 3.5, and for Ge at low

frequencies, n = 4. As a result, the reflectivity can be appreciable in region I

even though there is no absorption. The reflectivity arises from the induced

polarization current corresponding to the valence electrons oscillating out

of phase with the incident radiation. There is no absorption for this process,

but the interference of the incident beam with the waves reradiated by the

valence electrons does lead to appreciable reflectivity.

That the Lorentz model is qualitatively correct for semiconductors and

insulators is also indicated by the dependence of & x
on band gap. Thus, if

we identify ha> as corresponding approximately to the band gap, then e
:

should decrease with increasing band gap. That indeed is the case. The

band gaps of Ge, Si and KC1 are, respectively, 0.8, 1.1, and 7.5 eV, whereas

the low-frequency optical dielectric constants are, respectively, 4, 3.5, and 1.5.

Region II of Figs. 3.3-3.5 is characterized by strong absorption. There may

also be appreciable reflectivity in this region. That simply means that

although the values of n and k may be high, leading to appreciable reflec-

tivity, the light that is not reflected is strongly absorbed in the material.

In region III, co > co , and the electrons of the insulator respond as if

they were free electrons. This is because the photon energy is much greater

than the binding energy of the electron. The insulator thus has a metallic

reflectance. Of course, for good insulators, this region lies well into the

vacuum-ultraviolet and cannot be observed visually. However, for semi-
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E(eV)

Fig. 3.7 The spectral dependence of the reflectance and dielectric functions of Si. Regions

I, II, III, and IV correspond to the regions with the same designation shown in Figs. 3.1, 3.3,

and 3.4. [H. R. Philipp and H. Ehrenreich, Phys. Rev. 129. 1550 (1963).]

conductors like Ge and Si, the band gap lies in the infrared and the region

of metallic reflectance is in the visible. Thus, KC1 is transparent to the eye,

but Ge and Si have a metallic appearance.

The onset of region IV is defined by e t
= 0. This happens at a frequency

(op
called the plasma frequency. From Eq. (3.14), assuming w f> w > T,

we find

(o
2 = 4nNe2/m (3.27)

3.2 The Drude Model for Metals

The Drude model for metals is obtained directly from the Lorentz model

for insulators simply by equating the restoring force to zero. The conduction
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electrons of a metal are not bound. Furthermore, because the wave function

for a free electron is distributed fairly uniformly throughout the metal, the

field acting on the electron is just the average field. Thus, there is no need

to make corrections for the local field.

From Eqs. (3.14) and (3.15), taking co = 0, we have

4nNe2
1

m (co
2 + T2

)

fi
i = ! "— 7-TT-F^ <3 -28 >

_ ^Ne2 T
£2_

m co(co
2 + r2

)

( ]

The origin of the viscous damping term for a free-electron metal is the

ordinary scattering of electrons associated with electrical resistivity. In the

next chapter, when we derive the properties of a free-electron metal in terms

of a complex conductivity rather than a complex dielectric function, we shall

see that T = t~\ where t is the mean free time between collisions. If we

now make the substitution T = t" 1
, and use Eq. (3.27), we get from Eqs.

(3.28) and (3.29)

(1 + C0
2
T
2
)

2

(3.31)
co(\ + a>V)

Since the Drude model is obtained directly from the Lorentz model

simply by setting co equal to zero, the optical properties of a free-electron

metal should resemble those for an insulator at frequencies greater than

co . As we saw in the preceding section, the frequency range co > co in an

insulator corresponds to the region in which the electrons are effectively

free, so that it might be more accurate to say that an insulator responds

like a metal to photons of energy hco > hco .

A plot of the dielectric functions and the optical constants for a Drude

metal is shown in Figs. 3.8-3.10. The corresponding reflectivity is shown

in Fig. 3.11. It is clear from Fig. 3.11 that for an ideal free-electron metal,

the reflectivity approaches unity below the plasma frequency. Above the

plasma frequency, the metal is transparent and the reflectivity decreases

rapidly with increasing frequency. That this describes the behavior of

real free-electron metals is shown in Figs. 3.12 and 3.13.

The plasma frequency typically lies in the visible or ultraviolet spectral

region. That corresponds to co > 10
15

sec
-1

. The mean free collision time

for electrons in metals is typically t % 10" 14
sec. Thus, in the region of the
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Fig. 3.8 Spectral dependence of e
t
and e2 for a free-electron metal. The calculations are for

the case in which 4nNe2/m = co
p

2 = 30 eV2 and hT = 0.02 eV. Note the difference in scale

of the ordinate along the positive and negative axes. The magnitude of e t
is much greater than

that of £ 2 for the frequency range shown. For hoi < hT, |e 2/£i|
-» r/co and e2 dominates.

plasma frequency, cot > 1, and from Eq. (3.30), we get

= n
2 - k

:
1 -K>2

) (3.32)

From Fig. 3.9, it is clear that n > k just above the plasma frequency and so
Eq. (3.32) simplifies to

n
2 * 1 - (co

p
2
/co

2
) (3.33)

for h(o > hco
p

. Just at the plasma frequency, n « 0. But what does it mean
that the refractive index is zero? The index of refraction is defined in terms

of the phase velocity as v
p
= c/n. Thus, a zero value for n means an infinite
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j£ —

Fig. 3.9 Spectral dependence of n and k for a free-electron metal. The curves are calculated

from the values of e t
given in Fig. 3.8. Regions III and IV correspond to the same regions

as shown in Fig. 3.4. Region II, the region of strong absorption, is the range ^ tico £j 0.02 eV

in this case. It is, in general, the range ^ hco ^ hT. Region I does not exist for metals.

phase velocity and an infinite wavelength. That the wavelength becomes

infinite means the electrons are all oscillating in phase; however, there is

no polarization charge density as with a true plasma oscillation. The dis-

tinction is made clear in the next section as well as in Chapter 9.

3.3 A Qualitative Look at Real Metals

We will now use the Lorentz and Drude models in a discussion of the

optical behavior of some real metals. Real metals exhibit aspects of both

models. To see the role of both models in describing real metals, consider

the schematic band diagram for a metal as shown in Fig. 3.14.

Two typical transitions are illustrated in Fig. 3.14. The first of these,

called an intraband transition, corresponds to the optical excitation of an

electron from below the Fermi energy to another state above the Fermi

energy but within the same band. These transitions are described by the
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Drude model. There is no threshold energy for such transitions; however,
they can occur only in metals. Insulators do not have partially filled bands
that would allow excitation of an electron from a filled state below the

Fermi energy to an empty state within the same band. That is, of course,

what makes an insulator nonconducting.

The second transition illustrated in Fig. 3.14 is a direct interband transi-

tion. It is the optical excitation of an electron to another band. It is called

a direct or vertical transition because it involves only the excitation of an
electron by a photon. Since the momentum of a photon is very small com-
pared with the range of values of crystal momentum in the Brillouin zone,

conservation of total crystal momentum of the electron plus photon means
that the value of wave vector k for the electron is essentially unchanged in

the reduced zone scheme. There are nonvertical or indirect transitions

between bands, and we shall consider them later; but for present purposes,
a discussion of direct transitions is sufficient to illustrate the characteristic

optical properties of real metals.

Direct interband transitions have a threshold energy. For the band

i

-
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-

10

1 \
1 \

\k
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^\k
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Fig. 3.10 A semilogarithmic plot of the n and k values for a free-electron metal as taken
from Fig. 3.9.
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Fig. 3.1 1 Spectral dependence of reflectivity for a free-electron metal. The curve is calculated

from the n and k values given in Fig. 3.9.

diagram shown in Fig. 3.14, the threshold energy is the energy hco for the

transition from the Fermi energy at k to the same state k in the next

higher band. This threshold energy is analogous to that for the excitation

of an electron across the band gap in an insulator.

Now, how do we use these models to understand real metals, and where

do we begin? The beginning is an experimental determination of the re-

flectance over a wide frequency range. From the reflectance, the dielectric

function can be obtained using, e.g., a Kramers-Kronig analysis as discussed

in Chapter 6. The dielectric function can then sometimes be split into bound
(Lorentz) and free (Drude) contributions and interpreted in terms of the

fundamental electronic band structure of the solid. We shall see how this

can be done in some cases by following through the steps used by Ehrenreich

and Philipp in their classic paper on the optical properties of silver and

copper.

The reflectance of silver is shown in Fig. 3.15. A band diagram for the

noble metals is shown schematically in Fig. 3.16. The d bands lie several

volts below the Fermi energy. Thus, only interband transitions of conduc-

tion electrons are possible at low energies, and an onset of interband
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transitions from the d bands to higher-lying conduction band states takes

place in the visible or ultraviolet. Under these conditions, it is feasible to

separate the dielectric function into free and bound parts,

s
l
= s/ + e 1

b

*>2 — &2 ~\~ &2

(3.34)

(3.35)

where e/ and e2 are described by Eqs. (3.30) and (3.31) and e^ and e2
b
are

described by Eqs. (3.14) and (3.15). Band structure effects are included by
using an effective mass in these equations rather than using the free-electron

mass. The separation depends upon the fact that s2 and s2
b

lie in separate

spectral regions. Thus, &2 can be determined by fitting the data at low
frequencies to the Drude model using the relaxation time and effective

mass as adjustable parameters. Having determined s2
f
(co) in this manner,

s2
h
(co) is found by subtracting e2 (co) from the experimentally determined

s2 (co). Then, as shown in Chapter 6, s^ico) and s^ico) can be determined

1.0

59.4°
(Exposed to air)

1100 1500

Wavelength (A)

1900

Fig. 3.12 Basal plane reflectance of zinc for nonpolarized light. The angles of incidence are

measured with respect to the surface normal. The sample was a single crystal of high-purity

zinc cleaved and maintained in a vacuum chamber at pressure less than 10

~

9 Torr. Note the

drastic change in reflectance after exposure to air. This illustrates the importance of careful

sample preparation if the measurements are to be useful. A comparison with the best earlier

work on reflectance from evaporated thin films [T. M. Jelinek, R. N. Hamm, and E. T. Arakawa,
ORNL TM-1164 (1965).] is also shown. [From L. P. Mosteller, Jr. and F. Wooten, Phys.
Rev. 171,743 (1968).]
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Fig. 3.13 Reflectance of aluminum. The decrease in reflectance at ha> = 1.4 eV arises from

a weak interband transition. The large decrease in reflectance at ha = 14.7 eV identifies the

plasma resonance. [From H. Ehrenreich, H. R. Philipp, and B. Segall, Phys. Rev. 132, 1918

(1963).]

from a Kramers-Kronig analysis of e2
f

(w) and e2
b
(co), respectively. The

results of such an analysis for silver are shown in Figs. 3.17 and 3.18.

The reflectance of silver is high at photon energies below 3.9 eV. At

3.9 eV, the reflectance drops sharply, then rises almost immediately. The

reflectance well into the vacuum-ultraviolet region is characteristic of

interband transitions spread over a wide spectral region.

The reflectance of silver near 3.9 eV is striking, but we can interpret

this behavior quite simply. The sharp decrease in reflectance at 3.9 eV

identifies the plasma frequency. We previously discussed such behavior for
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*~k

Fig. 3.14 A schematic band diagram for a metal. The threshold for direct transitions is

from the Fermi energy at k to the same state k in the next higher band.

Fig. 3.15 Reflectance of Ag. [From G. B.

Irani, T. Huen, and F. Wooten, Phys. Rev.

3B, 2385 (1971).]

4 6

Photon energy (eV)

an ideal free-electron metal and we have seen such characteristic behavior

for the real metals aluminum and zinc. In all these cases, the reflectance

remained high at photon energies up to the plasma frequency. Then, it

dropped sharply where e^ca) passed through zero. The new feature seen
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Fig. 3.16 Schematic band diagram for the

noble metals.

Fig. 3.17 Spectral dependence of the

real and imaginary dielectric functions

for Ag. [From H. Ehrenreich and H. R.

Philipp, Phys. Rev. 128, 1622 (1962).]
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for silver is a rapid rise in reflectance just above the plasma frequency.

To understand that, we must briefly reconsider plasma oscillations.

We shall consider plasma oscillations in detail in Chapter 9. For now,

it is sufficient to know that a plasma oscillation is a collective oscillation

of the electrons. (See Fig. 3.19.) These oscillations are approximately normal

modes of the system if they are only weakly damped. Now, an oscillation is

a normal mode if it can maintain itself in the absence of an external field.

Thus, we must have

Eext = D - eE = (3.36)

The net charge separation in the electron gas produces the field E which

acts as a restoring force for the oscillations. Since E j= 0, the condition for

plasma oscillations is

= (3.37)2 = £, + ie,

Thus, the plasma frequency is defined by e l
= with e2 <^ 1.

The response of an electron gas to a transverse electromagnetic wave

at the plasma frequency is a collective oscillation in the sense that it involves
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Fig. 3.18 Decomposition of the experimen-

tal values of s
t
(w) for Ag into free and bound

contributions e
l

{f) and de^K The threshold

energy for interband transitions is indicated

by (Oi. [From H. Ehrenreich and H. R.

Philipp, Phys. Rev. 128, 1622 (1962).]

the motion of many electrons moving in phase over an extended region

because X -> go. However, it is a forced oscillation of the system. It exists

only in the presence of an external electromagnetic driving force. Thus
when one speaks of the plasma resonance in the context of optical studies,

it refers to this externally forced collective oscillation, but it is not a true

plasma oscillation. The true plasma oscillation is a cooperative collective

oscillation that persists even after the external field is removed. This is

because, as illustrated in Fig. 3.19, there is a mechanism for sustaining the

oscillation.

Now the unusual behavior of Ag is understandable. The sharp decrease in

reflectance at 3.9 eV is indeed the characteristic decrease at the plasma
frequency. However, the reason s^co) passes through zero at hco = 3.9 eV,

and not at hco = 9.2 eV as calculated for silver using a free-electron model,
is because of the influence of the d states which lie 4 eV below the Fermi
energy in silver. As shown in Fig. 3.18, the effect of the d states is to make a

positive contribution to e^co) and so shift to lower energies the point at

which e^co) passes through zero. Almost immediately, though, there is a
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-HSx -H8*

Fig. 3.19 Schematic diagram of the origin of plasma oscillations in one dimension. The

equilibrium concentration of electrons is N. The net charge is zero because of a uniform back-

ground density of positive ions. Now, imagine that a region of electron charge has been uniform-

ly translated a distance 8x without disturbing the rest of the system. This leaves a region of

thickness 8x having a net positive charge density and creates another region of net negative

charge density as illustrated in the figure. Because of the force between the two regions of

unbalanced charge, they will be attracted toward each other. In the absence of a damping

mechanism, there will be an overshoot, leading to the situation depicted in the figure, but

with the charges reversed. The system will continue to oscillate in this manner at a charac-

teristic frequency known as the plasma frequency. The oscillations are called plasma oscilla-

tions. The plasma frequency can be easily derived for this simple case. Recognizing that the

polarization is the dipole moment per unit volume, we have

P = - (NeA 5x)L/AL = - NeSx

In the absence of an external field, this gives rise to the total electric field

E = - 4tiP = 4nNe 8x

The force on an electron in the polarized region is thus

mx = — eE = — AnNe2 Sx

This is just the equation for a simple harmonic oscillator with characteristic frequency

oi
2 = 4nNe2/m

Fig. 3.20 Screening of plasma oscillations by polarization of localized electrons. Compare

with Fig. 3.19. The d electrons are highly localized on atomic sites. However, their polarizability

may be high enough to cause appreciable screening of the forces between fluctuations in the

charge densities of conduction electrons. The result can be a significant shift in the plasma

frequency.
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rise in e 2(co) (Fig. 3.17) because of real transitions from d states. The plasma

oscillations are quenched and the reflectance rises.

The plasma oscillation in silver consists of a collective oscillation, or

hybrid resonance, involving both s and d electrons. It can also be thought

of as a collective oscillation of the conduction electrons screened by the

bound d electrons. The latter viewpoint is illustrated schematically in

Fig. 3.20.

The reflectance of copper is shown in Fig. 3.21, and the decomposition of

the experimental values of s^co) into free and bound contributions is shown
in Fig. 3.22. Although the band structures of copper and silver are quali-

tatively the same, copper does not exhibit a plasma resonance. The d states

in copper lie only 2 eV below the Fermi energy, so that the positive con-

tribution of s 1

b comes in a frequency region where the negative contribu-

tion from e
x

f
is of too large a magnitude for & y to reach zero.

The difference in color between silver and copper arises from the positions
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Fig. 3.21 Spectral dependence of the reflectance of Cu (lower curve) and Ni (upper curve).

[Cu data from H. Ehrenreich and H. R. Philipp, Phys. Rev. 128, 1622 (1962); Ni data from

H. Ehrenreich, H. R. Philipp, and D. J. Olechna, Phys. Rev. 131, 2469 (1963).]
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Fig. 3.22 Decomposition of the experimental values of e^to) for Cu into free and bound

contributions £i
(/) and dt:^. The threshold energy for interband transitions is indicated by

cu,. [H. Ehrenreich and H. R. Philipp, Phys. Rev. 128, 1622 (1962).]

of the d bands. In silver, the d-band absorption does not begin until hco =
4 eV, or at wavelengths less than 3000A. This is in the ultraviolet, so the

reflectance is high throughout the visible. In copper, however, the d bands

lie 2 eV below the Fermi energy, so that strong absorption begins at X =
= 6000A. This wavelength is in the red. Thus, the reflectance of copper

decreases in the red spectral region and continues to decrease as the wave-

length decreases. Since the reflectance of copper is highest towards the red

end of the visible spectral region, copper has a reddish or "copper" color.

The reflectance of nickel is also shown in Fig. 3.21. In nickel and in the

other transition metals, the Fermi level intersects the d bands. Interband

transitions set in at about 0.3 eV, so it is not feasible to fit the low-frequency

region to the Drude model. Interband transitions cause the reflectance to

drop almost immediately from the limiting reflectance of unity as w ap-

proaches zero.
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3.4 Photoemission from Copper

Having taken a first look at the optical properties of solids based on some
fairly simple models, it is now appropriate to consider some photoemission

results which can be readily understood in a qualitative way. Copper
presents such a case.

Figure 3.23 shows a schematic energy diagram for Cu with a monolayer

of Cs to lower the work function from 4.5 eV to 1.55 eV. The application

of a monolayer of Cs, other alkali metals, or a compound such as Cs2

is frequently done in order to lower the work function. There are several

reasons for wanting to lower the threshold for photoemission. With practical

photocathodes, it is simply the desire to get as high a quantum efficiency as

possible at long wavelengths. In band structure studies, a higher quantum
efficiency makes it easier to measure photocurrents. Of greater importance,

it allows one to probe deeper-lying levels with conventional light sources

and permits a study of conduction band states between the old vacuum
level and the new, lower vacuum level. Of course, it is necessary that the

only effect of the applied monolayer be to lower the work function. It must
not destroy the fundamental shape of the energy distribution curve (EDC)
for the underlying solid. That is something that can be determined only by
experiment.

Figure 3.24 shows the EDC for Cu at four photon energies. There is

little difference among the four curves.

Now look at Fig. 3.25 and note the dramatic change in the EDC on
going from hv = 3.7 to 3.9 eV. The large spike in the EDC near zero energy

results from excitation of d electrons. These states were inaccessible for

photoemission with hv — 3.7 eV, but are accessible with hv — 3.9 eV.

Vacuum level

s-and
p-states

d -states

Fig. 3.23 Simplified energy band diagram for Cu with a surface monolayer of Cs. The

threshold for photoemission from s- and p-like states is 1.55 eV. The threshold for emission

from d states is 3.7 eV.
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Electron energy (eV)

Fig. 3.24 Photoemission from Cu with a surface monolayer of Cs. At photon energies less

than 3.7 eV, electrons excited from d states cannot escape. Thus these curves represent electrons

excited from s- and p-like states as illustrated in Fig. 3.23. [From C. N. Berglund and W. E.

Spicer, Phys. Rev. 136, A1044 (1964).]

The large peak results because the density of states is much higher for d

electrons than for s and p electrons; there are more d electrons in the outer

shells of Cu and the d bands are flatter. Thus, in agreement with optical

studies, photoemission shows that the d states in Cu lie 2.1 eV below the

Fermi energy {hv = 3.7 eV minus e(j>F = 1.55 eV). Note, though, that by

drawing an energy level diagram in the manner of Fig. 3.23, we have avoided

any discussion of selection rules. We have been concerned here only with

energy conservation.

3.5 Quantum Theory of Absorption and Dispersion

The polarizability and the dielectric function obtained by a quantum
mechanical analysis are of the same form as those obtained with the classical

Lorentz model. To show this, we again consider first the interaction of a

free atom with an electromagnetic field. We are concerned only with

systems initially in their ground state, so that we need consider only the

effects of polarization and absorption, not emission.
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At times t < 0, the eigenstates of the unperturbed system are given by

H
<i>n = ^n<t>n (3.38)

where H is a time-independent Hamiltonian. At time t = 0, the interaction

with the radiation is turned on. The Hamiltonian

H = H + H\t) (3.39)

is then time-dependent, and the wave function for the atom must be found

from the time-dependent Schrodinger equation

ih d\j//dt = {H + H') \\i

The solutions may be written as

xj,{r,t) = Y.an{t)(f>n(?)e-
u; " tl*

n

(3.40)

(3.41)

hz/ = 3.9eV

lw = 3.7eV

0.5 1.0 1.5

Electron energy (eV)

Fig. 3.25 Photoemission from Cu with a surface monolayer of Cs. At hv = 3.7 eV, electrons

excited from d states are unable to escape. At hv = 3.9 eV, a large spike in N(E) results from
electrons escaping after excitation from the high density of d states. [From C. N. Berglund and
W. E. Spicer, Phys, Rev. 136, A1044 (1964).]
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Substituting Eq. (3.41) into (3.40) and using (3.38) yields

ih £ (dajdt) ct>ne-^* = £ aJI'^e-"""* (3-42)

i n

Multiplying Eq. (3.42) from the left by

4>m*e
if'™m (3.43)

and integrating over all space, we get

ihdaJdt = Yj
anH'mne

i^-«M*
(3.44)

n

where H'mn is the matrix element

Hmn =^JH'<j>n dr
(3 -45 )

We take the atom to be initially in the ground state so that

an
= dn0 , t = (3.46)

Then, within the approximation of first-order perturbation theory, Eq.

(3.44) gives

ihdajdt = H'm0e
i{Sm -'';o)tlh

= H'm0e
icOmOt (3-47)

We now need an expression for the perturbation term in the Hamiltonian.

We shall keep in mind the classical oscillator by writing

H' = eEXoc -r (3.48)

The electric field to use is that which exists at the momentary location

of the electron. Again, because we are concerned with radiation of long

wavelength compared with atomic dimensions, it is sufficient for present

purposes to use the electric field existing at the nucleus.

Take the electromagnetic field to be polarized in the x direction so that

E loc
= Ex cos cot = i Ex{e

i(0t + e~
i(0t

) (3.49)

Then, Eq. (3.48) becomes

H' =$eExx(e
il0t + e~

i<ot

) (3 -50)

and Eq. (3.45) becomes

H'mn = ^eExxm0(e
ifat + e-

i(at

) (3.51)

where

xm0 -Um*xct>n dT (3.52)
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We now use Eq. (3.51) in Eq. (3.47) and integrate from t = 0, when am = 0,

to time t. Thus,

e^xXmO
am =m

2k

I _ £«(eomo + eo)t
J _ eH<omo-(o)t

+
COm0 + CO com0 - CO

(3.53)

The induced dipole moment is

p = < - ex} =
J if/*(- ex)ij/ dr (3.54)

Substituting for \//* and ^ from Eq. (3.41), we get

P = - Z (ak *(Pk*e
igkt/* {exfrifa-'*'*

1* dr (3.55)

At times t > 0, the initial condition (3.46) is replaced by

a» * <5„ (3.56)

Thus, there will be significant contributions to the dipole moment only
from those terms in Eq. (3.55) for which one of the coefficients is a « 1.

The term for which both ak and a
x
are a contributes nothing since the

integrand is then an odd function. Making the appropriate substitutions
for the coefficients, it becomes clear that a single dummy index is sufficient

and that

P = ~ E f[.am *<l>m*^^'\ex)a <l>
e-

ti^
m J

+ a *cl> *e
iS^{ex) amcf>me-

iS^ dr
(3.57)

Taking a = a * = 1, and {Sm - S ) = hcom0 , this can be rewritten as

P = " e £ {xm0am*e^^ + x0mame-
i(O-ot

) (3.58)
m

Now, substituting for am and am* from Eq. (3.53) and its complex conjugate,

Eq. (3.58) becomes

e
2Ex _ . ., (e' i(at + e

i0im0t
e
imt - e~ mm0t

e
imt - e" V

' ^mo I I
: + +

2h m \ com0 + co com0 - co com0 + co

+
(3.59)

com0 - co )

Equation (3.59) is a spatial average for the induced dipole moment. We
implicitly took a spatial average when we said that it is sufficient to take
the electric field at the nucleus for the field at the momentary location of
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the electron. If we now take a time average, we need consider only those

terms having the same frequency as the driving force, that is, the frequency

w of the electromagnetic radiation. Then,

2ft M \com() + co com0 - to.

Comparing Eq. (3.60) with Eqs. (3.4) and (3.49), we see that the atomic

polarizability is

Z2e xm0 com0
7

2 2 (3-61)
h co

2
m0 - ft)

2

The polarizability in Eq. (3.61) is real because no allowance has been

made for an energy absorption process. An energy absorption mechanism

can be included phenomenologically by recognizing that the excited states

are really quasistationary states, not exact stationary states. They are

stationary states for the unperturbed crystal, but not for the total system

of crystal plus radiation.

We now assume that because of absorption of light, the probability of

finding an electron in the ground state decreases according to e~ Tot
. The

amplitude of the state thus decreases as e
_r°'/2

. At the same time, the

probability of finding the electron in the mth excited state grows as e
rmt

.

We can handle this situation by making the substitution

',-*« + ±fcrm (3.62)

in Eq. (3.41) and carrying the analysis through as before. For simplicity,

we shall ignore broadening of the initial state and assume all other states

have the same broadening, so that rm = T. Then, if we let Tt -> 0, we get,

instead of Eq. (3.60),

e
2Ex

2h h
1 1

+
<w„ + co + jiT comf) — co — t iT

+ TTZT +
«m0 - co + %iT com0 + co - ^iT

e E* VI 12 (
2c°mOe

1'

Jm02n m \cot

2com0e-
i0it

+ —2
2 lr2 ^

)
(3-63)

coin - ft)
2 + ir2 + iVcoJ
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If we now ignore \T2
relative to <w^ , the polarization can be rewritten as

1p2¥

n

ft)m0(©mo
— w2

) cos cot com0Tco sin cot

iCD* - CD
2
)

2 + r2
OJ

2
(C0

2
m0 - CO

2
)

2 + rW
(3.64)

The first term in Eq. (3.64) is in phase with the driving field and leads to the

real part of the dielectric function

8tiNe2
|

xm0
\

2
h(om0{(ol ~ co

2
)

£l " '
+^^ ? A - co

2
)

2 + rw (3 - 65)

for an assemblage of AT noninteracting atoms per unit volume. The second
term in Eq. (3.64) is 90° out of phase with the driving field. It is the energy
absorption term and leads to the imaginary part of the dielectric function,

SizNe2 \xm0
\

2
hcom0rco

(3.66)
fc
2 t (co

2
m0 - co

2
)

2 + T2
co

2

If we make the substitution

fmo = (2mhaom0/h
2
) \xm0

\

2
(3.67)

where fm0 is defined as the oscillator strength, then we can combine Eqs.

(3.65) and (3.66) into a complex dielectric function given by

4nNe2 ^ fm0
* = 1 + I -2 2 .r (3-68)

m m ®raO — CO — UCO

It should be noted once again that the question of the proper local field

to use may be a difficult one. For free atoms, it is possible to use the field

existing at the nucleus, but atoms in solids interact, and the variation in

microscopic field within a unit cell must be considered.

If the electrons are localized, and that is what has been implicitly as-

sumed so far, the proper local field to use is just the microscopic field

existing at the position of the electron due to all sources except from that

electron itself. If it is more appropriate to consider the electron as a spatial

charge distribution, it is necessary to generalize the meaning of the local

field as we have used it and as it was originally introduced by Lorentz.

This point is discussed in Appendix B.

3.6 Oscillator Strengths and Sum Rules

We have introduced an oscillator strength defined by

fm0 = (2mhcom0/h
2
)\xm0

\

2
(3.69)
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and stated that it satisfies the sum rule

Z_,JmO
= 1 (3.70)

We have been concerned only with upward transitions from the ground

state; but oscillator strengths also describe downward transitions and the

sum rule is more general. That is, the fixed state from which and to which

transitions take place need not be the ground state. We will now prove

the more general sum rule

£/«, = 1 (3.71)

m

and put some substance into the previous analogies we have made with

classical oscillators.

From the definition (3.69) we have, rewriting ha>mn as an energy difference,

Ifmn = I(2m/fc
2
)(<fm - <f„)x„mxm„

m m

= (2m/h2
) X i [x„m(<fm - S n) xmn + xnm{Sm - Sn ) xm„] (3.72)

Using

{Sm — <f„) xm„ = \H, x\mn

and, from a change of dummy indices,

{$m — ^„)x„m = — \H, x\ nm

which hold for V = V(r), we get

(3.73)

(3.74)

(3.75)

Using the closure property

Y, in |
A

|
m> <m

|

B
\

n> = <n
|

AB
\
n)

m

we can express the summation on the RHS of Eq. (3.75) as

X/™ = - (m/h 2
) {[H, x] x - x[H, x]}„„

m

= -(m/ft2)p,4x]„„

(3.76)

(3.77)

We now have the summation of/m„ over all final states expressed solely

in terms of the initial state. Breaking up the Hamiltonian into kinetic and

potential energy parts, Eq. (3.77) becomes

Z^Jmn

m
2m

, x ,x
m
¥ [V, x], x (3.78)
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If V = V(r), the last term is zero. Then, using the commutation relation

[p, x] = - ih (3.79)

Eq. (3.78) reduces to the TRK sum rule for single-electron atoms,

YJnm = 1 (3.80)
m

For an atom with Z electrons, the sum rule becomes

Zfmn = Z (3.81)
m

Note that whereas our original treatment of the classical oscillator is

based on a Hooke's law spring constant, the purely quantum mechanical
development is more general, depending only on V = V(r).

We have defined the oscillator strength in terms of matrix elements of

the electric dipole moment. It is often more convenient to work in terms
ofmomentum matrix elements, in which case the oscillator strength becomes

fmn = 2
| VmnPM^ (3.82)

where

Pm„ = j>m*(-*W)<Mr (3.83)

Equation (3.82) is readily obtained from Eq. (3.79) by means of Eqs. (3.73)

and (3.74), and the commutation relation

[p
2

, x]= - 2ihp (3.84)

which is a direct consequence of the commutation relation (3.79).

As an example of the relationship between oscillator strengths and clas-

sical oscillators, consider the relationship between power absorption
for transitions between quantum states with that for the corresponding
classical oscillator. The quantum mechanical result for power absorption
can be found with the aid of Eq. (3.53). The result is

^om = (transitions per second) x (energy absorbed per transition)

= (d/dt) (am*am) (hcomn)

= (ne
2 \E\ 2 \xmn

\

2
/2h

2
)hcomn (3.85)

Power absorption for the classical oscillator can be found with the aid

of Eq. (3.1) to be

Classical = Tie
2

|
E

|

2/4m (3.86)

From Eqs. (3.85), (3.86), and (3.69), we have

^QM/^classical = {2mflCOmJfl
2
) |

Xm„
\

2 = fmn (3.87)
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Thus, a quantum mechanical transition from state n to state m behaves

like a classical oscillator with strength fm„. An equivalent statement is

that^ is the number of classical oscillators which is equivalent in terms

of power absorption to a quantum mechanical system making transitions

from state n to state m.

Another analogy is apparent when a comparison is made between Eqs.

(3.16) and (3.68). We see that the quantum mechanical and classical results

agree if the oscillator strength is interpreted as the fraction of an electron

bound by a classical oscillator with spring constant co^nm.

3.7 Applications of Sum Rules

In Appendix D, it is shown that the sum rule for a solid is modified by

the periodic potential of the lattice to become

_, m d
2Sn m

„ h
z okz m*

where m* is the effective mass for the electron in the initial state n. If the

strength of the periodic potential becomes zero, corresponding to a free-

electron gas, we see that £„,/„,„ = 0. This means that there can be no photon

absorption by a free-electron gas. This is readily apparent from an examina-

tion of a diagram of $ versus k for a free-electron gas as illustrated in Fig.

3.26. It is not possible in such a case to conserve both energy and momentum
without a third body. This is the basis of the arguments, mostly in the 1930's,

that the photoelectric effect in metals must be a surface effect. It is now
generally thought to be primarily a volume effect. But, let us return to some

simple applications of sum rules

!

We first note that the oscillator strength is proportional to the square

of a dipole matrix element. Since the magnitude of the matrix element

depends on the overlap of wave functions, it will be strongly energy-de-

pendent. Transitions from deep-lying atomic levels to outer discrete levels

have very small matrix elements because of the small overlap. The effect

of the matrix element is much more important in this respect than the

tendency for an increase in the oscillator strength, because of the factor

hcom„. Because the oscillator strength for higher discrete levels drops so

rapidly, transitions to the continuum make an important contribution to

the sum rule for transitions from deep-lying levels. This is illustrated in

Table 3.1, listing the oscillator strengths for the Lyman series.

It is, of course, a difficult problem to calculate such accurate oscillator

strengths for transitions in solids. What is of perhaps greater interest at

this point is to illustrate the effect of the exclusion principle on the sum
rule. We will illustrate this for an idealized system having only four states.
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n«

€ =flOJ

= fikc

Fig. 3.26 Energy versus k-vector for photons and free electrons. The slope of the dispersion

curve for photons is nearly vertical in a diagram for which the energy covers the range ~ 100

eV for both photons and electrons. The two curves are not parallel until the energy approaches

106 ev, an energy well above the range of interest for optical properties and where relativistic

effects are important. It is clear that there is no way to induce a transition of a free electron from

one energy to another by the absorption of a photon.

TABLE 3.1 Oscillator Strengths for the Lyman Series in Hydrogen

Wavelength (A) Transition n = 1-

1216 2

1026 3

973 4

950 6 8

9 continuum

<912 Continuum

Oscillator strength (fm

0.4162

0.0791

0.0290

0.0158

0.0101

0.4359

1.0000

The states are shown as a set of four energy levels in Fig. 3.27(a). The oscil-

lator strengths, which have been arbitrarily assigned, have been chosen

to conform with the sum rule £m/m„ = 1. Now, suppose the system has only

one electron in the ground state. Then, the possible transitions are as shown
in Fig. 3.27(b). If there are two electrons and the system is in the ground

state, the sum rule becomes 2m/m0 = 2; either electron can make the

transitions.

Now, suppose the system consists of three electrons as shown in Fig.
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Fig. 3.27 An energy level scheme for a system having only four one-electron energy levels.

Possible transitions and oscillator strengths are shown. The oscillator strengths are chosen

arbitrarily except for the sum-rule requirement.

3.27(c). The electron in level S2 can make transitions to 8 3 or S\, and the

total oscillator strength for allowed transitions is 1.0 + 0.5 = 1.5. That is,

the total oscillator strength for allowed transitions of the electron in level

$ 2 is enhanced because level S ^ is occupied. Similarly, the total oscillator

strength for transitions of the spin-up electron in level $
x

is depressed,

because transitions to level S2 (with conservation of spin) are not allowed.

The total oscillator strength for transitions of the spin-up electron in level 1

is decreased to 0.5. The spin-down electron in level $
x

is not affected. Note,

though, that whereas the sum of oscillator strengths for all allowed transi-

tions of a particular electron may differ from unity, the more general sum
rule Em/m„ = Z is satisfied. The point is that the sum rule applies to the

entire system. It cannot be applied rigorously to particular groups of

electrons, nor does it apply to imperfections. We shall see in the next section,

though, that if care is used, the sum rule is often useful even for nonrigorous

applications.

There is a sum rule for solids,

coe 2(co) dco = \tico (3.89)

which is analogous to the sum rule £m/m„ = Z for atoms and is in a more

useful form than the sum rule expressed in Eq. (3.88) for solids. We can see

the origin of this sum rule as follows. The rate of energy absorption per

unit volume from an electric field is

= Re I E • —D ) - Re
dt V dt dt

With E having a time dependence e
imt

, this becomes

dS/dt = cos2 |

E
|

2

Thus, the integral

cos2 (a>) dco

Jo

is a measure of the energy absorption for all frequencies.

(3.90)

(3.91)

(3.92)
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We will now evaluate the integral (3.92) using our classical expression

(3.15) for e2 :

4nNe2r f
00

co
2
dco

coe2(co) dco
=

m Jo (fi)«o - ™2
)

2
+ r2 a>

2

, f°° co
2
d(o

= co
2T = = ^ (3.93)

Jo Ko - o)f(com0 + co)
2 + TW

For T small, significant contributions come only for com0 « co. Thus,

co
2ra)2 f dco

co£2(ct)) dco = —-

—

2
o 4com0

coJT 2

JTICO
2

tan

(com0 - co)
2 + r2

Ico - 2com0

(3.94)

We have derived the sum rule under rather restricted conditions. It happens,

though, that the result is exact even for interacting many-electron systems.

This is shown rigorously in Chapter 6.

Sum rules are frequently defined in terms of an effective number of

electrons per atom, neff, contributing to the optical properties over a

finite frequency range. Thus,

coe2(co)dco = jn(4nNae
2/m)n e{( (coc) (3.95)

where now Na is the density of atoms.

We will now consider a simple example to illustrate why one must be

careful in the interpretation of curves of n eff versus co. Consider a metal

having two electrons per atom in the valence-conduction band and ten

electrons per atom in lower-lying d states. Assume the d states lie suf-

ficiently low in energy that transitions of valence electrons are essentially

exhausted before transitions from d states begin and that all other core

states lie so deep they can be neglected. Then a plot of the absorption

versus frequency might look as shown in Fig. 3.28.

First inclination might be to identify the area V as the number of valence

electrons per atom and the area D as the number of electrons per atom
in the highest d states. Then, if V — 2.2, for example, we might say that the

effective number of valence electrons is 2.2. Alternatively, we might say

that there are, of course, only two valence electrons per atom, but they have

an effective mass of 0.9. But remember the example (Fig. 3.27) illustrating
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Fig. 3.28 Absorption versus frequency for a metal like Cd. [After N. V. Smith, Advan. Phys.

16, 629 (1967).]

the effect of the exclusion principle on sum rules. The point is that in Fig.

3.28, an area D' is missing from the contribution due to excitation of d

electrons; no excitations are possible from the d states to valence band

states below the Fermi energy. The sum rule says simply that

J/ + D = 2+10=12

We also "know" that D + D' = 10, so that V = 2 + D'. Thus, the strength

of transitions from the valence band is enhanced by the effect of the ex-

clusion principle in prohibiting excitation of d electrons to valence states

below the Fermi energy.

In some cases, it may be possible to estimate the area £)'. If, for example,

the valence band density of states is reasonably well known, it may be

feasible to extrapolate to lower energies and determine D'. This was done

by N. V. Smith for mercury, but opportunities to analyze such a simple

case are rare.

We see, then, that sum rules provide a useful guide to interpreting the

results of experiments and also serve as a check on the validity of the ex-

perimental data. The areas under particular bumps in a plot of coe2 versus

co must, however, be viewed with care. For example, if an experiment is

conducted only over the region of Drude absorption, exact agreement

with the Drude model cannot be expected; if it is obtained, it should not

be taken seriously.

There is another sum rule which is related to plasma excitations. If

an electron enters a solid, it produces the field D. Then, the rate of energy

absorption is given by

dS

dt

COSo
D (3.96)

The relevant factor is

= - Im
+ e z

(3.97)
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for which there is a sum rule analogous to Eq. (3.89), namely

(o Im(l/e) dco = jitco
f

(3.98)

Just as in Eq. (3.95), it is possible to define an effective number of electrons

per atom contributing to the optical properties over a finite frequency range.

This is illustrated in Fig. 3.29 for aluminum. The plot corresponding to the

sum rule (3.95) rises rapidly at low frequencies because of the free-electron

behavior of aluminum. The plot corresponding to the sum rule (3.98)

begins to increase only near the region of plasmon excitation. Both plots

saturate at a value near 3, the number of valence-conduction electrons per

atom. Such plots for semiconductors and metals with d electrons are not

so simple. Interband transitions play a dominant role and the sum rules

do not saturate in the spectral region of most optical measurements ( < 25 eV).

An example of the latter is shown in Fig. 3.30.

Fig. 3.29 The effective number of electrons per Al atom versus ha> obtained from a numer-
ical integration of the experimental values of (a) e2 and (b) — Ime" 1

. [H. Ehrenreich, H. R.

Philipp, and B. Segall, Phys. Rev. 132, 1918 (1963).]

3.8 The Absorption Coefficient, Optical Conductivity,

and Dielectric Function

We shall now derive some useful relationships between a, a, e2 , and the

transition rate W
j{

. The absorption coefficient, as defined in Eq. (2.85), can
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Fig. 3.30 The effective number of electrons per Au atom versus tico obtained from a numer-

ical integration of the experimental values for (a) &
i
and (b) -Im e~ '. [From B. R. Cooper, H.

Ehrenreich, and H. R. Philipp, Phys. Rev. 138, A494 (1965).]

be written as

power dissipation per unit volume

(energy density) (energy velocity)

o-<£
2
> Ana

(3.99)

n
2

, and v ~ c/n, so

(3.100)

(£l/4n)iE
2
y(v) e iV

Now, in the case of weak absorption, s l
= n

2 — k

that

StV = nc

Although fii =£ n2 for strong absorption, and the treatment of energy

velocity requires some care, it happens that Eq. (3.100) is true even for

strong absorption. Thus

a = 4na/nc (3.101)
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Another expression for a is obtained by expressing the power absorption per

unit volume as the quantum mechanical transition rate per unit volume,

Wj0 times the energy hoo^ absorbed per transition. Then,

a... = 4nh(D
jiWji/nc(E

2
y (3.102)

If we now use the result

ei <£
2
>/47t = fcw (3.103)

from Appendix E, we get

aji
= s 1Wji/nc (3.104)

for the absorption coefficient corresponding to transitions from state

(f>i
to state (pj.

Other useful relationships that follow from Eqs. (3.101)— (3.104) and

(2.91) are

ffj . = e 1wjiIAn (3.105)

e 2ji = Inaji/cDji = e^WjJcoji (3.106)

PROBLEMS

3.1 Assume that the electrons surrounding the nucleus of an atom form

a spherical cloud of uniform density and radius r . Show that a small

displacement of this electronic cloud with respect to the nucleus leads to a

linear restoring force. What is the polarizability? Assume r is the Bohr

radius and calculate the polarizability of atomic hydrogen based on this

model. How does it compare with the true polarizability? What is the

magnitude of the electric field strength experienced by an electron at the

distance r from the nucleus? Compare this with the magnitude of field

strengths available as light sources. Is the linear relationship between

dipole moment and field strength justified?

3.2 Show that n — k in the region of high absorption.

3.3 Derive an expression for a based on the Lorentz model.

3.4 Show that if the local field is given by the Lorentz-Lorenz model

(Appendix B), Eq. (3.12) is replaced by

£ — 1 47T
Not

£ + 2 3

3.5 Assume a free-electron metal in which the maximum velocity of

electrons corresponds to an energy of 10 eV. How far does the electron
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travel during one period of a light wave? Is this sufficient to say that, on
the average, the conduction electrons in a metal experience the macroscopic

field E?

3.6 Show that if the Lorentz-Lorenz local field condition is incorporated

in Eq. (3.1), the equation can be written in a form that includes the local

field correction as a change in the resonant frequency. Show that ao
2

is replaced by co
2
eff

= co
2 — {4nNe2

/m). If N is sufficiently large, the

effective resonant frequency approaches zero. Is this possible with reason-

able values of N?

3.7 Show that the group velocity, v
g
= dco/d(2n/X) is given by v

g

= c[l — (co
p
2
/co

2
)]

1/2 = nc at the plasma frequency. Thus the group
velocity is zero and there is no propagation of energy at the plasma fre-

quency. This is why we refer to plasma oscillations rather than waves.

To obtain a finite group velocity, the q dependence of the dielectric function

must be taken into account.

3.8 Show that in the presence of interband transitions (bound electrons),

the condition for plasma resonance can be written as

8(0J) = [1 + &b
(©)] {1 - [>p

*)>2
]} =

where (co
p
*)

2 = 4nNe2
/m(l + <5e

b
) is the square of the screened plasma

frequency and x has been neglected.

3.9 Show that the area under the Drude curve of a/c versus hco equals
the number of electrons per atom and thus satisfies a sum rule.

3.10 Assume that the local field correction for an insulator is given by the

Lorentz-Lorenz local field. Show that in such a case the imaginary part

of the polarizability is given by

a2 = 9nk/2nN[(n2 + k
2
)

2 + 4(n
2 - k

2 + 1)]

Derive a sum rule for a2 analogous to that of Eq. (3.99).

3.11 There are several ways to calculate power absorption for a quantum
mechanical system. One is to include the lifetime of states in the presence of
the perturbation. Another method, to be used in later sections, is to consider
monochromatic light inducing transitions over a range of neighboring
states. Still another method is to consider a discrete transition induced
by "white light." Calculate Eq. (3.96) using the latter method. Take the

second term of Eq. (3.53) to give the transition amplitude and interpret Ex

as the spectral density of the driving electric field. Then, \E\
2

is proportional
to the spectral power density. Thus, the probability of finding an electron in

state m, after starting in state n, is \am*an dco. It will be seen that the time
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factor has a sharp maximum at co = comn , so that the other factors involving

a) can be taken outside the integral and evaluated at comn, and the limits of

integration can be extended to +00. It is implicit in this that there are no

phase relations between the different frequency components, so that each

frequency range Aco makes an additive contribution to the absorption.

Calculate the power absorbed by a classical oscillator driven by a band

of frequencies with constant spectral power density in the neighborhood

of the resonant frequency.
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Chapter 4

FREE-ELECTRON METALS

The first realistic model for a metal is due to Drude. He simply treated

a metal as a free-electron gas and neglected the positive-ion background.
Sommerfeld modified the model later by substituting Fermi-Dirac
statistics for Boltzmann statistics. The model is remarkably simple, yet the

simple ideas are still useful in the interpretation of the optical properties

of metals.

In this chapter, we shall examine the properties of nearly free-electron

metals in the spirit of the Drude model but in the light of modern under-

standing of the electronic structure of metals. This means we will be in-

terested in seeing what can be learned about the Fermi surface as well as

interpreting the traditional optical properties such as reflectivity and
absorption coefficient.

The discussion is limited largely to low optical frequencies. In the infrared,

most transitions are intraband transitions. These are the transitions charac-

teristic of a free-electron metal. They involve the excitation of an electron

to another state within the same band and therefore can take place only

in metals. Intraband transitions persist to higher frequencies, but then, in

real metals, interband transitions become important and the distinction

between insulators and metals begins to break down. The effects of inter-

band transitions are discussed in other chapters.

85
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4.1 Classical Theory of Free-Electron Metals

We derived in Chapter 3 an expression for the dielectric function of a

free-electron metal based on a rather simple phenomenological model.
The model includes a viscous damping term, which leads to energy ab-

sorption by the system. We can now be more explicit about the mechanism
for energy absorption; namely, energy absorption must result from electron

scattering by the same mechanism that results in Joule heating when an
electric current passes through a metal. This is the essence of the treatment

of electrical and optical properties set forth by Drude in 1900. We shall

now consider some aspects of Drude's treatment, but with an emphasis

more appropriate to our present purposes.

An electron in a metal makes random collisions with the defects present.

These defects may consist of various impurities and crystal inperfections ; but

we shall generally concern ourselves only with scattering by the crystal

lattice, that is, electron-phonon scattering. The defects are the phonons
present at finite temperature. Making reference to Fig. 4.1, the mean free

time between collisions is

t = {t 1 +t2 + --- + tn)/n (4.1)

and the mean free path is

l = (h + l2 + ••• + /„)/« (4.2)

Both t and I are functions of temperature.

(a)

Fig. 4.1 Trajectories of an electron in a

metal, (a) No field present; (b) in a constant

electric field. \ " ^

Assume that the probability that an electron makes a collision in a time

interval dt is dt/x, where x is a constant. Then, if we consider n(0) electrons at

time t = 0, the number of electrons that will not have suffered any collisions
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between time t = and t = t is

n(t) = n(0)e-
t/x

(4.3)

The constant x is the relaxation time; it is also the mean free time between

collisions, as we now show:

t = tn(t)— = te- tlx— = x (4.4)

«(0) Jo T Jo T

In the presence of a constant electric field, the electrons experience an

acceleration - eE/m. If, after each collision, an electron starts off again in a

random direction, the average net distance traveled after n collisions will

be

L= -— (ti
2 + ' 2

2 + •• + f„
2
)

2m

2m 2m

neEz2

t*e '" —

m
(4.5)

These n collisions will take on the average a time nx. Thus the average

velocity in the presence of the electric field is

v = L/nr = - eEx/m (4.6)

We can look at the interaction between electron and electric field in a

slightly different way. In the presence of a constant electric field, with no

energy loss mechanism, an electron will aquire in a time interval dt' an

increment in velocity of — (eE/m) dt'. If the constant field were applied only

for the time interval dt', the electrons would maintain the velocity increment

— (eE/m) dt' at all later times t. Suppose, now, that the energy loss mechanism

we have been discussing is included. Then, the velocity increment aquired

at time t' in a time interval dt' will have been damped, at time t, as a result

of scattering, by the factor exp[ — (t — t')/x']. To determine the average

velocity at time t, we need only sum up, by means of an integration, all the

contributions to the velocity at time t resulting from velocity increments

acquired at all earlier times t'. Thus, for a constant electric field, the average

velocity is given by
ft

- (eE/m)exp[-(r - t')/x] dt'

= - eEx/m (4.7)

in agreement with Eq. (4.6).
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The increment in velocity, d\(t), can be considered as the response to

an electric field acting for a time interval df at time t' with the response
function defined as

(4.8)

(4.9)

f)/z) dt'

G(t - f) = - (e/m) exp[ - (t -- 0/t]

If the field varies sinusoidally in time,

E = E(0)e~ ioj '

then,

f eE(0)
v = (exp — icot') (exp -

J-oo m
-(t - t

eE x

m 1 — ion
(4.10)

Since the conductivity is related to the average velocity according to

a = - Nev/E = Ne2x/m (4.11)

where N is the density of conduction electrons, the conductivity for a time-

dependent field is given by

Ne2
x 1

a = — (4.12)
m 1 — io)x

That is, the conductivity is complex, and is related to the ordinary dc

conductivity <r according to

a = ct /(1 - icox) (4.13)

It has real and imaginary parts given by

a l
= (r /(l + co

2
x
2
), g2

= a ojx/{\ + arx 2
) (4.14)

The usual way of deriving expressions for transport properties, including

the complex conductivity, is via the Boltzmann equation. It is also necessary

to apply Fermi-Dirac statistics to the behavior of the electrons. This

subject is well treated in numerous texts. We shall just summarize some of

the essential features here.

The Boltzmann equation is

Of • (df
+ k-Vl/+v?r/=(^-)„„ (4.15)

where / = f(k, r, t) is a distribution function describing the distribution

of electrons in k-space and real space at time t. The right-hand side of Eq.

(4.15) describes the rate of change of/ resulting from collisions of electrons
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with the lattice. The Boltzmann equation is, in general, extremely difficult

to solve. It is easily solved, however, under certain restrictions. Ifwe consider

a steady-state system, df/dt = 0. Then, if the disturbance from an electric

field is small, we can write

f = fo+fi (416)

where

/

is the distribution function in equilibrium, i.e., the Fermi-Dirac

distribution function, and ft is a small displacement from equilibrium.

Finally, if we assume that the term describing lattice collisions can be

expressed in terms of a relaxation time r(k) such that

(df/dt)con = -fjx(k) (4.17)

the Boltzmann equation can be solved. If it is further assumed that t is a

constant, the results are those we have already derived from a different

approach.

There are several aspects of the relaxation time worth noting. The concept

of a relaxation time is introduced for its simplicity, but it is useful only if,

in fact, it is possible to describe many processes in terms of a lifetime which

is in itself relatively simple. Ideally, that means that t should be well ap-

proximated by a constant or a simple function of energy. It is also desirable

that the same x be useful in explaining more than one property. For example,

the ratio of thermal to electrical conductivity is proportional to temperature

and is the same for all metals (Wiedemann-Franz law). This requires that

the lifetime appropriate for electrical conductivity be the same as that for

thermal conductivity.

We have shown earlier that t = x on the basis of a simple explicit model
> in which scattering is isotropic. It should be noted that the assumption of

isotropic scattering is important. The relaxation time that appears in the

Boltzmann equation is the same as the mean free time between collisions

only for isotropic scattering. Isotropic scattering results from scattering

from acoustic phonons, but scattering from impurities is preferentially

in the forward direction. Forward scattering requires more scattering events

to return to equilibrium and the relaxation time is longer than for isotropic

scattering. As a result, the relaxation time for impurity scattering is greater

than the mean free time between collisions. Also, in general, the lifetime

is a tensor for anisotropic solids. We shall consider only isotropic scattering,

in which case i = x, and we identify both characteristic times as simply

the lifetime.

There are two final remarks to be made. The mass which appears in these

equations for the transport properties must be some effective mass. We
shall see later in this chapter what is the appropriate effective mass for

optical properties. Also, we have implicitly assumed that the electric field

does not vary appreciably over a mean free path. We should expect that for
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strong absorption of light near the surface of a metal, the field might well

be attenuated so rapidly in space that this assumption may not be valid.

We shall return to this point and some of its interesting features in Section

4.3, where we discuss the anomalous skin effect.

4.2 The Classical Skin Effect

The dielectric function for the Drude model of a free-electron metal is

given by

4nNe2
1

e = 1 ; ttt (4.18)
m co(co + i/x)

We expect that at sufficiently low frequencies and high purity, the lifetime

is determined by electron-phonon scattering, and we can use the ordinary
dc electrical conductivity. By low frequencies, it is meant that co <^ 1/t.

From Eqs. (4.18) and (4.11), we thus obtain

4na 16=1-
COX (co + i/x)

Anax ( i\
xl

-^r{°"-r) (419)

The real and imaginary parts of s are

£i = 1 - 4nax (4.20)

e2 = 4na/co (4.21)

Thus, with cox <£ 1, |£ x |

<^ |e2 |. These restrictions, together with Eqs. (3.25)

and (3.26), give

Using Eqs. (2.84), (2.88), and (4.22), we find that the decay in magnitude
of the electric vector within the metal is given by

n = k, cox ^l (4.22)

I (4.22), we find that the decay in magnitude
the metal is given by

E = E exp[ - (27KT/ico/c
2
)

1/2
r] = E exp( - r/5a ) (4.23)

The term

<5a = c/(2nanco) 1/2
(4.24)

is known as the classical skin depth. It is the same result obtained in texts

on electromagnetic theory. Table 4.1 gives values of <5C1 calculated for copper

using the dc electrical conductivity at 300°K and at 4°K.
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TABLE 4.1 Classical Skin Depth and Relaxation Parameters in Copper

to, sec"
1 106 10

8 10
10 10

12 10
14 10

16

A, cm 1-9 x 10 5
1.9 x 103

1.9 x 10 1.9 x 10
-1

1.9 x 10" 3
1.9 x 1(T 5

»'

F/ffl) cm 1.4 x 102
1.4 1.4 x 10" 2

1.4 x 1(T 4
1.4 x 1(T 6

1.4 x 1(T 8

.ov Scl 1.2 x 10" 4
1.2 x 10" 5

1.2 x 10" 6
1.2 x 1(T 7

1.2 x 1(T 8
1.2 x 10" 9

4 K:
cox 5 x 1(T 4

5 x 10" 2
5 5 x 102

5 x 10
4

5 x 10
6

Sa 1.6 x 10" 2
1.6 x 1(T 3

1.6 x 10" 4
1.6 x 1(T 5

1.6 x 10" 6
1.6 x 10" 7

300 K
cox 4 x 1(T 8 4 x 10" 6 4 x 10" 4 4 x 1(T 2 4 4 x 10

2

" The classical skin depth <5C1 in copper is given for two temperatures as calculated using

the dc electrical conductivity of copper. The parameter vF/co is the distance traveled by an

electron on the Fermi surface in the time 1/277: of the period of the light wave.

Clearly, the last column in Table 4.1 is not valid; it is simply not correct

to use the dc electrical conductivity for cot P 1. The use of the dc electrical

conductivity implicitly assumes that the electric field acting on an electron

is constant during a time of the order of several lifetimes. That is, Ohm's

law requires equilibrium. Equilibrium is established by electron-phonon

collisions, and it requires several such events during the period of one

oscillation of the electric field.

Deviations from Ohm's law that occur when the electric field varies

appreciably during a time t, that is when cot > 1, are easily handled. One

just requires that the equations for the current be such that if J
in

differs

from its equilibrium value oE, then the rate of change of J
in

as a result of

collisions must be such as to make J
,nd

tend exponentially toward its

equilibrium value with time constant t. Thus,

(d/dt)J
md = (l/x)(<r E-Jnd

) (4.25)

For electric fields varying as e~
i<a
\ this becomes

J
ind = <t E/(1 - icot) (4.26)

But this is just what we derived in the preceding section [Eq. (4.13)] from

a different viewpoint!

What we want to emphasize now is that Ohm's law, which gives

J
ind = cr E (4.27)

describes a local, instantaneous relationship between the total electric

field and the induced current. This is the model assumed in the classical

theory of the skin effect. At sufficiently high frequencies, the model must

be modified. The current at a particular position and a particular time

depends upon the electric field at that same position; but it depends upon

the electric field at earlier times. That is, the inertia of the electrons leads

to relaxation effects! The Drude model of metals incorporates these relax-
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ation effects into the model by means of a viscous damping term. In Section
4.1, we have derived the same result for the conductivity, but in a manner
such as to emphasize that the contributions to the current at time t depend
upon the electric field at previous times of the order of t.

Figure 4.2 illustrates how the nature of the interaction between photons
and electrons in metals changes with increasing frequency (and electron
mean free path). Typical values for the parameters in each region are given
for copper in Table 4.1. Figures 4.3 and 4.4 show where the regions charac-
terized in Fig. 4.2 appear in an co-x diagram.

B *-

Fig. 4.2. Electron trajectories in the skin layer. The dashed line marks the skin layer, the
zigzag line represents a colliding electron, the wavy lines represent the oscillatory motion of
the electron due to the alternating field, and the arrows indicate the incident light waves.
The optical characteristics in the four extreme regions illustrated depend upon the relative
amplitudes of the mean free path /, the skin depth 3, and the mean distance v/a> traveled by an
electron in a time 1/2tt of the period of a light wave. (A) Classical skin effect, / <£ 8 and / « v/to.

(B) Relaxation region, v/a> <f / < <5. (D) Anomalous skin effect, 5 « / and 5 <§ v/co. (E) Extreme
anomalous skin effect, v/co < 5 <§ /. [From H. B. G. Casimir and J. Ubbink Philips Tech
Rev. 28, 300(1967).]

Region A, the region of the classical skin effect, is of concern only at

infrared and longer wavelengths. In this region, the mean free path of an
electron is sufficiently small and the frequency of the light wave low enough
that an electron suffers many collisions during the time it spends in the
skin layer and during one period of the light wave. Thus, this region is well
described by a local, instantaneous relationship between induced current and
total electric field.

At high frequencies, as we have seen, inertial effects of the electron

become important. This is region B, the relaxation region. Here, the electron

suffers many collisions within the skin layer, but the field of the light wave
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Fig. 4.3. A logarithmic plot of the co-t diagram showing the regions illustrated in Fig. 4.2.

The new region, region C, is characterized by transmission. [From H. B. G. Casimir and J.

Ubbink, Philips Tech. Rev. 28, 300 (1967).
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Fig. 4.4 The a>-r diagram for three monovalent metals: (a) cesium, (b) constantan, (c) copper.

The hatched area along the horizontal axis corresponds to the visible spectrum; (A) normal

skin effect, (B) relaxation, (C) transmission, (D) anomalous skin effect, (E) anomalous reflection.

The finely shaded strips indicate the a>-x region where measurements have been carried out by

:

(1) E. Hagen and H. Rubens, Ann. Phys. 11, 873 (1903). (2) K. Forsterling and V. Freedericksz,

Ann. Phys. 40, 200 (1913). (3) R. W. Wood, Phys. Rev. 44, 353 (1933). (4) R. G. Chambers,

Proc. Roy. Soc. A215, 481 (1952); M.A. Biondi, Phys. Rev. 102, 964 (1956). [From H. B. G.

Casimir and J. Ubbink, Philips Tech. Rev. 28, 300 (1967).]
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also oscillates many times between collisions. Because of the inertia of the

electrons, the induced current lags behind the field by an increasing amount
as the light frequency increases. The phase lag approaches 90° for extreme
relaxation. In this region, electron collisions are of little importance. The
electrons respond to the rapidly oscillating electric field as free electrons,

only occasionally undergoing a collision. Thus, the electrons act to screen

the external field, so the reflection is very high, and because of the phase
lag, absorption is negligible. This is characteristic of many metals in the

optical region before the onset of interband transitions. Note, though,

that here, absorption refers to the fraction of the incident light absorbed,

not to the absorption coefficient.

At very high frequencies, the reflectance drops and transmission is

dominant. We have already seen that transmission takes place above the

plasma frequency. Then, there is no longer a skin effect. Transmission also

occurs below the plasma frequency if co > cq
p
2
t. This follows from Eqs.

(3.30) and (3.31) if tor > 1, for then, e
1
- 1 and e2 -» 0, so that the reflectance

and absorption approach zero. Thus regions A and B are separated from
region C, the region of transparency, by the two lines m — co

p
and co = co

p
2
t

as shown in Fig. 4.3.

4.3 The Anomalous Skin Effect

There is another way in which the local, instantaneous relationship

implicit in Eq. (4.27) may break down: The electric field may vary ap-

preciably over a distance comparable to the mean free path. Then, the

velocity of an electron at a particular position depends upon the electric

field at other positions within distances of the order of the mean free path.

The electron "remembers" other fields at other positions! This nonlocal

spatial relationship is analogous to the noninstantaneous relationship

between the electric field and induced current at frequencies co > 1/t.

The most common example of a nonlocal spatial relationship between

current and field is the anomalous skin effect. This effect was first studied

carefully by Pippard [1]. It is illustrated by region D of Figs. 4.2-4.4.

Here, the mean free path is greater than the skin depth, where now, the

skin depth is the anomalous skin depth, which differs from the classical

skin depth. We shall shortly derive an approximate equation for the anom-
alous skin depth.

Region D can be reached from region A if the mean free path can be

substantially increased from the usual values, which are of the order of

tens or hundreds of angstroms at room temperature. This can be done if a

sample of high purity, say pure copper, is cooled to very low temperatures.

However, alloys such as constantan cannot exhibit the anomalous skin

effect. The mean free path in alloys is limited by scattering from the lattice

because of a lack of perfect periodicity.
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To analyze the nonlocal spatial relationship between current and field,

it is convenient to work with the Fourier transforms of the actual fields.

Thus, ,.

E(q) = [1/(2tt)
3
] E(r) exp( - iq • r) dr (4.28)

Since the fields are also generally harmonic in time as well as in space,

a complete description in terms of Fourier components leads to

J
ind

(q, W) = <7(q,co)E(q,a;) (4.29)

The description in terms of a (generally complex) conductivity tensor

which depends on both frequency and wave vector is equivalent to the

description in terms of a frequency- and wavevector-dependent dielectric

tensor as emphasized in Chapter 2.

Electric fields are strongly damped in metals, but magnetic fields may
be strong (see Problem 2.6). The magnetic fields induce currents and these

currents in turn give rise to weak electric fields. Thus, it is reasonable to

define a surface impedance as

Z = E / J
ind

• dS (4.30)

where E is the electric field component along the surface of the metal,

J
ind

is the current density within the metal, and dS is a differential element

of area. At low frequencies, the displacement current is negligible, and

Eq. (2.77) can be simplified to

V x H = 4tktE/c = (4tc/c) J
ind

(4.31)

for the interaction of light with a metal. Since the induced current decreases

rapidly with increasing depth into the metal, we can evaluate the integral

j J
ind

• dS by using Stokes theorem and an integration contour that is

parallel to H at the surface and extends into the metal to a depth at which

the fields can be taken as zero. In this case, Eq. (4.30) becomes

Z = 4tcE /[c (V x H) • dS] = (4te/c) E / 1 H • d\

= (4tc/c)E /H (4.32)

where E and H designate fields at the surface of the metal. It is clear

from Eq. (4.32) that the impedance of free space must be 4n/c.

At low frequencies, such as we have assumed, the displacement current

is negligible and the surface impedance is^ a pure resistance. The surface

resistance or surface impedance is directly related to the reflectivity ac-

cording to

Z - (An/c)
2

Z + (4ti/c)
(433)
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[The derivation of Eq. (4.33) is given in Appendix C] Thus, from a direct

measurement of the reflectivity, the surface resistance can be easily de-

termined.

Pippard measured the surface resistance of metals at low temperature
and found that the surface resistance does not agree with the bulk resistance.

The reason is simply that the measured surface resistance depends on the

penetration depth, that is, the skin depth, and when the skin depth is less

than the mean free path, Ohm's law is not valid in the surface region where
energy is absorbed. In fact, we should not even expect a simple exponential

form for the way in which the field decays inside the metal. If the decay
were exponential, electrons leaving the surface of the metal would acquire

momentum from the field within the skin depth and carry it inward a
distance of the order of /. Currents would exist at depths greater than S

(see Fig. 4.2D). But this is inconsistent with the field and current being

confined to a depth of the order of S. The field must distribute itself in such

a way as to reduce these effects. This is a very difficult problem. The Boltz-

mann equation must be solved taking into account the spatial variation of

E as well as the nature of electron scattering at the surface.

An exact treatment is difficult, but some understanding of the physics

involved can be gotten from a simple model. Electrons traveling nearly

perpendicular to the surface spend only a small fraction of a mean free

path within the skin depth (see Fig. 4.5). They cannot acquire nearly so

much momentum from the field as electrons traveling nearly parallel to

the surface. We can thus say that the effective concentration of electrons

contributing to absorption is

"efT-OVD" (4.34)

or that the effective conductivity is

<7eff ^(<5//)<7 (4.35)

We can now find a self-consistent solution to the problem. We say that

Fig. 4.5 Electron trajectories near the surface. Only electrons traveling nearly parallel to the

surface are effective in absorbing and screening electromagnetic radiation when / |> 6.
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a metal with this conductivity would have a skin depth

5 = c/(27r<remuw)
1/2

(4.36)

which is just a plausible modification of Eq. (4.24). From the last two

equations and

a = Ne2r/m = Ne2
l/mv F (4.37)

where vF is the velocity of electrons on the Fermi surface, we get

8 = c/(2nNe23fico) 1/2

= (mc2
vF/2nNe

2
}ico)

113
(4.38)

The important point is that a measurement of the skin depth is a measure

of the electron velocity at the Fermi surface. The principal contribution

is from those electrons traveling parallel to the surface. If the Fermi surface

is anisotropic, the surface impedance will be different for different orienta-

tions of a metal crystal. In principle, and to some degree in practice, the

geometry of Fermi surfaces can be determined in this manner.

We shall return to a discussion of the anomalous skin effect and its

relationship to the Fermi surface in the next section. For now, we shall

examine in a little more detail some aspects of the relationship of electron

transport properties to the anomalous skin effect.

When the electron mean free path is greater than the distance over which

electric fields vary appreciably, an electron "remembers" the fields existing

at other positions. Because of collisions, its memory decays exponentially

as e~
t/x

. The problem, then, is to compute the current density at a point r

in such a way as to account for spatial variations of the electric field. One
way is to consider the arrival of electrons at r coming from all other points

r' where they suffered their last collision. (See Fig. 4.6.) The number of

electrons in a volume element dV(r') reaching the point r without colliding

is thus

<W(r)cc
eXP( - |r - r1/W ) (4.39,

|r — r

where the exponential decay factor gives the arrival probability at r from

r' without collision, and the inverse square of |r — r'| accounts for the

isotropic distribution of initial directions of electrons at r'. This is equivalent

to all the electrons acting as if they had experienced an electric field

E(r', £')exp[ —(t — t')/x] and had suffered no collisions. We can then treat

the problem as if the electrons suffered no collisions if we replace the actual

field E(r',t') by the effective field E(r',t')exp[ -(t - t')/x]. If we further
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Fig. 4.6 The volume element dV(r') represents a general region in which some electrons are

scattered and then travel to r without suffering further collisions.

assume that the field does not change rapidly with time, cot < 1, the con-
tribution dJ(r) to the current at r arising from electrons at r' is

E-(r-r') exp(-|r -r'|/0
dJ{r) oc

r — r

lr — r'l r — r r — r
dV(r') (4.40)

where the first factor is just the unit vector from r' to r, the second factor

is the component of electric field in the direction of (r — r'), and the third

factor is from Eq. (4.39).

Equation (4.40) can be easily integrated to get the current at r for the

special case in which E is constant everywhere. Then, we must get J
ind =

= o-E. In this manner, it is found that the constant needed in Eq. (4.40) is

3a/4nl. Thus,

r
ind

r ,
3a

f
(r-r')[E-(r-r')]exp(-

r (r) =
4^7 k^TF

r'\/l)dV(r')

(4.41)

which gives an explicit (but not completely rigorous) nonlocal relationship

between induced current and electric field.

To solve a particular problem requires knowledge of the surface. For
example, for specular reflection of electrons from surfaces, the electrons

"remember" the fields from before striking the surface; diffuse surface

reflection wipes out all previous field effects. These cases have been treated

rigorously by Reuter and Sondheimer [2], and the results are generally

in excellent agreement with the rather simple treatment given here.

Now let us return to a consideration of Figs. 4.2-4.4. We are now in a
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position to see how the remaining boundaries between the various regions

of Figs. 4.3 and 4.4 are determined.

The boundary between regions A and D is specified by the condition

/ = 3, where the electron mean free path is given by / = vx. Using the

classical limit for S, we obtain from Eqs. (4.11), (4.20), and (4.24)

where

K2
/v

2
(4.42)

V = c
2W2

(4-43)

and a factor of 2 has been ignored.

In the region of the anomalous skin effect, collisions are of little importance

since the mean free path is greater than the skin depth. Because collisions

are unimportant, the relaxation time is unimportant. Thus, if the frequency

is increased until cot > 1, there is no change in properties when passing

through cot = 1. The cot = 1 boundary between regions A and B does

not extend into region D.

The significant change that occurs on increasing the frequency, starting

in region D, is that during the time an electron spends in the skin layer,

it experiences an increasing number of oscillations of the alternating

electric field. The boundary between regions D and E is thus determined by

S/v = 1/co. Using this condition together with Eq. (4.38) yields co/co
p
« v/c.

Region E is called the region of anomalous reflection. Here, the electrons

in the skin layer respond to the electric field as essentially free electrons.

Region E differs only slightly from region B. Both regions are characterized

by free-electron behavior. In region B, there is some absorption arising

from occasional collisions with the lattice. In region E, collisions occur to

a lesser extent and almost exclusively at the surface. Thus, the boundary

between regions B and E corresponds to the mean free path being ap-

proximately equal to the penetration depth, the condition for which lattice

collisions are of equal importance with surface collisions. In these regions,

the penetration depth is approximately Ap, which leads to t = A
p/v.

4.4 Optical Properties and the Fermi Surface

We have already touched on one aspect of the relationship of optical

properties to the Fermi surface. In Section 4.3, it was shown that in the

region of the anomalous skin effect, only electrons with trajectories nearly

parallel to the surface are effective in absorbing electromagnetic radiation.

It is clear from these arguments and Eq. (4.38) that the surface resistance of a

single crystal is different for different crystal planes. Thus, a measurement

of the surface resistance for different orientations of a single crystal in the
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anomalous region allows a determination of the shape of the Fermi surface.

Figure 4.7 shows the variation in surface impedance ofcopper as measured
by Pippard, and Fig. 4.8 shows the Fermi surface of copper as inferred
from the measurements. The distortion from a spherical Fermi surface
such as to contact the Brillouin-zone boundaries in the <111> directions
was one of the first experimental demonstrations of multiple-connectivity

of a Fermi surface.

The difficulties in practice are several. It is necessary to prepare samples

0.5

90

9 (degrees)

Fig. 4.7 A plot of surface resistance (arbitrary units) versus orientation for copper in the

extreme anomalous region. The angle 6 subtends from the (001) to the (110) directions. [From
A. B. Pippard, Roy. Soc. (London) Phil. Trans. A250, 325 (1957).]

Fig. 4.8 The Fermi surface of copper. [From A. B. Pippard, Roy. Soc. (London) Phil Trans
A250, 325 (1957).]
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of sufficient purity that imperfections other than phonons do not limit the

mean free path; otherwise, cooling the sample to liquid helium temperatures

to achieve / ^> 5 will be to no avail. The surfaces of the sample must also be

microscopically smooth and strain-free so that the surface region is charac-

teristic of the bulk material. On the theoretical side, the interpretation of

measurements is especially difficult for Fermi surfaces composed of several

distinct sheets. In most cases, it is necessary to have a reasonable model of

the Fermi surface in order to interpret the experiments.

To determine the shape of the Fermi surface requires a single crystal.

However, the surface impedance in the anomalous region is also useful

even for a polycrystalline sample. It is directly related to the total area SF
of the Fermi surface and is not affected by anisotropies in scattering me-

chanisms. To see this it is only necessary to show (Problem 4.4) that the

quantity a/l can be obtained from measurements of the anomalous skin

effect. Then, for a polycrystalline sample, a measurement of the anomalous

skin effect gives a/l. This, in turn, is directly related to the area of the Fermi

surface according to

a/1 = e
2SF/l2n

3h (4.44)

The latter follows directly from the nearly-free-electron model of a metal.

It must be noted, though, that the area of the Fermi surface is the surface

enclosing the electrons in k-space excluding regions defined by a zone

boundary. The latter is discussed in more detail later in this section.

There is another source of information on the Fermi surface. The di-

electric function determined from experiments (usually) in the near-infrared

is related to the area of the Fermi surface [3]. We shall discuss in later chap-

ters how the dielectric function is determined. For now, we write the dielectric

function for a nearly-free-electron metal as

4nNe2
1

s = A (4.45)
m cd(co + i/x)

The constant A may differ from unity because of local field effects and
core polarization. It is also implicit that the relaxation time is isotropic.

It is sometimes possible to write the dielectric function in the form of

Eq. (4.45) even in the presence of interband transitions if the interband

transitions are spread over a sufficiently wide range. However, we shall

neglect interband transitions.

By measuring the reflectance of metals at long wavelengths, before the

onset of interband transitions, it is possible to determine e and, hence, the

optical effective mass m . We shall now show that m is directly related to

the area of the Fermi surface. Consider the interaction of electrons in a

cubic metal with light polarized in the x direction. Each electron then

responds to the electric vector of the light according to its effective mass.
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Thus, l/m , which is an average inverse effective mass, is given by

1 2 1

~™o
^ N k̂ cc

m*x(k)
(446)

where the summation is over all occupied states, the factor 2 accounts
for the two spins per state |k>, and m*Jk) is a diagonal element of the ef-

fective mass tensor related to band structure by

l/m*x(k) = (l/ft
2)V2/(k) (4.47)

Replacing the summation in (4.46) by an integration over all occupied
states gives

l/m = \2/{2nfh
2
N'] V

fc

2/(k) dk (4.48)

For a cubic material, the diagonal elements of the inverse effective mass
tensor are equal. Since

Vk
2
<f(k) = (V2

x
+ V2

y
+ V2

J<f(k) (4.49)

Eq. (4.48) can be written as

l/m = (l/4n3
h
2N) |Vk

2
(f(k) dk (4.50)

Now, by using Green's theorem, Eq. (4.50) can be rewritten in terms of

a surface integral as

l/m = (l/127t
3
fc
2
iV) Vk<f(k)- dS (4.51)

Substituting

Vk<f(k) = ftv k (4.52)

in (4.51), we get

1 /mo = (l/l2n3hN) vk • dS (4.53)

Note that a full band makes no contribution to l/m because v k = at

the boundaries of a Brillouin zone.

The electron concentration N can be written in terms of the area SF° the

Fermi surface would have if it were spherical

:

N = r — =
I (4.54)

(2tt)
3

3 12?r
3 v ;
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Thus, for metals in which all the conduction electrons are contained within

the first Brillouin zone, the surface over which the integral (4.53) ranges is

just the Fermi surface, and

l/m = (l/ftfepoSpo) vF • dSF (4.55)

The Fermi velocity averaged over the Fermi surface is

<%> = (1/SF)

hence

vF • dSF (4.56)

l/m = (l/^Fo)(VM<%> (4-57)

This last equation provides a rather direct connection between optical

properties and the Fermi surface. Of course, only a quite simple case

has been treated. Optical properties are generally quite complicated

and we cannot expect to be able simply to use optical reflectance measure-

ments to study Fermi surfaces. What is important is the ideas involved,

to see that, at least in principle, there is a relationship between optical

properties and Fermi surfaces, and that the relationship is conceptually

quite simple in limiting cases.

We have yet to generalize the analysis of optical properties and Fermi

surfaces and see the range and limitations of its applicability to more

complex metals. Already, though, it is clear that, at least in principle,

the results should be of considerable interest. Optical measurements can

be made on large classes of metals, alloys, and liquid metals which are

not amenable to the usual methods of studying Fermi surfaces (de Haas-

van Alphen effect, cyclotron resonance, etc.). Because of rather severe

restrictions on the electron mean free path, the latter are usually limited

to samples of high purity and low crystal structure defect concentrations.

We shall now resume the analysis of Fermi surfaces in terms of optical

properties, blithely ignoring any complicating factors.

For metals in which the Fermi surface extends through more than one

Brillouin zone, the surface over which the integral (4.53) ranges is just

that surface which encloses all the electrons in an extended zone scheme.

This is illustrated in Fig. 4.9 for a two-dimensional case.

Those parts of the surface which lie on the Brillouin zone faces are not

part of the Fermi surface ; electrons in those states have energies less than

$F . However, because vk = on the Brillouin-zone faces, these regions

make no contribution to the integral in (4.53). Thus, even for disconnected

Fermi surfaces, the optical mass is given by Eqs. (4.55) and (4.57).

There is one further step to be made in order to simplify the results and
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Fig. 4.9 Two-dimensional representation of

the intersection of the Fermi surface with the

Brillouin-zone boundaries.

make them more useful. We must be able to separate the contributions

from SF and <uF> in Eq. (4.57). This requires more than optical measure-

ments. One way is by means of electronic specific heat measurements.
The electronic specific heat is proportional to the density of states at the

Fermi surface, and the density of states is proportional to an effective mass.

Following through in much the same way as we derived an expression for

the optical mass, it is possible to derive an expression for a thermal mass
m

t
. The crucial difference between the optical mass and the thermal mass

is that the averages are taken in different ways. One is an average of the

reciprocal effective mass of band theory; the other is a direct average of the

effective mass of band theory. Expressed in terms of velocities averaged
over the Fermi surface,

l/m =(l/hkFo)(SF/SFo)<vF }

m
t
= hkFo(SF/SFo)(l/vF)

The ratio of these masses is

m
t
/m = (VM2 <X><iK>

The Schwartz inequality requires

<!>F><l/t>F>> 1

Hence,

m
t
/m > (SF/SFo)

2

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)

We now consider what sort of information about the Fermi surface can
be obtained from Eq. (4.62) if the optical and thermal masses have been
determined from experiment. For simple metals, in which all the conduction
electrons are contained within the first Brillouin zone, there are two pos-

sibilities :

1. The Fermi surface is spherical. Then, vF is constant, the equality

holds in (4.62), and m
t
/m = 1.
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2. The Fermi surface is not spherical. Then, since a sphere has the

minimum surface area per unit volume, 5F > SFo, and mjm > 1.

If the Fermi surface intersects the Brillouin-zone faces, it may be that

SF < SFo. As was pointed out when discussing Fig. 4.9, the surface area

on the Brillouin-zone faces is not part of the Fermi surface. If the area of

contact is large enough to offset the restriction (4.61) imposed by the

Schwartz inequality, then it is possible that mjm < 1.

It is clear that m is related to the Fermi surface. However, there are

difficulties in attempting quantitative studies of Fermi surfaces. It is more

likely that the ideas mentioned here will be more easily applied to the

study of changes in the Fermi surface upon alloying. This was first done

by Cohen and Heine in an attempt to reconcile the Hume-Rothery rules

for alloy phases with modern knowledge of Fermi surfaces. Even in these

sorts of applications, there are difficulties. For example, it is not always

clear what is the proper choice for the electron concentration jV. To apply

the Hume-Rothery rules to alloys containing Fe, Co, and Ni, it is necessary

to assume that these atoms contribute no electrons to the concentration JV.

Thus, Fe-Al acts as if it has an electron/atom ratio of f. Ambiguity in N is

also likely to be a problem with multivalent solutes added to monovalent

metals.

There are other complications. These include the following:

1. The lattice spacing changes on alloying, producing changes in

band structure.

2. If the alloys are ordered, the Brillouin-zone structure differs from

the parent metal.

3. The integral in Eq. (4.55) is not very sensitive to the shape of the

Fermi surface if, as in the noble metals, the Fermi surface only slightly

contacts the Brillouin-zone faces. That is, the integral does not differ much
from what it would be if the Fermi surface were a sphere.

Finally, there are corrections for many-body effects. In an ideal crystal,

many-body effects arise from electron-phonon and electron-electron

interactions. These interactions lead to a quasiparticle description of the

electron.

A quasielectron is visualized as follows. Imagine an electron moving

through a solid. As it moves, it attracts neighboring ions and repels other

electrons. Thus, the electron surrounds itself with a positive screening

cloud. The polarization cloud tends to move with the electron. Of course,

the same ions cannot move along with the electron; the cloud is made up

of just neighboring ions and these neighbors change as the electron moves.

The system of real electron plus surrounding cloud is called a quasielectron.

In an ionic crystal, where the electron-ion interaction is particularly strong,

the composite particle is called a polaron.

The interaction between two quasielectrons is a screened interaction
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and is much weaker than the bare Coulomb interaction. Thus, the quasi-
electrons behave much like free electrons but with a renormalized mass.
That is, the quasielectron acts as a free electron whose mass is greater than
the true electron mass because it carries along a cloud of other particles.

The thermal mass ofan electron as determined from specific heat measure-
ments includes effects from electron-phonon and electron-electron inter-

actions. Thus, the thermal mass is increased over the value calculated from
one-electron band theory. At optical frequencies, the lattice can no longer
follow the motion of the electrons, so the electron-phonon (i.e., electron-
ion) interaction is not effective. However, the electron-electron interaction
may still be of some importance and modify the optical mass. Since many-
body effects act in different ways to modify the thermal and optical masses,
comparisons are made more difficult and deductions concerning the nature
of the Fermi surface may be almost hopeless.

PROBLEMS

4.1 Show that if cox <| 1, the reflectivity of a metal is given by the Hagen-
Rubens relation:

R « 1 - (2w/7Tff)
1/2

4.2 Show that the reflectivity of a metal in the relaxation region is given by

R * 1 - (2/co
p
t)

4.3 Carry through an analysis of the skin effect in terms of a complex
wave vector q. How is the imaginary part of q related to the classical skin

depth?

4.4 Read R. G. Chambers, Proc. Roy. Soc. A215, 481 (1956). Discuss the

determination of a/l from anomalous skin effect measurements.

4.5 Show that when cot <| 1, the complex wave vector is

q = (1 + 0/<5ci

so that in the region of the classical skin effect, electromagnetic waves
are damped as "quickly" as they propagate.

4.6 Show that the surface resistance is independent of the scattering time
in the region of the anomalous skin effect.

4.7 Derive a relationship between the reflectivity and the skin depth in the

region of the anomalous skin effect.

4.8 Show how the surface resistance in the anomalous region is related

to the curvature of the Fermi surface.
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4.9 Show that the surface conductivity in the anomalous region is pro-

portional to (o-//)
1/3 so long as (//<5)

2
^> (1 + co

2
t
2
)

3/2
. Thus cot can be greater

than one, if l/d is sufficiently large, and relaxation effects are still negligible.

4.10 Read and discuss the following articles: (a) H. E. Bennett et a/.,

Phys. Rev. 165, 755 (1968). (b) N. V. Smith, Phys. Rev. 2, 2840 (1970). (c) M.
Theye, Phys. Rev. 2, 3060 (1970).

4.11 Read W. P. Dumke, Phys. Rev. 124, 1813 (1961). Discuss the dif-

ferences and similarities in the classical and quantum theories of free-

carrier absorption.

4.12 Derive Eq. (4.59) for the thermal mass.

4.13 Is it necessary to impose any restrictions on the magnitude of cot

in order to determine m from reflectance measurements? Does it matter

if t is frequency-dependent?

4.14 What is the relationship between SFo and the area for the Fermi

surface of a perfect free electron gas of the same density? Is SFo related to the

effective mass m* of band structure?
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Chapter J

INTERBAND TRANSITIONS

In this chapter, we develop the quantum mechanical theory of direct

and indirect transitions between bands. We then examine the optical

properties of some representative solids in terms of their electronic band
structure. Next, we consider exciton absorption. Excitons, which are quasi-

particles consisting of an electron-hole pair, lie outside the one-electron

band picture, but they are too important to dismiss and they can be con-

veniently discussed with reference to a one-electron band diagram. Finally

a discussion of photoemission illustrates the power as well as the dif-

ficulties of this relatively new method of studying band structure. It also

introduces the new and still somewhat controversial concept of nondirect

transitions.

5.1 Periodic Perturbation

We want to consider the effect of an electromagnetic field in exciting an

electron from an initial state $ £
to some other state </>

7
-.

Consider a field producing a perturbation of the form

H' =\V{r){ei(0t + e~ i(0t

) (5.1)

From first-order perturbation theory (see Section 3.5), the rate of change of

108
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amplitude for finding the electron in state cf)j is

ih ddj/dt = Vji (e
i{^ +co)t + e

i{(OJi ~ a)t
)

(5 -2)

where ,.

V
Jt
= U/[7(r)/2]^* (5.3)

Integrating Eq. (5.2) from time t = 0, when the perturbation is first turned

on, we obtain

d: = n + (5.4)

h \ (Oji + co a>ji — co

The amplitude a, is appreciable only if co « co
}i

. If we consider only the

absorption of energy, so that cojt = {$}
— $^/h is positive, then only the

second term on the RHS of Eq. (5.4) need be considered. Thus the probability

of finding an election excited to the state cj)j is

, ,, 4|K,|
2

sin
2
[i (co «-co)t]

\a .\

2 = '
-"' L2V Jl LL (5 5)

1 •"
hr (cOji — coy

In real systems, we must consider a range of final states having energies

near Sy Thus if p{$]) dSj = p{$$h dco
j{

is the number of states having

energies between <f . and Sj + dS'p then the probability of finding the

electron excited into one of these states is

,

.- 4 f. ., pis';) sin
2 Rico .,•

— co)f\ dco H
aj\

2
p{*j) dSj = - Vjt

2-^
,

Jl
'
J J- (5.6)

h J (COji - co)
2

Because of the factor 1/(c0jj — co)
2

, the only significant contribution to

the integral comes from frequencies co
j7
« co. In the narrow band of fre-

quencies near co
7I

- = co, we can assume that p{Sj) and \Vjt
\

2
are slowly

varying functions of Sj. They can be taken outside the integral and Eq. (5.6)

rewritten as

tf^-^Jf sin>[^ - .»] *»,
(57)

h J -oo (C0
jt

. - CO)
2

The region of integration has been extended to include all frequencies,

— oo < co < oo. This is possible because only the region near co^ = co

contributes. Carrying out the integration, we obtain

jwmMj -e*,nWw (5.s)

Thus, the probability of finding the electron in an excited state increases

linearly with time.

That significant contributions to the integral in Eq. (5.7) come only
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for frequencies co
j{
« co is an expression of the conservation of energy

for the unperturbed states. It is not an exact restriction except in the limit

t -+ oo. All this can be seen most simply from an inspection of a plot of

[sin
2
(j cotj]/co

2
versus co as shown in Fig. 5.1. The central peak, of height

t
2
/4, becomes sharper with increasing time. In the limit t -* oo, only transi-

tions for which co = contribute. The area under the curve is proportional

to the probability of finding an electron in the excited state. Since the peak
height increases as t

2
, whereas the width decreases as r"

1
, the area under

the curve increases linearly with time as we expect.

Recognizing that only transitions for which co
j{
% co are possible, we

can rewrite Eq. (5.8) as

\aj\
2 = (Int/h)^ 2

d(£jt - hco) (5.9)

The use of a S function specifies the conservation of energy requirement,

but it only has meaning as part of an integrand. Thus, Eq. (5.9) for \a
}\

2

can be used only when multiplied by the appropriate density of states and

an integration performed.

The transition rate from state </>,• to state cj)j is given by

Wji = (d/dt)
\

aji
\

2 = (2n/h) |F,-,-|
2 5{S

}i
- hco) (5.10)

5.2 Direct Interband Transitions

We are now ready to consider interband transitions. We consider first

a solid having simple parabolic bands with maxima and minima at k = 0,

sin
2

(cut/2)

Fig. 5.1 Relative probability of finding an electron excited to a state having an energy ha>

greater than the initial state as determined from first-order perturbation theory.
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e =

Fig. 5.2 Schematic energy band diagram.

as shown in Fig. 5.2. The zero of energy is taken at the bottom of the con-

duction band. Then, the energy of an electron in the conduction band is

<f c(k") = h
2
(k")

2/2me

and in the valence band is

<f v(k')= -<fG -[ft 2
(/c')72mh]

(5.11)

(5.12)

where me and mh are, respectively, effective masses for electrons in the con-

duction band and holes in the valence band.

The light wave can be described by the vector potential

A = ^Aa {[exp i(q • r — cot)] + exp — i(q • r — cot)} (5.13)

where a is the unit polarization vector and q is the photon wave vector.

For transverse fields, we can work in the Coulomb gauge, V • A = 0,

so that, as shown in Appendix E, the interaction between photons and

electrons can be described by the perturbation Hamiltonian

H' = -(ieh/mc)A-V (5.14)

Substituting from Eq. (5.13) yields

H' = — {iehA/lmc) {[exp i(q • r - cot)] + exp — i(q • r - cot)} (a -V) (5.15)
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Now, consider a transition from a state i in the valence band to state j in

the conduction band. We describe these states by the Bloch functions

(A, = Q~ 1/2 (exp/k'-r) Wv(r,k')

\j/j = £r 1/2
(exP ;k"-r)a

c(r,k")

(5.16)

We want to determine the transition rate as given by Eq. (5.10). For
this, we need to know the perturbation matrix element. If we consider only
absorption processes, then we need retain only the first term in Eq. (5.15).

The spatial part of the matrix element is then

^r) = j>A/[^r)]<Mr

= n iehA

2mc
(exp iq • r) a • V ipidr

iehA

2mcQ,

iehA

u*(r, k") (exp - ik" • r) exp iq • r) a • V (exp ik' • r) «v
(r, k') dx

= ~ ^^ "c*(a * Vm v + mva • k') exp[*(k' + q - k") • r] dx (5.17)

Because of the periodicity of the functions uc and uy, the integral can be
expressed as a sum of integrals over unit cells. Referring to Fig. 5.3, we
see that

exp[i(k' + q - k") • r] = exp[i(k' + q - k") • (R„ + r')] (5.18)

Fig. 5.3 The position r can be expressed as the vector sum of the distance R„ to the nth unit

cell and the distance r' from the cell origin to the point r.
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Thus, H'^r) can be expressed as

H'jfc) = I
J

Z(r'' k ' k"' *») exPf>'(k ' + A " k")
'

R
»]

dr
'

= J exp[i(k' + q - k") • R„]
I

/(r\ k', k", q) dr (5.

n Jcell

19)

The summation £„ exp[i'(k' + q — k") • R„] is approximately equal to zero

unless (k' + q — k") = K, where K is a reciprocal lattice vector. (See Prob-

lem 5.1.) Working in the reduced zone scheme, we take K = 0, so that

k" = k' + q (5.20)

Since q for a light is a small fraction of a reciprocal lattice vector, we may
take

k" = k
, q = (5.21)

Transitions of this kind are called direct, or vertical, interband transitions.

With these assumptions,

X exp[i(k' + q - k") • R„] = JVC (5.22)

n

where Nc is the number of unit cells in the crystal. Taking A as the volume
of a unit cell and Q as the volume of the crystal, so that Nc

= Q/A, the

perturbation matrix element is

H'jt = - ^—r «c *(k') [a • Vuv(k') + m • k'uv(k')] dx (5.23)
2mcA JeM

The second term in the integral is zero since Bloch functions, and the

periodic parts of Bloch functions, are orthonormal. Should it happen that

the first term is also zero because of the particular form of symmetry of uc

and uy, it will be necessary to reconsider the restrictions on k' and k".

That is, we will have to consider what are called forbidden direct transitions.

These are transitions for which it is necessary to recognize that q ^ 0, and
hence Eq. (5.20) rather than (5.21) must be used. However, for now, we shall

consider the case in which the first term in H'n in Eq. (5.23) is nonzero.

Introducing the momentum operator

p = - iW (5.24)

and the matrix element of the momentum operator

Vj . = - (ih/A) wc*Vuv dx (5.25)

'cell
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into Eq. (5.23), we get for allowed direct transitions

Hji = - (iehA/2mcA) wc*a • Vuv dr

cell

= (eA/2mc)* -p
ji (5.26)

Substituting this into Eq. (5.10), we find that the transition rate of an electron

from state \j/
t
to state if/j is

Wji = (ne
2A 2/2m2hc2

) |a • pj7 |

2 d(S
}i
- hco) (5.27)

Of course, in a real solid, electrons do not make transitions simply

between two Bloch states. We must consider a range of states between which
transitions can take place. The density of states in k-space (including

spin) is (47r
3
)

-1
per unit volume of crystal. Multiplying this by W}i and

integrating over all allowed values of k gives the total transition rate for

electrons excited from the valence band to the conduction band. Note
that in the integration we need consider only the density of states in the

valence band. The density of states in the conduction band need not be

considered because for direct transitions, k' = k", and there is a one-to-one

correspondence between states in the valence band and states in the con-

duction band. Thus, the total transition rate from valence band to conduc-

tion band is

ne2A2
f dk ,

|*o
'
Pji\

2 SW Jt
- hco) (5.28)W„ =

2m2hc2
j Arc

Let us now eliminate the factor A2
in Eq. (5.28). Comparing Eq. (5.13)

with Eq. (E.18) from Appendix E, we see that

A2 = Znhc2^ (5.29)

Thus,

Wcv = {e
2
/e 1nm

2
co) dk |a • pjt

\

2 d{S
}i
- hco) (5.30)

Using Eq. (3.106), the imaginary part of the dielectric function is

e2 (co) = (e
2
/7tm

2
co

2
) dk |a • pj

2
dtfjt - hco) (5.31)

We shall discuss the dielectric function and its relationship to the elec-

tronic band structure in considerable detail in the next section. For the

moment, let us calculate a numerical estimate of the absorption coefficient

to compare with experiment.
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The factor |a • pJf |

2 appearing in Eq. (5.30) is dependent on k. However,

if we simply use the conditions of spherical symmetry implicit in Eqs. (5.11)

and (5.12), we can define a mean square momentum operator <p^> by

<K ' PjKW|
2
> = <PUK)> + <Pji(ky)> + <P?(*.)> = 3 <Pji> (5-32)

where <p
2
;> is assumed constant over the range of allowed k values. Then,

Eq. (5.30) becomes

Wcv «—^f- dk <5(<f , - hco) (5.33)
&

x
nm co J

Assuming parabolic bands as given by Eqs. (5.11) and (5.12),

£
jt
= gc

-g
y = £G + (h

2
k2/2m

T )
(5.34)

where m
T

is the reduced mass defined by

l/m
r
= (l/m

e ) + (l/mh) (5.35)

Now, the integration over k-space in Eq. (5.33) can be converted to an
integration over S

it
. We have, from

dk = Ank2 dk (5.36a)

in spherical coordinates, and from Eq. (5.34), that

dk = (47t/^
3)m

r[2mr((rji
- <fG)]

1/2 dS
fi

(5.36b)

Thus, Eq. (5.31) becomes

m2
h
3
s
1 co

W™ = U 3

"
I (^ - ^g)

1/2 Wjt ~ hco)

eeHim^ipiyihco-^yi2

(5.37)
m2

h
3
s

1
co

Defining an average oscillator strength

f=2{pji
y/mhco (5.37)

analogous to the rigorous definition of Eq. (3.82), we can rewrite Eq. (5.37)

as

Wcv = 3e
2(2m

T )

3/2
f(hco - <fG )

1/2
/mfc

2
£l (5.39)

We can now make an estimate of the absorption coefficient for a material

in which direct transitions are allowed. Assuming me
= mh — m, so that

2m
r
= m, and using Eqs. (3.104) and (5.39), we get

acv = 3e
2
f[m(hco - £G)Y

/2
/h

2
nc (5.40)
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If we now assume an oscillator strength of unity, take n = 4, which is

typical of many semiconductors, and calculate the absorption coefficient

for hco — $G = 0.01 eV, we find acv « 2 x 104 cm -1
. This is, in fact, in good

agreement with the values of a for direct transitions in Ge near threshold.

However, the agreement is not obtained simply by a direct measurement
of a near threshold. This is because the formation of excitons causes a to

tend to a constant value near threshold. Excitons arise from the Coulomb
interaction between the excited electron and the hole left behind, something

we have neglected, and thus our present results are not rigorous at energies

just above threshold. However, corrections can be made for exciton forma-

tion, and when that is done, good agreement is obtained between theory

and experiment. We shall discuss excitons in greater detail in later sections.

5.3 Joint Density of States and Critical Points

Equation (5.31) for s2(co) arising from direct interband transitions can

be rewritten using the property of the S function:

Slg(x)-] = ^\g'(xn)\-
1 d(x-xn); [g(xn)

= 0, g'(xn) ± 0] (5.41)

n

In the case of Eq. (5.31), we have

<5[<f,,(k) - fta>] = I [<5(k - k„)/|Vk<?,,(k)|] (5.42)

n

so that

s 2(co)
=—^ dk £ ,1' , (5.43)
nm2

co
2
J „ |Vkf,- £

(k)|

where k„ represents all the values of k such that <f^(kj = hco. The points

k„ thus define a surface in k-space. We can now describe e2(co) in terms of an

integration over that surface in k-space. Namely,

e
2

f, ., dS
s2(w) =—^ a • p„ (5.44)

nmz
co

z
J |Vk^ji(k)|

where dS is a surface element in k-space such that

^..(k) = hco (5.45)

To see more clearly how one makes the transformation from Eq. (5.43)

to Eq. (5.44), we shall consider in more detail the surface defined by Eq.

(5.45). We start by considering an electron energy band.

An expression for the density of states p{$) for an electron energy band

can be derived as follows. The number of states per unit volume with energy
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between £ and £ + d£ is p(£) d£. Now, consider two surfaces of constant

energy in k-space, one having energy £ and the other having energy £ +
d£. Two such surfaces are illustrated in Fig. 5.4. Take a cylindrical

volume element of area dS on the constant-energy surfaces and of height

dk^_, where dk^ is the perpendicular distance between the two-constant

energy surfaces in k-space. Then,

rk(6 + dS)

p{£) d£ = p(k) dk
Jk(£)

= p(k)dSE dk A (5.46)

where p(k) is the density of states in k-space. Now, p(k) = l/47t
3 including

spin, and

d£ = \k£ • dk
(5.47)

= |Vk<T| dk^

Fig. 5.4 Element of area dS on a constant-energy surface in k-space. The element of volume
between two surfaces of constant energy 6° and <? + dS is seen from the insert to be dV
= dS dSI\S/vS\.
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Substituting these into Eq. (5,46), we find

p(S) = (1/4tt
3
)

J

—f

j. (5,48)

As we would expect, the density of states is highest for flat bands, that is,

as \\VS |

- 0.

Assume that the electron energy $ ,-(k) in band i can be expanded to second

order about k :

£ ,.(k) = g$L ) + «•"
• (k - k ) + (k - k ) ' P

l

• (k - k ) (5.49)

Equation (5.49) defines an electron energy band in the neighborhood of k

We now define an optical energy band <f^(k) as the difference between two

electron energy bands:

<f,,-(k) = ^,-(k ) + *
ji

• (k - k ) + (k - k ) ' r • (k - k ) (5.50)

where

<f,,(k) = £flL) - Sfr)

%
ji = aj - a', P

n = p
j - F

Clearly, by direct comparison of Eqs. (5.48)-(5.50), the optical energy

band has a density of states

1 P dS

4n J \Vil6ji\ gji =*a

= 2Jjt
(5.51)

The density of states Jn as given by Eq. (5.51) is called the joint density

of states and is usually denoted by Jcv for transitions from the valence band

to the conduction band. It does not include the factor of two for spin.

Of course, optical transitions are weighted by matrix elements, so Eq. (5.51)

cannot be directly substituted into Eq. (5.44). However, |a • p7 ,|

2
is a slowly

varying function in many cases. Thus, in the neighborhood of regions where

J
j{

is a strongly varying function, |a • p7 ,|

2 can be taken outside the integral.

Then s 2(co) is directly proportional to the joint density of states:

s2(co) = %(ne/ma))
2

|a • p^
2 Jcv (5.52)

Points in k-space for which

\k£ji = (5.53)

are called critical points or van Hove singularities [1]. They were discussed

first by van Hove in connection with neutron scattering and later applied by
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Phillips to a discussion of electronic energy bands and optical properties [2].

Critical points are sources of prominent structure in the joint density

of states and in the optical constants. They can occur for both electronic

and optical energy bands. In the case of an electronic energy band, a critical

point is defined by

Vk^- = (5.54)

Such critical points occur only at highly symmetric points in the Brillouin

zone. If also

Vk<f ;
= (5.55)

then the two electronic critical points necessarily produce an optical

critical point

VJji = Wj - Vk<f,- = (5.56)

However, optical critical points can also occur for

Vk£j = Vk<f ,- =h (5.57)

The latter usually occur on symmetry planes or lines, but may be at a

general point in the Brillouin zone. A critical point defined by Eq. (5.56)

is called a symmetry critical point.

There are four types of critical points corresponding to four types of

singularities which may appear in the joint density of states. This can be

seen by examining a quadratic expansion for the energy in the vicinity of

a critical point.

In the neighborhood of a critical point kc , and with a suitable choice

of coordinate axes, a constant-energy surface can be expressed as

rf(k) = <f(k c ) + ^k
x

2 + p2k2
2 + £ 3 /c 3

2

k, = (k - kc ) l7 k 2 - (k - kc )2 , k 3 = (k - kc ) 3 (5.58)

The four types of analytical critical points correspond to the four possible

choices of signs (plus or minus) for the coefficients /? 1? jS2 , and /? 3 .

Suppose that the coefficients jS l5 jS2 , and j33 are all positive. Then the

surfaces of constant energy are ellipsoids in k-space. The volume of an

ellipsoid with surface energy <f(k) is

4* [<f(k) - <f(kc)]
3 ' 2

volume „ k-space -—
tf , ,,,„ <5 -59 >
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Since

ptfjd dS
jt
=

we obtain

JjM -
2
P0) =

[<f(k) - <f(kc )]

volume in k-space

1 fe(k) - ^,(k c )]
3/2

3*2
(PiMz)

1 '2

1 d j 1 [<f(k) - Akc)]
3/2

2 ^ 137T
2

faM*) 1 '2

1/2

(5.60)

(5.61)

This is just the well-known square root dependence of the density of states

above a minimum. It is designated as an M -type critical point. The sub-

script in the notation designates the number of negative coefficients fi x ,

Pi? /?3 (
or the number of negative masses). The joint density of states in the

neighborhood of an M -type critical point is shown in Fig. 5.5 along with

the other three types of critical points.

The derivation of the joint density of states for an M
x

critical point is

*-flCJ

Fig. 5.5 Van Hove singularities in the joint density of states Jcv . These singularities appear
superimposed on a (sometimes) rather smooth background in Jcv arising from the totality

of transitions throughout the Brillouin zone. Thus, e.g., the line sloping slightly down and to

the left from M represents the smooth background in the neighborhood of M . The figures

are drawn such as to emphasize the critical point structure; the true zero in Jcv would generally

be well off scale in these figures.
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given in Appendix F, Critical points of type M 1
and M 2 are known as

saddle points because the constant-energy surfaces have the general shape

of a saddle. They are sometimes designated S
x
- and S2-type critical points.

The properties of the four types of critical points are summarized in

Table 5.1.

TABLE 5.1 Joint Density of States Jcv for Critical Points

Critical

point

Type /?! /?2 /?3

•^c v

S < (5q > 0Q

M
M

1 (
= 5

1 )

M 2 { = S2 )

M 3

Minimum
Saddle point

Saddle point

Maximum

+
+
+

+
+

+
c. - cv(* - s) vl

c z(s - sY 12

c 2

c {$ - s yi2

c
1

— C2 '(S — <oo)

We have just considered three-dimensional critical points. Should it

happen that one or two of the coefficients /? in Eq. (5.58) are negligible

because of principal effective masses of large magnitude, then it is of interest

to consider one- or two-dimensional critical points.

Clearly, critical points provide important information concerning the

electronic band structure. Knowledge of symmetry critical points is es-

pecially helpful since they can be used as end points for interpolation

schemes. However, although critical points are in principle of special

significance, they may make only a small contribution to e2 (co). Their

identification in an absorption or reflection spectrum may be quite dif-

ficult. They are generally superimposed on a broad background and the

structure due to the critical points themselves is further weakened by

broadening. It is not usually sufficient just to use high-quality single crystals

and make measurements at low temperature in order to resolve critical-

point structure.

The structure in the neighborhood of critical points is greatly enhanced

if a derivative technique is used. There are a number ofways to modulate the

optical properties in order to be able to measure a derivative of some sort.

These include electroreflectance, piezoreflectance, and magnetoreflectance

;

all are discussed in detail by Cardona [3]. Here, we shall discuss only

wavelength-modulation spectroscopy.

Wavelength-modulation spectroscopy requires a wavelength-modulated

monochromatic light beam. If the wavelength (or frequency) of the beam is

then slowly changed so as to sweep through the spectral region of interest,

and the ac component of the reflectance is detected by synchronous phase-

sensitive detection techniques, the derivative dR/dX or dR/dco can be

measured directly. This has the advantage of discriminating against the
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Fig. 5.6 Frequency modulation spectrum of copper. The measured values of R'(a>)/R(co)

are at T = 7°K. The agreement between theory ( ) and experiment ( ) confirms the

assignments of transitions between critical points as identified by a number of workers. How-
ever, it is found that volume-effect contributions from all over the Brillouin zone are more

important than critical points. [From C. Y. Fong, M. L. Cohen, R. R. L. Zucca, J. Stokes,

and Y. R. Shen, Phys. Rev. Lett. 25, 1486 (1970).]

large but rather structureless background. Compare, for example, the rich

structure in the wavelength modulation spectrum of Cu (Fig. 5.6) with the

ordinary reflectance spectrum of Cu (Fig. 3.21). Of course, critical points are

not the only sources of structure in the derivative spectrum, but when
structure can be identified as arising from critical points, it is especially

helpful in interpreting the electronic band structure. We shall discuss

some examples of derivative reflectance spectroscopy in the next section.

5.4 Direct Transitions in Germanium

Figure 5.7 shows the room-temperature reflectance spectrum of Ge.

The band structure is shown in Fig. 5.8 and a comparison of calculated

and experimental values of s2 is shown in Fig. 5.9. We now want to discuss

some of the transitions shown in these figures and see how they are related

to the critical points discussed in the preceding section.

The reflectance spectrum is dominated by a doublet peak at 2.3 eV and a

large maximum at 4.5 eV. The latter peak arises from transitions £2
-> L 3
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Fig. 5.7 Room-temperature reflectivity and optical constants of Ge. [From H. R. Phillip

and H. Ehrenreich, Phys. Rev. 129, 1550 (1963).]

and points around X4 -* X
t , but probably also contains contributions from

extended regions of the Brillouin zone. Nonetheless, one can gain an

understanding of the 4.5-eV peak simply in terms of the X4 -> X
x and

D2
-> 2 3 transitions as shown in the band diagram of Fig. 5.8. Note that

these transitions are at M^- andM2-type saddle points. In fact, it is necessary

to have two saddle points to produce a peak ; a single saddle point produces

only an edge. The formation of a peak from two saddle points is illustrated

in Fig. 5.10. The 4.5-eV reflectance peak in Ge can be understood, in a

somewhat oversimplified picture, as arising from the accidental near-

coincidence of the two saddlepoint transitions XA -* X
x
and E 2

-* £ 3 .

The doublet peak at 2.3 eV arises mainly from M
y
saddlepoint transitions
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Fig. 5.8 The band structure of Ge. [From J. C. Phillips, D. Brust, and G. F. Bassani, Proc.

Int. Conf. Phys. Semicond. Exeter London p. 564 (1962).]
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Fig. 5.9 Imaginary part of the dielectric constant e2(oj) for Ge. ( ) Experiment; ( )

theory. [From D. Brust, J. C. Phillips, and G. F. Bassani, Phys. Rev. Lett. 9, 94 (1962).]

A 3
-> Aj. Saravia and Brust [4] have shown that the spin-orbit splitting

of A 3 near L is about two-thirds of the splitting at r25 '. The A x
level is not

spin-orbit split [5]. Since the spin-orbit splitting at r25 . is known from

theory and confirmed by experiment to be 0.29 eV [6], the observed splitting

of 0.20 eV for the 2.3-eV peak confirms the two-thirds rule.

The weaker peak at 6 eV arises from L 3 , -> L 3 transitions. It is also a

doublet, although this is not apparent from the room-temperature reflec-

tance measurements of Fig. 5.7. The spin-orbit splitting of the Lr -» L 3

transition can be seen even at room temperature, however, if sufficient

care is taken in sample preparation. The splitting is found to be 0.2 eV,

in agreement with theoretical predictions for the splitting of the L 3 . state [7].

One can learn more about these and other transitions from a study of

the wavelength-modulated reflectance spectrum. Some results for Ge
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Fig. 5.10 The production of a peak in the joint density of states by the superposition of two

saddle points.

are shown in Fig. 5.11. From a decomposition of this reflectance spectrum

into its components, Zucca and Shen [8] have verified the assignments

just discussed as well as a number of others. The decomposition was made
according to these general rules: (1) The low-temperature spectrum of a

composite line was decomposed into a minimum number of individual

lines with simple line shapes. (2) Recomposition of these individual lines

with broadened linewidths had to yield the high-temperature spectrum of

the composite line. (3) Similarity in the spectra of different semiconductors

was used as a guideline in the decomposition. The latter rule is, of course,

always useful. It is always of help in making assignments of transitions to

study the systematics of a related group of materials.

Figure 5.11 suggests that the temperature dependence of band structure

can also be studied quite nicely by an analysis of the temperature de-

pendence of the wavelength-modulated reflectance spectra. Zucca and
Shen have in fact made some qualitative deductions of this type from their

studies.

The emphasis in this section has been on an analysis of three peaks in

the reflectance spectrum of Ge. These peaks can all be understood in

terms of transitions near saddle points. However, the peaks observed in the

reflectance spectrum of many semiconductors and most insulators are

caused by excitons associated with critical points. Excitons are especially
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Fig. 5.11 Logarithmic derivative of the reflectivity spectrum of Ge at ( ) 5, (-

and ( ) 300°K. [From R. R. L. Zucca and Y. R. Shen, Phys. Rev. Bl, 2668 (1971).]

-) 80,

important in insulators because of the importance of the electron-hole

interaction in the absence of strong screening. This is why the reflectance

spectrum of insulators such as KC1 (see Fig. 3.6) is usually dominated by

peaks rather than edges. Even the peaks for Ge at 2.3 eV and 4.5 eV prob-

ably have associated excitons. This is suggested by a much greater line

narrowing at low temperatures than is predicted by simple interband

effects.

5.5 Direct Transitions in Silver: Effects of Temperature and Alloying

Direct interband transitions in metals are spread rather widely in energy.

This wide distribution is oscillator strengths is apparent from the rather

smooth and gradual rise in neff, the effective number of electrons per atom

contributing to the optical properties over a given frequency range, as shown
in Fig. 5.12. Note that neff rises rapidly to a value near unity, the free-electron

value, and remains nearly constant until the threshold for direct interband

transitions is reached. The deviation from unity in the free-electron value

of neff arises from departures of the effective mass from the free-electron

mass and perhaps also from many-body effects as discussed in Chapter 4.

Assuming that core states can be neglected, ne{( should saturate at the value

11 (Is plus lOd electrons). It is clear from Fig. 5.12 that oscillator strengths

for interband transitions in Ag and Cu are spread over a very wide energy

range.

We shall now consider in more detail the interband transitions near thresh-
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Fig. 5.12 Effective numbers of electrons per atom contributing to the optical properties

over a given energy range versus energy. [From H. Ehrenreich and H. R. Philipp, Phys. Rev.

128, 1622 (1962).]

old in Ag, particularly what can be learned about these transitions from

studies of alloying and temperature variation. We shall be concerned with the

two transitions indicated in the schematic band diagram of Fig. 5.13 for Ag
near L.

L?'

|
L 2'(E F )-L,

I I

I I

I
I

I
I

I

I

L 3-L 2'(E F )

I

Fig. 5.13 Schematic band diagram for Ag near L. [From H. G. Liljenvall and A. G. Mathew-
son, J. Phys. C Metal Phys. Suppl. No. 3, S341 (1970).]
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The transition L 3-L2 . is the transition from the d band to the Fermi

surface that is responsible for the sharp rise in e2 at 3,9 eV as shown in

Fig. 3,17. This transition has been well established by a number of workers

[9-13]. The L2 -Lj transition from the Fermi level to a higher-lying

conduction band is hidden under the stronger L 3-Lr transition. This

transition was identified from studies of dilute alloys of Al, Cd, Zn, and In

in Ag [11-13] as well as from studies of the temperature dependence of the

optical properties of pure Ag [14]. That it overlapped the L 3-L2 . transition

had also been suggested earlier by Mueller and Phillips [15] based on band
structure calculations, and by Berglund and Spicer [16] from their photo-

emission studies.

Figure 5.14 show the reflectance of a series of Ag-Al alloys. The dielec-

tric functions and the loss functions obtained from an analysis of these

itf

10"

10

Ag-AI 1.4%
Ag-AI 3.8%
Ag-AI 4.6%
Ag-AI 8. 1 %

10 123 4 5 6 7 8 £

Photon energy (eV)

Fig. 5.14 Reflectance of Ag and Ag-AI alloys at 300°K. [From G. B. Irani, T. Huen, and

F. Wooten, Phys. Rev. 3B, 2385 (1971).]
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data are shown in Figs. 5.15-5.17. Figure 5.15 shows a peak in the s
t
curves

for Ag and the Ag-Al alloys near 4 eV. This peak is the contribution to

s
l
of s/, which is shown separately in the insert. Increasing solute concentra-

tion damps and broadens the peak in e^; it also moves to slightly higher

energy the peak in £
x
and the energy at which s

t
crosses zero. The latter is

an indication of a shift in the plasma frequency. The plasma frequency and

eVPhoton energy

Fig. 5.15 The real dielectric functions £, and £,* versus photon energy for Ag and Ag-Al
alloys at 300°K. [From G. B. Irani, T. Huen, and F. Wooten, Phys. Rev. 3B, 2385 (1971).]
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its shift to higher energy with increasing solute concentration are defined

more clearly by the peak in the electron loss functions

Im(l/e) = e2 /(£l
2 + e2

2
) (5.62)

shown in Fig. 5.17. The shift in plasma frequency to higher energies is

expected because of the increased electron concentration obtained on
substituting Al for Ag.

The main peak in e/3 near 4 eV shifts slowly to higher energy as Al is

added to Ag. This peak is associated with the sharp rise in e 2 at 3.9 eV and
is identified mainly with transitions from d states to the Fermi surface, the

— Ag-AI 1.4%
Ag-AI 3.8%— Ag-AI 4.4%

•— Ag-AI 4.6%
Ag-AI 8.1%

6 7

Photon energy — eVI iiisiwii d ici yjf tT

Fig. 5.16 The imaginary dielectric function 2 2 versus photon energy for Ag and Ag-AI

alloys at 300°K. [From G. B. Irani, T Huen, and F. Wooten, Phys. Rev. 3B, 2385 (1971).]
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— . — Ag-AI 4.4%— .. _ Ag-AI 4.6%
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3.0 3.5 4.0 4.5

Photon energy — eV

Fig. 5.17 The energy loss functions versus photon energy for Ag and Ag-AI alloys at 300°K.

[From G. B. Irani, T. Huen, and F. Wooten, Phys. Rev. 3B, 2385 (1971).]

L 3-L 2 transition. A second structure emerges from sf and moves more
quickly to lower energy with increasing Al concentration. The corresponding

increase in e2 can be seen in Fig. 5.16. This arises from the L 2 -1^ transition.

The rapid shift of the L2 -L t
transition to lower energy is a result of the

great sensitivity of the L
t

level to crystal potential [17-19]. This same
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shift also increases the magnitude of e 2 in the region where s 1
~ 0, and so

increases the damping of the plasma resonance, as can be seen in Fig. 5,17,

A calculation of the band structure of Ag at two different lattice constants

by Jacobs [20] shows that the L 2 ~L t
gap moves to lower energies relative

to the L 3-Lr gap with increasing lattice constant. Thus, even in pure Ag,

it should be possible to separate these transitions if the lattice constant is

changed or the potential is changed. One way to do this is to vary the

temperature. This has been done by Liljenvall and Mathewson [14] and
some of their results are shown in Figs. 5.18 and 5.19, However, increasing

the temperature changes the lattice constant only slightly and the effects

of volume expansion can usually be neglected. Thus, the effects of tem-

perature illustrated in Figs. 5.18 and 5.19 can be attributed mostly to a

change in the average crystal potential because of increased motion of the

atoms about their only slightly changed mean position.

3.0 4.0 4.53.5

E(eV)

Fig. 5.18 The imaginary dielectric function e 2 versus photon energy for Ag at different tem-

peratures. [From H. G. Liljenvall and A. G. Mathewson, J. Phys. C Metal Phys. Suppl. No. 3,

5341 (1970).]
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Fig. 5.19 The energy loss function versus photon energy for Ag at different temperatures.

[From H. G. Liljenvall and A. G. Mathewson, J. Phys. C Metal. Phys. Suppl. No. 3, 5341 (1970).]

The effect of increasing temperature is the same as alloying except that

increasing the temperature moves the electron loss peak to lower energies.

The latter shift arises from the contribution to e^ of the transition L2 .-Lj.

As this contribution to e^ moves to lower energy, it also shifts to lower

energy the point at which £
l
~ 0, This shift also makes a contribution in

the alloys, but there it is offset by the greater effect of an increased electron

concentration. The mechanism for increased damping of the loss function,

however, is the same for both cases.

There has so far been no success in determining unambiguously the

line shapes of these transitions, and hence the nature of the critical points,

as has been done for Ge and many semiconductors.
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5.6 Indirect Transitions

We have so far considered only the interaction of electrons with an
electromagnetic field. The interaction with the perfect lattice is included
implicitly via an effective mass. If we now also include interactions with
imperfections in the crystal, then indirect transitions are possible. One
such transition is illustrated in Fig. 5.20.

Fig. 5.20 An indirect transition from (a) the valence band maximum to (b) a conduction
band minima. There are various mechanisms via intermediate states that make this transition

possible. Some are illustrated in later figures.

The only imperfections we will consider explicitly are lattice vibrations.

That is, even in an otherwise perfect crystal, the existence of a finite tem-
perature means the crystal lattice is vibrating and the perfect periodicity

of the lattice is destroyed. The quantized lattice vibrations (phonons)
constitute another means of interaction with electrons. More than that,

even at 0°K, an energetic electron can excite a lattice vibration, i.e., create

a phonon. Thus we can expect indirect interband transitions at all tem-
peratures, but a higher transition rate at higher temperatures, where the

equilibrium phonon density is higher.

We shall now consider indirect transitions of the type illustrated in

Fig. 5.20. Let us assume that direct transitions are allowed but that we are
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working in a photon energy range corresponding to the indirect band gap.

Thus direct transitions are energetically impossible.

We assume that solutions are available for the unperturbed crystal.

That is, H i// = && leads to eigenfunctions \j/n such that H il/„ = $ n \\in .

When the perturbation is present, we have to solve

ifid*¥/dt = {H + H') XP (5.63)

where

* = I^)^" i'- ,/*
(5-64)

n

Following the procedures of Sections 3.4 and 5.1, this leads to

ih dajdt = X a.VJL^™*"* + ^--'O (5.65)

n

where

Vmn = [ilsm *H'(r)xl,n dr (5.66)

In first-order perturbation theory, we then have

ih dajdt = Vm0{e
i(<o™ + (O)t + e

«'<w«o-«*)
(5 .67 )

for the system originally in the ground state. In the present case, even

though direct transitions are allowed according to symmetry, it is necessary

to have a two-step process to excite the indirect transition, and so we must

go to second-order perturbation theory.

The general procedure for second-order perturbation theory is as follows.

We ignore the coefficient a in Eq. (5.65) since it did not lead to a constant

transition rate for the transition under consideration. (If it had, we would

not need to go to second-order perturbation theory.) We now consider

all other an in Eq. (5.65). However, we use the results of first-order perturba-

tion theory for the time dependence of a„. Thus, in second order, Eq. (5.65)

becomes

ihda^/dt = X a(

n
l)Vmn{e

i((O™ + 0i)t + e'«°™-"><) (5.68)

The superscripts (1) or (2) on a„ indicate whether the coefficient is the result

of a first-order or second-order perturbation calculation. The summation

in Eq. (5.68) can be over all n. The indication n j= simply serves as a remind-

er that there was no contribution to dajdt in first-order and so there is no

need to include it.

We are now ready to derive the transition rate for indirect transitions.

These transitions can be thought of as a two-step process: (1) the absorp-

tion of energy by the absorption of a photon and (2) the conservation of
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crystal momentum hk by emission or absorption of a phonon. This process
is illustrated in Fig. 5.21. We will consider only photon absorption, but
since phonons have energies comparable to kT, we will have to consider
both absorption and emission of phonons. In fact, in many cases, it is

even necessary to consider the emission and/or absorption of several

phonons for a single transition. However, we shall consider explicitly only

single-phonon emission or absorption.

Fig. 5.21 Two mechanisms for an indirect transition from the valence band maximum at

to the conduction band minimum at/. One mechanism is a virtual direct transition from the

initial state to intermediate state ;' followed by a phonon-assisted transition to final state/.

A second mechanism is a phonon-assisted transition to intermediate state /' followed by a
direct transition to/. The latter can also be described (more accurately) as a vertical transition

of an electron from i' to / with the positive hole left behind being scattered to 0. However,
it is simpler in following through the mathematics to adopt the former viewpoint.

We assume that the Hamiltonian for the interaction can be written as a

sum of terms of the form given in Eq. (5.1). Thus

H' = \AV oton
[(exp ioit) + exp — icot]

+ i

I

photon

V

phonon

phonon
[(exp i(Dvt) + exp — iw^t] (5.69)

where A p and j/^lu"u" are the appropriate operators for electron

photon and electron-phonon interactions and hcok is the energy of a phonon
of wave vector k. The operators for the interactions are chosen to symbolize

the fact that the origin of the interaction of an electron with the light wave
is through a vector potential, whereas the electron-phonon interaction arises
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from the Coulomb forces between electron and atomic cores. Generally,

the wave vector of the light wave is unimportant, but the wave vector for

phonons is very important. The wave vector for photons and phonons is

contained implicitly in the operators ^4
photon

and Vp onon
.

We can now define matrix elements

VZ^Um*(U
ph°tonW„dr

V2 =
| *m

* (|F
phonon

) ./,„ dx (5-70)

First-order perturbation theory then yields

ihda^/dt = V£ exp[i(a>„ — oj)t]

+ V£*{exp[i{a)nQ + ojk)t~\ + exp[j(co„ - cok)f]) (5.71)

A term y™eii,0n0 + toV
is not included in Eq. (5.70) because it corresponds to

photon emission, a process of no concern here.

Integration of Eq. (5.71) gives

K.o f 1 - exp[i(co„ - co)t]

a
(i) =
n > I

n i cd„ — co

+ ^L-
J

1 - exp[i(Q),o ± o\)t\
\

h \ con0 ±a\ J

These are the coefficients we need to substitute into Eq. (5.68). In actual

cases, though, we do not need the complete infinite set of coefficients a),
1
\

Indeed, usually only a few are necessary. As a specific example, and one

that is applicable to a number of semiconductors, we will consider transi-

tions from a valence band maximum at k = to a conduction band minimum
at a k value well removed from the center of the Brillouin zone (see Fig.

5.21). We shall assume all other valence bands and conduction bands to

be sufficiently far removed that they need not be considered. That is, they

will correspond to states such that the denominators in terms such as appear

in Eq. (5.71) are so large that there is an insignificant contribution to ab-

sorption. Thus, in the example of Fig. 5.21, only two intermediate states,

i and i', need be considered. The appropriate matrix elements for transitions

to or from these intermediate states are indicated in the figure. They are

chosen according to whether the transition corresponds to photon ab-

sorption or electron-phonon interactions.
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The only coefficients a{

„
1} we need from first-order perturbation theory

are a\
1} and ajP. With these, Eq. (5.68) becomes

ihdaf/dt
— a^Vjf* (exp[j((«/ j + ook)t~\ + exp[i(cofi — cok)t\)

+ a\} }Vf? exp[i(a>/i - <o)i\ (5.73)

where a term a(

r
1)F/^e'

(a,/i+w)
' is not included because it corresponds to

photon emission. Note that in using Eq. (5.68), it is necessary to remember
that the co appearing there is the angular frequency of the time-dependent

perturbation. Thus, in rewriting it as in Eq. (5.73), it was necessary to make
the transformation co -* o\ for the contribution of electron-phonon

interactions to the transition.

We can now substitute for a[
X) and a\^ in Eq. (5.73). Once again, though,

rather than blind substitution, we will pick out from Eq. (5.72) only those

terms that are important. For example, when we consider the factor

a^Vjf appearing in Eq. (5.73), we realize that the matrix element Vj^ ac-

counts for the transition via a phonon from state i to final state /. Thus,

what we need in a\
1}

is only those terms corresponding to the transition via a

photon from state to state i. Following this procedure, Eq. (5.73) becomes

ih
daf _ Vf? V«> I

exP[ f(®/i + »k)0 - exp[i(cofi + tot + fi) i0 - a)*]

dt h I coi0
— oo

V/i'V™ j"exp[f(o)/r - (o)i\ - exp[i(o)/r - co + covo ± o)k)f]
| ^J4)

h \ (ovo ±o\ J

The next step is to integrate Eq. (5.74) to determine ai

f
) and hence |a^

2)

|

2
.

We can anticipate some of the results and thus simplify what has to be done.

The term proportional to exp[i'(co/i + cok)t] will lead to an integrated term

containing [sin
2
\{con ± cok ) t]/(oo fi ± cok )

2
. Just as in Section 5.1, this leads

to appreciable absoiption only if cok = + co
fi

. That is, energy must be

conserved for the indirect transition via a phonon and, hence, energy must
then also be conserved for the direct transition -> i via photon absorption.

There is nothing wrong with that except there would be no need then to

consider indirect transitions via second-order perturbation theory. We have

excluded this case by specifying that we are concerned only with the situa-

tion for which the (allowed) direct transitions are energetically impossible.

The same argument holds for the term ~exp[i(co/r — oo)t\. Eliminating

these two terms, and making the substitution

o>/i + wio = (Oft- + ooro = cof0 (5.75)
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Eq. (5.74) becomes

da{2)

ih

yfi y
ic

dt h(co i0 03)

exp[i(co/0 ± cok
— co)f]

VfvVft
exp[i(co/0 + Mk

- <a)t] (5.16)

h(coro ± cok)

Conservation of energy for the overall transition requires that

co = CO

Hence,
/o ± ^k a>fv + wro ± «k

COi'O ± Wk CO — CO/<•'

(5.77)

(5.78)

Substitution of Eq. (5.78) into (5.76) and integration from t = to t gives

,(2) _ay' =
Vfi V i0

- +
y
fi'

y i'0

h2
{co i0

— co) fr
2
(co - (x)fi)_

|exp[i(co/0 ± o\ — co)t] — 1

1 CO fft + C0L/0 X CO
(5.79)

The probability of finding an electron in state / at time t is given by

|a^
2)

|

2
. As before, we will also have to integrate over a range of possible

transitions or final states. We saw earlier that integrals of the form \da>

[sin
2
(^co£)]/co

2
are necessary to get a transition probability that increases

linearly with time. Thus all cross terms can be neglected in finding |a/
2)

|

2
.

A typical term that does contribute to \af
}

\

2
is

(2)12 VftV& exp[i(co/0 - a* - co)t] - 1

lf \ia
—

_h
2
(coi0

- a>) cof0
- co,, - co -

X

"
{VftV&T exp[-i(co/0 -cok— ©)t] - I

_h
2
(co i0

- (d) (of0
- cok - co

4|^|
2
\V%\

2
sin

2
i(co/0 - ^ - co)t

h
A
(oj i0

- co)
2
(co/0

- (ok
- co)

(5.80)

where the subscripts ia on \a
(2)

\

2
a indicate a vertical transition to intermediate

state i followed by phonon absorption to reach the final state/. We can

simplify this result by rewriting it in terms of a 3 function for energy con-

servation. The result, obtained by following the procedure used in Section

5.1, is

1 /H
'

io1
«5(<f/0 - hcoy - M (5.81)7(2)|2

h\a> i0
- co)

2
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Following the same procedure for the other three terms in Eq. (5.79),

and differentiating with respect to time to get the transition rate, we obtain

Wf0 =
2n\Vfr\

2
\V£\-

h\(oi0
- cof

[5{$/0 — hcok — hco) + S{$f0 + hcok — hcoj]

+
Z7l

\

y
fi'\ ri'O

cok |2

h\co cofv)
2

[d{Sf0 - hcok - hco) + 5{£f0 + hcok - hcoj] (5.82)

The first term in Eq. (5.82) gives the transition rate from state to state

/via a direct transition to intermediate state i followed by a transition to

final state / via phonon absorption. The matrix element V^k
is zero unless

k(phonon) = k(electron in state /). Thus, only those states / satisfying

conservation of crystal momentum as well as conservation of energy for

the overall process can be reached from a given initial state for a fixed

value of hco. The two possibilities along one direction in k-space are il-

lustrated in Fig. 5.22. C6nsidering all directions in k-space, many final

states with essentially the same energy can be reached from the single

initial state 0. We shall ignore the small differences in energy arising from

the difference in energy of phonons having slightly different k values.

Thus, referring to Fig. 5.23,

Win

?7r\V°>k r W^VZ7l| vfi |
|

vi0
1

h\co i0
- cof

pc(hco + hcok — SG ) (5.83)

Fig. 5.22 The energy conditions for an indirect transition. (1) Valence band, (2) conduction

band. The phonon dispersion curve haik is superposed on the electronic band diagram so as to

show the final states reached by a combination of photon and phonon absorption. The energy

scale for the phonon dispersion curve is exaggerated. Note that the end of the arrow indicating

photon absorption does not correspond to the intermediate state for the overall indirect

transition. It merely indicates the amount of energy contributed by the photon. The true

intermediate state is indicated by i.
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Fig. 5.23 The energy conditions for indirect transitions over a range of initial and final

states. The zero of energy is taken at the conduction band minimum. Smay.
= fico ± hcok — SG .

is the transition rate from state 0, via intermediate state i, followed by

phonon absorption to a group of final states with the same energy and

having wave vector near kf . Because the electron-photon interaction

depends on the photon polarization (which is not spherically symmetric),

we assume an appropriate average matrix element
|
VJq

|

in Eq. (5.83). If we

now consider transitions from a group of initial states near k = 0, we

obtain in the region near threshold for indirect transitions from the valence

band to the conduction band, via phonon absorption,

ho + hmk — SG

w„ = 2n\V?tf\V%\
pv(g -Pico - hcok)pc{£) dS (5.84)

h
4(w i0

- co)
2

The limits of integration are determined from inspection of Fig. 5.23.

Equation (5.84) assumes |J^"| to be constant, which is reasonable for small

variations in k when k is large. Also, \V$\ has been assumed constant, i.e.,

independent of k , where we have taken k = 0. The latter is equivalent

to our initial assumption that direct transitions are allowed (although, in

the present case, lack of energy conservation for the vertical transition

prohibits such transitions in reality). See, in this regard, the discussion at the

end of the section.

We have neglected several things in Eq. (5.84). We have neglected the

various phonon branches and the modes in each branch. Diamond, for

example, has three modes in the acoustic branch and three modes in the

optical branch. Also, there may be a number of equivalent conduction-

band minima. This should all be realized, but for purposes of illustration,

we shall proceed with Eq. (5.84). The important feature is that

hco + huji.

W^oc lT/Ct)k| 2 V%\ 2
v iO\ pw{£ - ho) - hcojptf). (5.85)
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For parabolic energy bands, this becomes

hu> + hcoy — S G

Wca oc \Vft\
2
\V™\

2
(hco + hcok - SGf l2S^ 12 &£

oc \Vf?\
2
\V&\

2
(hco + hcok - SG )

2
(5.86)

Now, the probability of phonon absorption is proportional to the phonon
density N

p
. That is,

I

Vft
|

2
oc N

p
=

)
(5.87)

exp(hcok/kT) — 1

Thus, when direct transitions are allowed, so that |J^o| is nearly constant,

the absorption coefficient for the mechanism under discussion varies as

(hco + hcok - SGf
a™ ^ 7i

—
7FF\—

T

5 -88
exp(ncoJkT) — 1

The probability of phonon emission is proportional to AT
p
+ 1. Using

this, the absorption coefficient for phonon emission following a virtual

direct transition is easily found to be

exp(hcok/kT)
*™ *—71

—
JT^ 1

— (hco ~ h(D*~SG) (5.89)
exp(hcoJkT) — 1

There remains one case to consider, namely, when direct transitions

are forbidden. This results when the first term in the last line of Eq. (5.17)

is zero because of the symmetry of the conduction-band and valence-band

wave functions. Then, it is necessary to consider the previously neglected

second term. The result is that

\V%\
2
oc (k!)

2
=/= const (5.90)

so that for transitions from near k = 0, \V^\
2

is proportional to the energy

of the initial state measured with respect to the valence-band maximum
and must be included in the integration. Thus, e.g.,

hco + hcok — <f

a oc (hco ± hcok - SGf l2S 112 dS

o

\3
oc (hco ± hcok - S°Gy (5.91)

when direct transitions are forbidden.
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In summary, the essential features for indirect transitions are:

A(ha) + ha>k - iGf
a =

exp(h(ok/kT) — 1

B[exp(ftcok//cr)] (hep - hojk - SG )

2

exp(ha>k/kT) — 1

when vertical transitions are allowed, and,

C(hco + hcok - £G )

3

a =
exp(frftV/cT) — 1

P[exp(ftcok//cT)] (ftco - ftcok - SGf

Qxp(hcoJkT) — 1

when vertical transitions are forbidden.

These results are modified when exciton effects are included. A thorough

analysis has been given by Elliott [21], who finds that for allowed indirect

transitions to unbound electron-hole states, the absorption coefficient

varies as the f power of the energy in excess of threshold. Allowed indirect

transitions into exciton states give a ^-power variation. For forbidden

indirect transitions, the absorption coefficient for transitions to unbound
electron-hole states varies as the f power of the energy above threshold, and

for transitions to exciton states, it rises as the § power. We will see these

effects when we study the absorption edge of Ge in the next section.

Now, recall that conservation of momentum is required in each step

of the indirect transition. However, conservation of energy is not required

for these virtual transitions to or from intermediate states. It is required

only for the overall indirect process. What is required is that the time

spent in the intermediate state be compatible with the uncertainty principle.

The uncertainty in energy of the intermediate state is A<f « \S — ha>\,

where SQ is the direct band gap. The lifetime of the intermediate state must

then be

T; * h/\S - hco\ (5.94)

The uncertainty in energy enters as a square term in the denominator

of expressions such as Eq. (5.84) for the transition rate. The point of interest

here is that the appearance of this energy difference term in the denominator

usually makes one of the processes illustrated in Fig. 5.21 very unlikely.

In all the preceding discussions, we have been talking about an idealized

system in which the electrons, phonons, and photons are all decoupled.

Transitions have been between states of the unperturbed system. A strictly

rigorous treatment would not have the system decoupled. The true eigen-
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states of the system must be for the solid plus radiation field. This is of course
impractical and not necessary. A more realistic way of viewing the system
is not to worry so much about including the photons, but at least to recog-
nize that one should not decouple the electrons and phonons. That is, each
state should be recognized as having both electron and phonon character.
We could depict this situation schematically by making fuzzy <^(k) lines in

the traditional one-electron band structure diagrams. Then, an indirect

transition can be considered to go from an initial state to a final state /
without an intermediate state. In the actual mathematics, though, the final

result of an attempt along these lines will be mathematically equivalent to

the original prescription in which electrons and phonons are decoupled.

5.7 The Absorption Edge in Ge, AgBr, and AgBr(Cl)

We have derived expressions for the absorption coefficient for indirect

transitions for the case in which the threshold is from k = in the valence

band to k near the Brillouin zone edge in the conduction band. This is just

the situation which is applicable to Ge.

The band diagram for Ge is shown in Fig. 5.8. The indirect band gap
threshold is from r25 to L x . Measured absorption curves near the absorp-

tion edge are shown in Fig. 5.24, taken from the classic work of Mac-
Farlane et al. [22].

Below 20°K, the absorption consists of two components, one beginning

at 0.75 eV and the other at 0.77 eV. At higher temperatures, four components
are apparent, beginning at energies of 0.705, 0.725, 0.745, and 0.760 eV.

At still higher temperatures, the onset of absorption is at even lower energies.

These various components of the absorption curve are a result of phonon
emission or absorption during the indirect transition.

We now define a quantity A = ahco and call it, simply, the absorption.

A careful study of the absorption curve shows that the components come
in pairs. We denote the two components of the rth pair by Ai& and A

ie ,

corresponding to absorption and emission of a phonon. The corresponding

threshold energies are denoted by S ia and S ie , and their mean value is

denoted by #,-. Clearly (<S
Ie
- <f

(a)
is just twice the energy k9 of the phonons

emitted or absorbed during the indirect transition. Some of the quantities,

as determined from a detailed analysis of curves such as those in Fig. 5.24,

are listed in Table 5.2.

At 4.2°K, we expect phonons to be emitted but not absorbed; there just

are no phonons to absorb. If we make the assignment at 4.2°K as resulting

from emission of two types of phonons, one of effective temperature 0-^

and the other of effective temperature d2 , the overall results are self-con-

sistent.
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0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86

Photon energy hv(eV)

Fig. 5.24 The absorption-edge spectrum of Ge at various temperatures. [From G. G. Mac-

Farlane, T. P. McLean, J. E. Quarrington, and V. Roberts, Phys. Rev. 108, 1377 (1957).]

TABLE 5.2 Values of Threshold Energies and Effective Phonon Temperatures Obtained from

an Analysis of the Absorption Curves in Fig. 5.24

T(°K) ^ 2a <^la 'i. <^2e 'i ©2 0i (°K) 02 (°K)

4.2 0.7485 0.7686 — —
77 0.7063 0.7264 0.7419 0.7614 0.7342 0.7339 90 320

291 0.6367 0.6570 0.6724 0.6913 0.6647 0.6640 88 317

At 77°K, the phonon density is sufficiently high that the two types of

phonons emitted at 4.2°K can now also be absorbed during the transition.

At much higher temperatures, many more processes involving phonons

are possible, but as the temperature is raised, the free-carrier concentration

also increases and the effects of phonon absorption or emission are soon

masked by free-carrier (Drude) absorption.

The variation in S x and S2 *s a result of the temperature dependence

of the band gap. We shall not discuss that aspect of the problem. However,

the close agreement of S x
and S 2 at each temperature and the nearly
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constant values of
X
and 62 are support for the correctness of the analysis

given above.

The basic shape of the components A la and A le is given by

A, = ai (hco - S\f 12
(5.95)

where a x is temperature-dependent. The basic shape of the components
4 2a and A 2e is given by

A2 = a2 [(hco - <f 2 )

1/2 + b(hco - £ 2
- 0.0010)

1/2

+ c(ha> -S 2
- 0.0027)3/2

] (5.96)

where a2 is temperature-dependent but b and c are constants.

The interpretation of Eqs. (5.95) and (5.96) is as follows. The initial

square root variation in A 2 is from allowed transitions into the ground
state of the exciton. The contribution from the second term is probably

a result of transitions to the first excited state of the exciton. The third

term arises from allowed indirect transitions producing unbound electron-

hole pairs. The threshold for these transitions is 0.0027 eV above the exciton

ground state. This energy is thus the binding energy for indirect excitons in Ge.

The f-power dependence for A
x
would seem to indicate no exciton

production for single-phonon emission processes. However, if this were so,

the values of $ x should be larger than S 2 by just the exciton binding energy,

0.0027 eV. We see from Table 5.2 that this is not so. Presumably, excitons

are involved, but it is not possible to see their contribution to the experimen-

tal data.

Indirect phonon-assisted transitions also are evident at the absorption

threshold for a number of other materials. As a second example, we consider

AgBr. The band structure is shown in Fig. 5.25 and the absorption coef-

ficient is given in Fig. 5.26.

At 4.7°K, only phonon emission contributes to the transition L 3 ,
->• Y

x
.

At higher temperatures, the threshold shifts to lower energy because

phonon absorption can also contribute. A single phonon of energy 0.00805

eV appears to be important at threshold. A more detailed analysis such as

was outlined for germanium shows good agreement between experiment

and theory.

Figure 5.27 shows the low-temperature absorption coefficient for AgBr
+ 1 % AgCl. The important difference from Fig. 5.26 is that a new component
appears midway between the two thresholds for the pure AgBr crystal.

This is a temperature-independent component. It arises because the selection

rules are not strictly valid for a disordered crystal. It is possible to have

zero-phonon indirect transitions. The impurities act to conserve momentum
for the transition.

As a final point, it should be noted that the absorption coefficient in
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^(1/2,1/2,1/2) ^p( 1,0,0)

Fig. 5.25 Schematic band structure diagram for AgBr.
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Fig. 5.26 The absorption edge for pure AgBr at several different temperatures. E
x

e and £,
a

denote, respectively, the thresholds corresponding to emission and absorption of a 0.009-eV

phonon. [From B. L. Joesten and F. C. Brown, Phys. Rev. 148, 919 (1966).]
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Fig. 5.27 The absorption edge at different temperatures for AgBr containing 1 mole "/
n AgCl.

Comparison of this figure with Fig. 5.26 shows that a disorder-induced component sets in

exactly halfway between the edges associated with phonon emission and phonon absorption.

[From B. L. Joesten and F. C. Brown, Phys. Rev. 148, 919 (1966).]

Figs. 5.24, 5.26, and 5.27 is quite small. It is several orders of magnitude

smaller than for typical allowed vertical transitions in semiconductors

and about four orders of magnitude smaller than for metals in the visible

spectrum. As a result, fairly thick samples (^ 1 mm) are required to determine

optical properties from transmission measurements.

10,000
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0.01
0.75 0.77 0.85 0.87 0.89

(eV)

0.79 0.81 0.83

Photon energy —

Fig. 5.28 The absorption edge in germanium at 20°K [From T. P. McLean, in "Progress in

Semiconductors" (A. F. Gibson, ed.), Vol. 5, p. 55. Heywood, London, I960.]
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We return now to the absorption in germanium. The absorption edge

for germanium is shown in Fig. 5.28. Here, the range has been extended to

include the absorption edge arising from direct transitions at k = 0. This

occurs just below 0.89 eV. The small peak is a broadened exciton line, a

"direct" exciton. Note the fairly good agreement with our previous estimate

(Section 5.2) for the absorption coefficient near the direct gap threshold.

There, we estimated a « 5 x 103 cm -1
for hco = 0.01 eV above the direct

gap threshold.

5.8 Excitons

We have already mentioned excitons and discussed their effect on the

absorption coefficient near threshold. We shall now consider excitons

themselves. However, the treatment will be only semiquantitative. The
study of excitons constitutes a field in itself. A rigorous treatment is left to

monographs and review articles.

In the tight-binding approximation, we can imagine an exciton of a
single atom. We can visualize it in its simplest form as the interaction of an
excited electron with the hole it left in the shell it came from. Such a localized

excitation is called a Frenkel exciton. But it cannot really be restricted to

a particular atom. Atoms in a solid interact and the quantum of energy

can jump to a neighboring atom and still conserve the energy of the entire

system. In this process, the exciton carries no net charge, only energy.

Because the exciton cannot be restricted to a single atom, it is an excited

state of the whole system.

A Frenkel exciton is characterized by a small radius for the orbit of the

excited electron. However, if the orbit of the excited electron is such as to

include a large number of atoms, the Coulomb interaction between electron

and hole is screened by the dielectric function. Then, the effective-mass

approximation of band theory is more appropriate and the excitations are

called Wannier excitons. Stated in a different way, the approaches are as

follows. For Frenkel excitons, the electron and hole are close to one another

and interact via Coulomb and exchange interactions. For Wannier excitons,

the electron and hole are widely separated and it is simplest to consider

the electron and hole as essentially free and put in the Coulomb interaction

as a perturbation. The latter is more appropriate for the excitons formed

at the absorption edge in germanium. For these indirect transitions, the

exciton wave packet which describes the motion of the electron-hole pair

can be constructed of hole wave functions centered at k = and linear

combinations of electron wave functions at k c and — kc , where kc is at the

conduction band minimum. We shall emphasize these Wannier excitons.

In material like Ge and Cu2Q with small band gaps and large dielectric
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constants, electrons and holes are quite accurately treated as independent

particles. The weak, screened Coulomb interaction then can produce

bound pairs which still retain much of their free character.

We consider first an idealized case with valence-band maximum and

conduction-band minimum at k = and

<fc(k) = *c(0) + {h
2
k
2/2m*) (5.97)

<fv(k) = $ v(0) + (h
2
k
2/2mh

*) (5.98)

The Hamiltonian for the system of the electron and hole is

ft
2V 2

h
2Vu 2

e
2

H = - ^-±- -— j-^ r (5.99)
2m* 2mh

* e|re
- rh

|

This is just the same as for the hydrogen atom and we can immediately

write down the solution

u(e/£)
2 h

2K2

^(exciton) = ta -^ +— (5.100)

where

1/Ai = (l/me
*) + (l/mh*) (5.101)

M* = m* + mh
* (5.102)

and n is the principal quantum number. SG is the band gap energy, ju is the

reduced mass, and M* is the effective mass of the exciton. Thus, there

exists a series of hydrogenlike energy levels. These excitonic levels cannot

rigorously be included in a one-electron energy band diagram. They are,

nonetheless, shown in band diagrams and it is useful to do so. By convention,

these levels are shown as existing below the conduction band as in Figure

5.29. The levels become closer together for higher energies and finally

merge into a continuum. The continuum is taken as the bottom of the

conduction band, where the electron is free.

The absorption spectrum of a thin film of Cu 2 is shown in Fig. 5.30.

Because of the dielectric screening between electron and hole, the radius

of the n = 3 exciton state for Cu2 is 140A. This large distance is suf-

ficient to justify the use of dielectric screening in the model. The symmetry
of the valence and conduction bands in cuprous oxide is such as to result

in a very weak oscillator strength for transitions to the ground state (n = 1)

of the exciton. The uppermost valence band is d-like and the lowest con-
duction band is s-like. The probability of creating s-like hydrogenic excitons

under such conductions is very small. The oscillator strength for the n = 1
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Fig. 5.29 Exciton levels for direct transitions. (1) Valence band, (2) conduction band, (3) ex-

citon levels. A similar diagram can be drawn for excitons associated with indirect transitions.

2.12 eV 2.l3eV 2.l4eV 2.l5eV 2.l6eV
r

C -2 -

74 00
Energy (cm" 1

)

Fig. 5.30 The logarithm of the transmission as a function of photon energy of a Cu2 sample

at 77°K showing the details of the yellow series of exciton lines [From P. W. Baumeister, Phys.

Rev. 121, 359 (1961).]
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transition in Cu2 is observed to be about 10" 9
. However, for higher

excited states of the exciton, the hole can be d-like and the electron p-like,

and transitions can at least be of the dipole type rather than of the quadru-

pole type. Thus, dipole transitions can be expected to begin at n = 2.

Even so, the oscillator strengths are small, ~10~ 6
, because d holes are

quite localized and the p electron has no amplitude at the origin, so the

overlap is small.

We have mentioned that for a Wannier exciton, the electron and hole

interact via a screened Coulomb interaction. But what dielectric constant

should be used? This can be determined from an estimate of the angular

frequency of the exciton as found by equating angular momentum to

Planck's constant. Thus,

co = h/nr
2

(5.103)

If co < co , where co is an optical mode vibrational frequency, the lattice

can respond and the low-frequency lattice dielectric constant should be

used. If co > co the high-frequency lattice dielectric constant should be

used, that is, the high-frequency dielectric constant for lattice vibrations,

not electronic excitations.

As a final example of excitons, consider Fig. 5.31, the absorption spectrum

1.5

0.5

Fig. 5.31 Absorption spectrum of annealed solid xenon at 21 °K. [After G. Baldini, Phys.

Rev. 128, 1562 (1962).]
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of solid xenon. Xenon has excited atomic states at wavelengths of 1470A

and 1295A. These two wavelengths are indicated by the vertical arrows

in Fig. 29. Clearly, xenon as a solid has some of the absorption charac-

teristic of the free atoms. This is not unexpected, but what is the origin of

the remaining structure?

The weak lines at 9.1 and 9.2 eV correspond to Wannier excitons with

n = 2 and 3. The radii ( > 8A) are sufficiently large to call these Wannier

excitons. For n = 1, the radius is so small that the exciton is more properly

regarded as a Frenkel exciton; it appears at 8.4 eV, corresponding to the

lowest atomic absorption line. These cases are very difficult to treat quanti-

tatively.

We have seen evidence for exciton formation during indirect transitions

near the absorption edge in Ge. These are Wannier excitons, but the two

levels observed for the indirect transition are not hydrogenlike levels.

They are the result of the splitting of a single hydrogenic level. The splitting

arises because the valence band edge is degenerate and the conduction band

edge consists of four minima in k-space. The degenerate valence band leads

to degenerate exciton levels. For the direct exciton, the degeneracy is

retained. However, for the indirect exciton, the electron can be associated

with any of the four minima. The effect is to remove some of the degeneracy

for the exciton.

5.9 Direct and Indirect Transitions in Photoemission

The measurement of a photoelectron energy distribution curve (EDC)

typically reveals various kinds of structure. This structure is ultimately

related to the electronic band structure, but the way it shows up in an

EDC depends on the nature of the optical transition. We want to consider

how to distinguish between direct and indirect transitions, and how the

band structure is revealed in each of these cases.

Let us first consider indirect transitions. We have seen in Section 5.6 that

the absorption coefficient for indirect transitions to energy $ from an

initial energy $ — hco is proportional to the product of the initial density

of states and the final density of states. Thus, the probability that an electron

will be excited to an energy $ by a photon of energy hco is

P{S, hco) oc r\{S - hco)rj(g) (5.104)

where r\{$) is the optical density of states. The optical density of states is

defined such that it includes matrix element effects ; it is the density of states

as determined from photoemission experiments rather than the true band

structure density of states. Experiments indicate that there is a close relation-
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ship between the two densities of states. However, interest is usually focused

on the positions of structure rather than absolute magnitudes. Having realiz-

ed that there is a difference between the optical density of states and the

true density of states, we shall now refer simply to the density of states for

either one.

Now, consider a hypothetical metal with the density of states shown
in Fig. 5.32. Absorption of photons with energy ha> excites electrons from
filled states below the Fermi level to empty states in the conduction band.
If the transitions are indirect, the coupling between densities of states is

described by Eq. (5.104). If we assume constant matrix elements, we can
give a graphic illustration of this coupling. This is done in Fig. 5.33. Curve (a)

in Figure 5.33 shows the density of empty conduction band states. Ab-
sorption of photons with energy ho excites electrons into these empty
states. The valence band states which couple into the empty conduction
band states are found by shifting the valence band density of states by hco

as shown in curve (b). Then, the internal density of photoexcited electrons

is found by multiplying curves (a) and (b). The result is curve (c), which is

the graphical analog to Eq. (5.104). We see that in this illustration, there

are three peaks in the energy distribution of internal photoexcited electrons.

Some of the excited electrons shown in Fig. 5.33(c) may reach the vacuum
surface. If they have sufficient energy they may escape. The escape function

and electron scattering effects are discussed in more detail later. Here,

we note only that electrons reaching the surface have a probability of

escaping given by an energy-dependent escape function. This is shown in

curve (d) of Figure 5.33. Multiplying curves (c) and (d) thus gives the external

distribution of photoelectrons if internal scattering is unimportant. We
note that now there are only two peaks in the energy distribution. The low-

energy peak in the internal distribution of photoexcited electrons lies

below the vacuum level. Those electrons cannot escape.

(a) (b)

Fig. 5.32 Density of states for a hypothetical metal, (a) Valence band (filled states), (b) con-

duction band (empty states). [From A. J. Blodgett, Jr. and W. E. Spicer, Phys. Rev. 146, 390

(1966).]
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E—— Ep+W

Fig. 5.33 Relationship between density of states (taken from Fig. 5.32) and photoelectron

energy distribution for indirect transitions with constant matrix elements, (a) Conduction

band (empty), (b) valence band (filled), (c) photoexcited electrons, (d) escape function, (e) photo-

emitted electrons (hco), (f) photoemitted electrons (hco'). [From A. J. Blodgett, Jr. and W. E.

Spicer, Phys. Rev. 146, 390 (1966).]

We could measure the EDC for curve (e) of Fig. 5.33, but what could

we say about the two peaks? We could say very little, only that there is

clearly some structure in the density of states. However, if we repeated the

experiment with a higher photon energy, hco', we could already learn quite

a lot. We could measure curve (f ). Comparison of curves (e) and (f ) reveals

one peak in the EDC that is fixed in energy and another peak that has

moved in energy by an amount Ahco = hco' — hco. We can then easily

deduce that the peak that is fixed in energy corresponds to a high density

of states in the empty conduction band. Increasing the photon energy simply

means the electrons excited into the fixed peak originate from lower-

lying levels. The peak that moves in energy by an amount exactly equal to

the change in photon energy corresponds to a peak in the density of filled

valence band states. Structure in the EDC that obeys this equal-increment

rule can usually be attributed to indirect transitions from the valence band.

Direct transitions show up in the EDC as structure which abruptly

appears and disappears at different photon energies and which does not
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E2 E 3 E4

Energy —

—

Fig. 5.34 Direct transitions in copper and their contributions to photoemission. The im-

portant feature of the peak is that it moves to higher energy at a somewhat slower rate than the

increase in photon energy. Note that £ 3
- E2 ± hv 3

- hv 2 and £4 - E3 ± /iv4 - hv3 . [From
C. N. Berglund and W. E. Spicer, Phys. Rev. 136, A1030 (1964).]

obey the equal increment rule. That an increase in photon energy by Ahco

does not result in a peak which moves to higher energy by Ahco is illustrated

in Fig. 5.34. The restriction to vertical transitions means that a change in

photon energy requires both a new initial state and a new final state. This

causes shifts such as illustrated in Fig. 5.34 as well as the abrupt appearance
and disappearance of transitions.

Even structure that obeys the equal-increment rule may result from
direct transitions. This is so for flat bands, a common situation for solids

with d electrons. Thus, one cannot always tell from photoemission measure-
ments the difference between direct transitions and indirect transitions to or

from flat bands. One way one might think of distinguishing between direct

and indirect transitions is to measure the temperature dependence and
absolute magnitude of the quantum yield. This has been done for some
materials and it has led to the suggestion that there is a class of transitions

that behave like indirect transitions insofar as they are described by
Eq. (5.104), but they are temperature-independent and of a strength charac-

teristic of allowed direct transitions. These transitions have been called

nondirect to distinguish them from the usual indirect transitions. They do
not seem to fit so readily into the conventional one-electron model.

5.10 Nondirect Transitions: Photoemission from Cs^Bi

Cs 3Bi is representative of a class of semiconductors made from alkali

metals and antimony or bismuth. These materials, although even now
relatively unknown as semiconductors, have been of great significance.
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They have been used for commerical photocathodes since the 1930's. An
interesting historical point is that the development of photoemission

as a tool for fundamental band structure studies followed from the study

of these photocathodes, all done in industrial laboratories. The same

sensitivity to visible light and high quantum yield (0.1 electron/photon)

that made them ideal practical photocathode materials also permitted

basic experiments on photoemission to be performed with relative ease.

Studies on these materials also introduced a feature which is not yet fully

resolved, namely, nondirect transitions.

On the basis of energy-distribution measurements for Cs 3Sb, Apker,

Taft, and Dickey recognized that there is structure in the energy distribution

and that this structure is related to the band gap [23]. Others, especially

Spicer, Sommer, and Philipp, continued with studies of these materials

[24-28]. Spicer, in particular, recognized the potential usefulness of photo-

emission as a tool for the study of electronic band structure. However, to

study most materials which have photoemission thresholds in the vacuum
ultraviolet (VUV), it was necessary to develop techniques for working

conveniently in this spectral region. The first VUV studies on photo-

electron energy distributions and their relationship to electronic band
structure were reported in 1963, for copper [29] and the semiconductors

Cs 3 Bi, Cs 3 Sb, Na 3 Sb, and K 3Sb [30]. This was quickly followed by the

comprehensive studies on copper and silver by Berglund and Spicer [31],

and hundreds of other studies since then.

A photoelectron energy distribution curve for Cs 3Bi is shown in Fig.

5.35. The low-energy peak is due to scattered electrons. It remains fixed

in position, but increases in magnitude as the photon energy is increased.

The two high-energy peaks move to higher energy with increasing photon
energy, thus indicating that this structure in N(S) arises from structure in

the valence band density of states. These two peaks are due to spin-orbit

splitting of the 6p bismuth atomic orbitals [32]. The magnitude of the

spin-orbit splitting in the solid is approximately equal to the atomic

spin-orbit splitting because the bismuth atoms are well separated from
each other in the solid. Similar results are found for the entire class of semi-

conductors made from alkali metals and antimony or bismuth. In all cases,

the magnitude of the spin-orbit splitting as well as the multiplicity is in

agreement with theory. In the cubic materials, two peaks are observed;

in the hexagonal materials, the highest-energy peak is further split into a

doublet.

That the two high-energy peaks in N(S) for Cs 3Bi are indeed due to some
kind of indirect transitions from the valence band can be shown graphically

by plotting the energy distributions versus the energy in the valence band
from which the electrons are excited. This is done in Fig. 5.36 for a number
of different photon energies. Spicer called these transitions nondirect [32,
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12 3 4
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Fig. 5.35 Photoelectron energy distribution for Cs 3 Bi for hv = 5.9 eV [30].

hi/ = 5-65 eV— = 5- 17 eV
=4-9 eV
=4- 7 eV
= 4-45eV

• =4-
1 eV

o = 3-7 eV

-4.0 -3.0 •2.0

E„ =E C •hi/ (eV)

Fig. 5.36 Energy distributions for Cs3Bi plotted versus the energy in the valence band <f v

from which the electrons are excited. This is done by subtracting the photon energy hv from

the external kinetic energy of the photoelectrons. Energy is measured from the vacuum level.

The values of hv indicate the energy of the incident radiation. [From W. E. Spicer, Ph vs. Rev.

Lett. 11, 243 (1963).]
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33]. He introduced this term to distinguish them from indirect transitions.

They cannot be the usual indirect transitions involving phonons because

the optical absorption is large (a > 105 cm -1
) and independent of temper-

ature. On the other hand the bands are not flat, as can be seen from the

widths of the structure in the energy-distribution curves. Thus, it seems that

there is no dependence on k in the optical absorption process.

It seems clear that k conservation will be unimportant for materials

with low hole mobility. Then the hole must be fairly localized and the

wave function must contain all k if Bloch functions are used. Highly ionic

materials should be expected to exhibit such behavior. However, it was

the appearance of nondirect transitions in nearly all the early photoelectron

energy distribution measurements that seemed to strike at the heart of

band theory and continues to be the source of some controversy.

More recently, measurements and experimental techniques have been

improved and direct transitions have been observed in most materials [34,

35]. Nonetheless, there is still in many cases a large background in the

energy distribution that is most easily explained on the basis of nondirect

transitions. However, we shall leave this to the interested reader to follow

in the current literature. After discussing transport effects in the next

section, we shall return to a discussion of photoemission results that can

be explained in terms of conventional direct and indirect transitions.

5.11 Transport and Escape Cone Effects on Photoemission

For purposes of determining electronic band structure, one would like the

external photoelectron energy distribution to be a representative sample

of the internal distribution of excited electrons. However, between excita-

tion and escape many things may happen which lead to distortion of the

idealized EDC. We shall consider several of the more important pos-

sibilities.

There are two dominant scattering mechanisms in an ideal crystal.

They are electron-phonon scattering and electron-electron scattering.

Electron -phonon scattering is nearly elastic and is usually assumed to

be isotropic. It randomizes the internal angular distribution of photo-

electrons and increases the average total path length traveled by an electron

for a particular net displacement. Electron-phonon scattering thus increases

the probability that an electron will suffer an electron-electron collision

before it reaches the vacuum surface. In many cases, the mean free path

for electron-phonon scattering, l
p, is large compared with that for electron-

electron scattering, le . Then, it can be neglected. When it must be included

in the analysis, it can usually be assumed constant. That is because it is

usually important only over the range of electron energies for which /
p

< /e . This is usually a small energy range and an average value of l
p
can be

assumed.
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Electron-electron scattering is assumed to be such that all possible

transitions are equally probable (see Fig. 5.37). The transition matrix

elements are taken to be independent of initial and final states for all energy-

conserving transitions. There is evidence that such an assumption is valid

to first order. The experimental evidence is that such an assumption seems
to have worked quite well for nearly all photoemission experiments that

have been analyzed on this basis [36-38]. Ambiguity as to the validity

of the assumption arises because of the inability to accurately separate

out the effects of varying matrix elements for the initial optical excitation.

Theoretical calculations of electron-electron scattering in silicon using

momentum- and energy-dependent matrix elements gave excellent agree-

ment with the simpler model described here [39]. The agreement probably
results from the averaging over so many possible transitions.

Assuming the simple model for electron-electron scattering just de-

scribed, the probability that an electron with energy S will be scattered to an

I

I

Fig. 5.37 An electron of energy S is assumed to be able to scatter to any state of lower energy

with equal probability. Thus the probability of being scattered to energy between S' and
$' + AS' is proportional to p(S')M '. In losing the energy $ — £", the primary electron excites

a secondary electron from an energy S" below the Fermi energy to an unoccupied state above

the Fermi energy. Since the secondary electron absorbs the energy S — $' lost by the primary,

the final state energy of the secondary electron is £" + {$ — £"). All possible primary losses

and secondary excitations must be considered.
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energy between S" and S" + dS' is then

PS(<T, S) &&' = C p{$")p(£" + \S - <T]) dS" p(<T) dS"

(5.105)

where C is a constant. The integration over S" is such as to include all

possible energy-conserving secondary excitations. The probability that

an electron with energy S will be scattered to some other energy is then just

ps{S) = Ps{S',S)dS' (5.106)

The constant C is chosen to give results consistent with quantum yield and

shape of the EDC for all photon energies.

It is clear from Eqs. (5.105) and (5.106) that electron-electron scattering

must be strongly energy-dependent. In metals, le can vary over several

orders of magnitude, decreasing to 10-20A for electrons with energy about

10 eV above the Fermi energy. For semiconductors, the energy dependence

is even more striking. An excited electron must have an energy in excess of

the conduction band minimum by at least the band gap in order to be able

to excite a secondary electron. This is because the primary electron must

lose energy equal to or greater than the band gap energy in order to excite

a secondary electron from the valence band to the conduction band. Thus,

le is infinite at energies less than SG + S& where SG is the band gap energy

and Sc is the conduction band minimum. It falls to tens of angstroms

several band gap energies above Sc . Requirements of momentum conserva-

tion may take the threshold for pair production several times the band gap

energy.

The effect of electron-electron scattering in producing a low-energy

peak in the EDC is illustrated in Fig. 5.38 for a semiconductor. For all

materials, those electrons that have suffered electron-electron scattering

usually undergo large energy losses. Thus, the EDC is usually easy to

separate into two regions, a high-energy region which retains the structure

characteristic of the initial optical excitation and a low-energy peak dom-

inated by scattered electrons.

During the course of its motion through the crystal, an excited electron

may reach the vacuum surface. If its normal component of momentum
corresponds to an energy greater than the surface barrier height, it may
escape. Most analyses of photoemission are based on a phenomenological

model that utilizes the concept of an escape cone. The concept of an escape

cone can be understood as follows. Consider an electron with momentum
hk traveling toward the vacuum surface at an angle 6 with respect to the
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Fig. 5.38 Left: A hypothetical EDC for a semiconductor with hw^ < $G + &
v, where <f

p
is the threshold energy for pair production. Here, the only electrons escaping are those which
have suffered no scattering or only nearly elastic scattering. The structure in the EDC is charac-

teristic of that in the initial optical excitation. Right: An EDC for photon energy ha>2 > hw^
such that h(o2 > SG + S

p . Some electrons can escape even after having suffered large energy

losses. These electrons contribute to a low-energy peak which often consists mostly of scattered

electrons. The peaks at higher energy contain few scattered electrons and thus are representative

of the structure in the initial optical excitation.

surface normal. On the basis of a free-electron model, the condition for

escape is

h2
kx

2/2m ^ SY + ecj) (5.107)

where hkx is the normal component of momentum and

cos 6 = kjk (5.108)

The escape cone for electrons with energy $ — h 2
kx

2/2m is defined by the

critical angle 6C , which is the maximum value of such that an electron

can still escape. This critical angle is found with the help of Eqs. (5.107)

and (5.108) to be

cos C = [(<f F + e<f))/SY
12

(5-109)

One way in which the escape cone concept is used is to assume that the

photoelectrons are excited such that their initial directions are isotropically

distributed. Then, the probability that an electron is within the escape

cone is given by

T {S) = |{1 - [(<fF
- e0)/<f]

1/2
} (5.110)
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This result is found simply from the ratio of the solid angle included by

the escape cone to the total solid angle 4n. The effects of electron scattering

are then sometimes included by multiplying this semiclassical escape

function by an attenuation factor e~ xlL
, where L is the mean attenuation

length and x is the depth at which the electron is initially excited. Of course,

real solids are not free-electron metals. For real metals, it has often been

found in practice that it is sufficient to take the bottom of the bands, i.e.,

the bottom of the potential well, at the Fermi level for purposes of calculating

a threshold function. Then, Eq. (5.110) is transformed to

T(<f) * Hi " W/(* - ^f)]
1/2

} (5-111)

This probably works because the bands begin to be free-electronlike in the

vicinity of the Fermi energy for many metals. For semiconductors, a similar

modification is to put the bottom of the potential well at <fc , the conduction

band minimum. Then,

T(i) * Hi - ['a/C - ^c)]
1/2

l (5-112)

where $A is the electron affinity.

The escape function T{£) is sometimes determined entirely from a self-

consistent phenomenological analysis of experimental data [36, 37].

It then implicitly includes effects of electron-phonon scattering since these

effects are too difficult to include in approximate analytic expressions.

Quantum mechanical reflection effects at the barrier seem to be unimportant

in practice.

One can view transport effects as nuisances which make it difficult to

obtain the electronic density of states from photoemission data. Alternatively,

one can view these effects as providing an opportunity to learn about

electron scattering in an energy range not generally accessible. The former

viewpoint is more common. However, the hindrance to band structure

studies is more one of determining absolute magnitudes rather than the

hiding of structure. For indirect transitions, or ones that behave ap-

proximately like indirect transitions, even the effects of transport and

the escape cone can be eliminated. One can understand this in the fol-

lowing way. Focus attention on a particular energy <ff in the external

energy distribution. If this energy is sufficiently high, the only elections

escaping are those that have, at most, undergone nearly elastic scattering.

These electrons originated at some initial energy i
{
within the solid. Now,

if the photon energy is increased by Aftco, the electrons emerging at energy

S {
originated at energy S ,-

- Afrco. Thus, we can visualize that as the photon

energy is increased, we can watch structure pass by. Since we have focused

on a particular final energy, the escape cone and transport effects remain

constant. Thus, we can determine the valence-band optical density of
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states. Most methods of analysis of photoemission are just some analytic

variant of this procedure.

5.12 Photoemission and Electron Transport in Al and GaAs

Aluminum is quite well understood. Its band structure is sufficiently

well known that the photoemission data can be utilized to determine
electron transport properties in an energy range not generally accessible.

"E ^S

•2- /

UJ -+ —

-
:

1 2 3 4 5 6 7

Electron energy (eV)

Fig. 5.39 Photoelectron energy distribution

curve for Al for hv = 10.2 eV. The energy

distribution was measured within 1 hr after

deposition of the Al film. [From T. Huen
and F. Wooten, Solid State Commun. 9, 871

(1971).]

1 2 3 4 5 6

Electron energy (eV)

Fig. 5.40 Photoelectron energy distribution

curves for Al for hv = 10.2 eV. (1) after 2-3

hr; (2) after 24 hr. The curves show the effect

of aging in an environment at 10~ 10
Torr.

[From T. Huen and F. Wooten, Solid State

Commun. 9, 871 (1971).]

Figure 5.39 shows a photoelectron energy distribution curve for clean Al.

The sample was prepared and maintained in a vacuum chamber with an
ambient pressure of 2 x 10" 10

Torr. Figure 5.40 shows the effects (in this

rather extreme case) of even a small degree of contamination. Fortunately,

most materials are not nearly this sensitive to surface contamination.

Also, optical reflectance is usually less sensitive to surface contamination
than is photoemission.

Photoemission from Al has been analyzed by a Monte Carlo analysis

[38, 40]. The procedure was the following. The photoelectrons were as-
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sumed to be excited within the solid with an exponential spatial distribu-

tion corresponding to the optical absorption coefficient. They were dis-

tributed in energy in proportion to the product of initial and final density of

states and then started off in random directions. The mean free path for

electron-phonon scattering, /
p , was taken as an adjustable parameter.

Electron-electron scattering was taken as described by Eq. (5.106). The

external energy distribution was then calculated and the parameters l
p
and

C from Eq. (5.105) were adjusted to give agreement with the EDC and

quantum yield. In this manner, the cross section for electron-electron

scattering was obtained. The results are shown in Fig. 5.41.

5 6 7 8 9 10

Electron energy above E F (eV)

Fig. 5.41 Calculated cross section and mean

free path for electron-electron scattering in

Al. The mean free path for electron-phonon

scattering was taken as 200 A. [From T
Huen and F. Wooten, Solid State Commun.

9, 871 (1971).]

The analysis outlined here has been based on indirect transitions. The
experimental photoemission data are in excellent agreement with such a

model. It is also consistent with the free-electronlike optical reflectance of

Al. Furthermore, although the temperature dependence of photoemission

for Al has not been measured, it has been measured for Zn [41]. Since Zn
also exhibits free-electronlike optical reflectance, and since the temperature

dependence of photoemission from Zn is significant and consistent with a

model involving phonon-assisted indirect transitions [42], it seems probable

that the transitions in both Zn and Al are largely indirect even in the

vacuum-ultraviolet. Nonetheless, a direct transition analysis is also in

fair agreement with experiment and the issue is not finally resolved [43].

Many workers analyze their data in terms of the kind of approach used

here for Al. However, the usual method is an analytic approximation to the

model. Whereas Monte Carlo methods can handle multiple electron-

electron scattering events, analytic approximations are usually restricted

to a single electron-electron scattering event per primary photoelectron.

Fortunately, this is usually quite adequate since electrons which have

suffered more than one inelastic scattering event are usually at too low
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an energy to escape. Electron-phonon scattering and second-order electron-

electron scattering effects are included implicitly in the empirical threshold

escape function T{£). When the density of states is unknown, the analysis

consists of an iteration process to reach a selfconsistent result.

Optical transitions in GaAs are direct. Thus, as hco increases, peaks in

the EDC such as those shown in Fig. 1.4 appear and disappear according

to whether the corresponding direct transitions are allowed or not. The
energy distribution curves and spectral dependence of quantum yield can
be explained without the need to include electron-phonon scattering.

This is because the excited electrons with sufficient energy to escape also

have sufficient energy to excite secondary electrons. Thus, electron-electron

scattering dominates.

If GaAs is coated with a surface layer of Cs 20, the work function (the

difference between vacuum level and Fermi level) can be lowered to 1.2 eV.

Thus, heavily doped p-type GaAs:Cs20, for which the Fermi level coincides

with the valence band maximum, has the conduction band minima above

Lowest
conduction band

L7eV peak

l.4eVpeak

X
(100)

Electron wavevector (k
'

Fig. 5.42 Schematic of the GaAs band structure near the energy gap showing the relevant

excitation-escape processes. For photon energies below 1.7 eV, the electrons thermalize in the

T minimum before escaping into vacuum. For greater photon energies, an increasing number of

electrons thermalize in the X minima. [From R. C. Eden, J. L. Moll, and W. E. Spicer, Phys.

Rev. Lett. 18, 597 (1967).]
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the vacuum level. Then, photoemission from these states can be measured.

For these low-energy electrons, the mean free path for electron-electron

scattering is infinite and electron-phonon scattering plays an important

role. This has important applications for infrared photocathodes [44]. It also

has interesting consequences for band structure studies.

Figure 5.42 illustrates what happens in GaAs : Cs2 with electrons in the

energy region just above the conduction band minima. For 1.4 < hoi

< 1.7 eV, electrons are excited to states near the conduction band minimum.

Note this

shoulder

Electron energy (eV)

Fig. 5.43 Energy distribution curve for p
+ GaAs:Cs 2 for a photon energy of 2.2 eV. [From

L. W. James, R. C. Eden, J. L. Moll, and W. E. Spicer, Phys. Rev. 174, 909 (1968).]
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These electrons can escape into the vacuum because the vacuum level

lies below the conduction band minima. However, because the optical

absorption depth is quite long (1/a > 5000A) these electrons diffuse to the

surface, becoming thermalized in the r\ minimum in the process. For
photon energies greater than 1.7 eV, some of the excited electrons become
thermalized in the X

t
minima. Thus, even though the optical transitions

are direct, the X
x conduction band minima can also be seen in the photo-

electron energy distribution curve. This is shown in Fig. 5.43 for hv = 2.2 eV.
One might also expect to see a peak arising from the L

t conduction band
minima. It happens, though, that the L x and X

x
minima are at nearly the

same energy. Thus, the stronger peak, arising from the X
t minima, domi-

nates. The contribution from the L x minima is barely discernible as a
shoulder on the X

1 peak. That the shoulder is real has been verified by
measuring the second derivative of the /- V curve, i.e., the first derivative

of the energy distribution curve. EDC derivative spectroscopy has all the

hi/ = 2.2eV

hv = 4.65eV

1.2 1.4 1.6 1.8 20 2.2

Electron energy (eV)

2.4

Fig. 5.44 Magnified derivative of EDC for p
+ GaAs:Cs 2 for a photon energy of 2.2 eV.

Also included are data for hv = 4.65 eV showing only that portion corresponding to the X 3

conduction band minima. See Fig. 1.5 for the X 3 minima. [From L. W. James, R. C. Eden,

J. L. Moll, and W. E. Spicer, Phys. Rev. 174, 909 (1968).]
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advantages already mentioned in Sections 5.3 and 5.4 for optical reflectance

derivative spectroscopy. The results for GaAs:Cs2 are shown in Fig. 5.44.

The Xi peak is identified in Fig. 5.44 by the point at which the EDC
derivative passes through zero. The kink in the derivative curve cor-

responds to the Li minima. In contrast with Fig. 5.43, its location can be

quite accurately determined with respect to Xv That the kink is due to the

Lj minima is suggested by its consistency with band structure calculations

and the observation that the kink appears at the same energy over the

photon energy range 2.0-4.25 eV. The structure identified as final-energy

states corresponds to final states for optical transitions. The electrons

contributing to this structure have emerged unscattered. Since the original

optical transitions are direct, this structure changes with changing photon

energy.

PROBLEMS

5.1 Show that E„exp[i(k' + q - k")- R„] = unless k + q - k" = K,

where K is a reciprocal lattice vector.

5.2 Under what conditions is it reasonable to assume an oscillator strength

of unity in making the estimate of absorption coefficient following Eq.

(5.38)?

5.3 Derive the joint density of states Jcv for one-dimensional and two-

dimensional critical points.

5.4 Derive Eqs. (6)-(8) of N. V. Smith, Phys. Rev. 2, 2841 (1970). Refer to

N. F. Mott and H. Jones, "The Theory of Metals and Alloys" Chapter 3,

Sect. 5. Dover, New York, 1958.

5.5 Assume an isotropic solid with band maxima and minima at k = 0.

Show that the absorption coefficient for forbidden direct transitions is

proportional to {hco - £ f l2/hw, where S Q is the direct band gap energy.

Show that for indirect transitions from the valence band maximum to

conduction band minima near the Brillouin zone boundary, the absorption

coefficient is given by Eq. (5.91).

5.6 It follows from Eq. (5.5) that the transition probability between two

discrete states increases quadratically with time as long as |(co
/;
— co)t| <^ 1.

We arrived at a transition probability that increases linearly with time, Eq.

(5.9), by integrating over a range of final states. The integration includes

transitions which strictly conserve energy between unperturbed states,

coji = a>, and transitions for which energy is not conserved, a>
j; ^ a>. The

former increase quadratically with time; the latter oscillate periodically.

The total result is a transition probability that increases linearly with time.
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In light of this understanding of transition rates, read the paragraph
preceding Eq. (5.94) and then discuss the validity of the following argument:
For indirect transitions, the transition from the intermediate state to the
final state must take place in a time t < t,. From Eq. (5.94), it is clear that

the greater the difference between the direct band gap energy and the
photon energy, the shorter will be the lifetime of the intermediate state.

We might expect the probability amplitude (or just the probability itself?)

for electron-phonon interactions to be proportional to the time available

for such an interaction. We would then expect an expression for the transi-

tion rate to be proportional to t
2 and hence contain a term {S - hco)

2

in the denominator as in Eq. (5.84).

5.7 Read S. J. Nettel, Phys. Rev. 150, 421 (1966) and H. Ehrenreich, in

"The Optical Properties of Solids" (J. Tauc, ed.), pp. 106-110, Academic
Press, New York, 1966. Discuss the differences in intraband, interband, and
Drude absorption as generalized by these authors. Where their view-
point differs, whose do you favor and why?

5.8 Read G. P. Pells and H. Montgomery, J. Phys. C Metal Phys. Suppl.

No. 3, p. S330 (1970). Discuss their arguments concerning the importance
of nondirect transitions.

5.9 Read N. V. Smith, Phys. Rev. 3B, 1862 (1971). This paper shows that

direct transitions occur to a much greater degree than was apparent in the

original work of Berglund and Spicer. However, derivative techniques

would remove a large, but smooth background due to nondirect transitions.

Based on this paper, can you argue that nondirect transitions are un-

important in Cu?
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Chapter 6

DISPERSION RELATIONS AND SUM RULES

A dispersion relation is an integral formula relating a dispersive process

to an absorption process. An example of dispersion is the dependence of

refractive index n on energy hco. It leads, e.g., to the angular dispersion of

white light by a prism and to the variation in velocity with wavelength.

A dispersion relation relates n to the extinction coefficient k.

In this chapter, we shall show how dispersion relations follow rigorously

from the requirement of causality. Causality means there can be no effect

before the cause. Thus light cannot be reflected or absorbed by a system

before the arrival of the primary light wave. The dispersion relations that

can be derived for linear systems subject to causality are quite general and

very useful. They can be used to derive sum rules and to analyze experi-

mental reflectivity data to obtain the optical constants. We shall consider

examples of both of these applications of dispersion relations.

6.1 Linear Response Functions and Kramers-Kronig Relations

Under the action of an external stimulus, a system responds in its own
characteristic way. The relationship of the response to the stimulus is

given by a response function. We have already encountered several ex-

amples of response functions. A particular example is the Green's function

given by Eq. (4.8). It describes the increment in velocity of an electron as the

response to an electric field. In general, the induced response to an external

173



* '* Chapter 6 Dispersion Relations and Sum Rules

stimulus can be written

X{r, t) = G(r, r', t, t')f{r', t') dx' dt' (6.1)

for a linear system. Equation (6.1) describes the response X(r, t) of the system

at location r and time t to stimuli f(r', t') acting at all times t' and places r'.

The function G(r, r', t, t') is called the response function.

The stimulus of interest here will generally be an electromagnetic wave.

We shall assume that the wavelengths of the variable fields are sufficiently

long that spatial dispersion can be neglected. This is not true for the anom-
alous skin effect, as we have already seen. It is also not true for plasma
oscillations and the effects of impurities. However, spatial dispersion is

unimportant for interpreting most of the fundamental optical spectra in

the visible and ultraviolet. Neglecting spatial dispersion is the same as

making a local approximation. That is, it assumes that what happens at a

particular place depends only on the fields existing at that place. If we make
this assumption, and realize also that the flow of time is uniform (or assume
it, in order to avoid philosphical problems), then

G(r, r', t, t') = d{r - r') G(t - t') (6.2)

and Eq. (6.1) becomes

X(t)= G(t-t')f(t')dt' (6.3)

If we include the additional requirement that the system be causal, that is,

that there can be no response before there is a stimulus, then

G(t - t') = 0, t < t' (6.4)

Equation (6.4) follows directly from Eq. (6.1) if a ^-function stimulus

is assumed. Taking f(t') = d(t' — t ),

X(t) = G(t - t')S{t' - t )dt'

= G(t - t ) (6.5)

Equation (6.4) then follows directly from the requirement of causality.

We thus see that the response function is a Green's function which describes

the response of the system at time t to a stimulus at some earlier time t'.

As is so often the case with folded integrals such as in Eq. (6.3), it is con-

venient to make a Fourier transformation to convert the folded products
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into simple products. The Fourier transforms can be written

f(co) = f(t) exp(icot) dt (6.6)

X(co) = X(t) exp(icot) dt (6.7)

X(a>) — dt (exp icot)

= \dt'f(t')

G(a>) = \G(t- t') exp[ico(f - t')~] dt (6.8)

From Eqs. (6.7) and (6.3), we get

G(t - t')f{t') dt'

G(t - t') (exp icot) dt \

= dt' f(t') (exp icot') \\G(t - t') exp ico(t - t') dt > (6.9)

Substituting on the RHS from Eqs. (6.6) and (6.8), we get

X(co) = G(a))f(co) (6.10)

Thus, in terms of Fourier transforms, a monochromatic stimulus f(co) is

just multiplied by some number G{co) to give the response X(co).

If G(co) has a pole at co = co , i.e., if the denominator of G(co) vanishes at

co = co , then there can be a finite response in the absence of a stimulus.

What this means is that oo corresponds to the angular frequency of a normal

mode of the system. We have already seen an example of this in our earlier

discussions of plasma oscillations. There, we found the condition [Eq.

(3.36)]

D = Eext = eE = (6.11)

if a plasma oscillation is to sustain itself in the absence of an external field.

Note, though, that Eq. (6.11) is not written in the same form as Eq. (6.10).

If we rewrite Eq. (6.11) as

E = e
_1Eext ^0 (6.12)

then we see that e ~ * is the response function. Since the poles of the response

function give the normal modes or elementary excitations of the system,

it is the zeros of the dielectric function that give these natural frequencies.
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There are some fundamental and very important properties of the re-

sponse function. They include relationships between the real and imaginary
parts of response functions that have direct applicability to the analysis

of experimental data and the derivation of useful sum rules. We shall now
develop some of these relationships.

If we let co be complex, a> = co^ + ico2 , then Eq. (6.8) becomes

G(co) = G{t - t') exp[ico
1
(f - t')] exp[- co2 (t

- t')] dt (6.13)

The factor exp[/co
1 (t

- t')~] is bounded at all frequencies; exp[- co2 (t
- t')~\

is bounded only in the upper half-plane for t — t' > and only in the lower
half-plane for t - t' < 0. Thus the requirement of causality, G{t - t') =
for t - t' < 0, requires that the integral [Eq. (6.13)] be evaluated in the

upper half-plane.

Now, let co be on the real axis. Then, from Cauchy's theorem,

G(co)
1
-0>

in

G{co') dco'

(6.14)

where & stands for principal value. This result is obtained by integrating

over the contour shown in Fig. 6.1 and assuming that G(co) decreases such
that as the radius of the semicircle approaches infinity, the contribution

to the integral over the semicircle approaches zero. If we now split G{co)

into its real and imaginary parts, we get

Re G(w) = — 0>

n

Im G(co')
dco' (6.15)

Im G{w) =
1 f ReG(co')

K CO — 00

(6.16)

Fig. 6.1 Integration contour for obtaining Eq. (6.14).
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We see that the real and imaginary parts of G(co) are not independent;

they are connected by means of formulas called dispersion relations.

Let us now consider a specific example. We consider a system under the

influence of an electric field. The system is polarized by the field and from

Eqs. (3.5) and (3.7), we can describe the polarization as

Ne2
1

P(co) = —
2 Y —EM (6.17)

m (co — co )
— uco

Comparison with Eq. (6.10) shows that

Ne2
1

G(co) =
5

-
2
—

-

(6.18)m co — co — uco

Now, we ask if G(co) is causal. We know, of course, there can be no polariza-

tion induced before the arrival of the electric field. The question is whether

our mathematical description of the system is consistent with causality.

If G{co) is causal, then, clearly, there are dispersion relations connecting

the real and imaginary parts of the polarizability. We now check G(co) for

causal behavior. Note, though, that here we are using the total electric

field as the stimulus, not an external field.

The singularities in G{co), as given by Eq. (6.18), occur for

co « -%iT ± co , T2 « co
2

(6.19)

Thus Eq. (6.18) becomes

Ne2
1

G(co) = — —;— —
r
—

(6.20)
m (co + co + j u) (co — co + j il)

The inverse transform of Eq. (6.20) is

1 C
K

G{t) = G{co)e-
lwt

dco
2n

1 Ne2

2n m
e

dco
[co + co + ifr) (co - co + %iT) (6-21)

Now, for t < 0, the integral must be evaluated in the upper half-plane

where e~
l<ot

is bounded. Since there are no singularities in the upper half-

plane,

G{t) = 0, t < (6.22)

and G(t) and G(co) are causal. For t > 0, we must evaluate (6.21) in the
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lower half-plane. Then,

Ne2

G(t) =
2nm

2ni Y, (Residues)

Ne2
Jexp[— i(— co — 2 iO*] exP[

—
i(wo

~~
2 ir)f]

m

Ne2

2ct»f, 2co

(sin co t) expl
mco

"

\ 2

The polarization as a function of time is

t > (6.23)

P(0 = G(t - t')E(r') dt'

Ne2

exp
mat?

(t-0 [sin a> (t - t')] E(t') it' (6.24)

Suppose we look at the response to an electric field pulse described by a

S function. Then, if

Eq. (6.25) yields

P(0 =
Ne 2

mco
E r

E(t') = E 8(t')

exp sin co t, t >

(6.25)

(6.26)

The system is polarized at time t — by a <5-function impulse and oscillates

with frequency co . The amplitude of the polarization decays with a damping
constant T/2.

The causality conditions we imposed result in a mathematical descrip-

tion in which no output can occur before an input, but the output may be

delayed with respect to the input.

We have demonstrated explicitly that our model for the polarizability

is a causal one. Since, from Eq. (3.12), e — 1 = 4nNa, e — 1 must also be

causal. Thus, from quite general principles, we can write down dispersion

relations for the dielectric function. From inspection of Eqs. (6.15) and

(6.16), we see immediately that

1

e^cd) - 1 = — &
n

E 2{0J) = -

£2 {(D')

dco'
co — 00

[£l (o/)
- 1]

dco'
co co

(6.27)

(6.28)
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We are interested in physical systems with real inputs and real outputs.

This means we must have

G(-co) = G*{co) (6.29)

In terms of the dielectric function, it means that

e(-co) = E*(co) (6.30)

Thus

s^ — co) = s^co) (6.31)

and

e2 {
— oj) = — e2 (ft>) (6.32)

We can use these results to rewrite the dispersion relations in the more
usual form in terms of integrals over positive frequencies

e
x
(co) -\= — 9\

2K }

- dco' (6.33)
7t Jo (Wf-W2

2co
e2 (ft») =

71

l>i(a>') ~ 1]

(ft/)
2 - CO

2
dco' (6.34)

Equations (6.33) and (6.34) are known as the Kramers-Kronig dispersion

relations.

We have seen how the condition of causality imposes some general

relationships between the real and imaginary parts of any causal function.

We have used a purely mathematical treatment. We can also see that

some kind of a relationship must exist between real and imaginary parts

in terms of a simple picture. Figure 6.2(a) shows a single pulse of radiation

incident on a system at time t = 0. Suppose the system can absorb only

a narrow band of frequencies. Then, showing only a single component for

convenience, the absorbed component is as shown in Fig. 6.2(b). What re-

mains is shown in Fig. 6.2(c), which is clearly nonsense. No real physical

system can have an output before the arrival of the input signal. What this

means is that the response function of the system cannot simply describe

the absorption, it must also describe the way in which all other frequency

components are shifted in phase so that they cancel the absorbed component
for times t < 0. Thus the response function must have real and imaginary

parts to describe both absorption and phase shifts, and the real part at a

single frequency must be related to the imaginary part at all other frequencies

and vice versa. There must be dispersion relations to satisfy causality.
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(a)

(b)/

Fig. 6.2 This figure illustrates schematically the basic reason for the logical connection of

causality and dispersion, (a) An input A which is zero for times t less than zero is formed as a

superposition of many Fourier components (b) such as B, each of which extends from t = - go

to t = oo. These components produce the zero-input signal by destructive interference for t < 0.

It is impossible to design a system which absorbs just the component B without affecting other

components, for in this case, the output (c) would contain the complement of B during times

before the onset of the input wave, in contradication with causality. Thus causality implies

that absorption of one frequency must be accompanied by a compensating shift of phase of

other frequencies; the required phase shifts are prescribed by the dispersion relation. [From

J. S. Toll, Phys. Rev. 104, 1760 (1965).]

There are several points to be made with regard to Eq. (6.34). Note that

the integral can be broken up into two terms, one arising from s^co') in the

integrand and the other from — 1. The latter integral is

2co
&

dco'

(co'f

=
CO

(6.35)

Thus Eq. (6.34) could be written

2co
e2(co)

= &
e^co')

(co')
2

dco'

CO

(6.36)

as it sometimes is. This destroys some of the symmetry between Eqs. (6.33)

and (6.34). More important, it is necessary to include e^co') — 1 in the

integrand rather than just e^co'). This is because e^co') -> 1 as co' - oo

and thus [e^co') - l~\/(co' - co) approaches zero more rapidly than l/co'.

This is necessary for the integral over the infinite semicircle to approach
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zero and give no net contribution. Even so, Eq. (6.34) is not strictly true

for all materials. For metals, there is a contribution Ana/co to e 2 . This is

not bounded as co -* 0. If we include the residue at co = arising from this

term and follow through with the same steps as before, we get

8l(ffl) =i^_^r^2^ (6.37,
co n Jo (co)

2 ~ co
2

where a is the dc conductivity.

6.2 Reflectivity and Phase Shift Dispersion Relations

There are a number of ways to determine optical constants. A common
way is to measure the reflectivity at normal incidence and use dispersion

relations to determine the optical properties. We will now see how this

works.

The reflectivity for normal incidence is given by

R{co) = r(co)r*{co) (6.38)

where

r(co) = (n - 1 + ik)/{n + 1 + ik) (6.39)

We can write the complex reflectivity amplitude as

r(co) = p(co)e
mo,) (6.40)

where now

R(co) = p
2
(co) (6.41)

We shall now assume that r(co) can be analytically continued into the

complex plane and that it has all the necessary mathematical properties

for the integral over the appropriate semicircle to approach zero as the

radius approaches infinity. This is discussed in Appendix G. Then, if we

write Eq. (6.40) as

In r(to) = In p(co) + id{co) (6.42)

and argue that the reflectance must obey causality, we can look at Eqs.

(6.15) and (6.16) and immediately write the dispersion relations as

In p{co) = — ^ -^—- dto' (6.43)

™ J-oo CO - CO

1 f
00

In p(co')
, ,

.....
e{co) = ^ —--—-dco' (6.44)

n J. m co - co
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Again, since the input and output functions must be real, we require

r{-co) = r*(co) (6.45)

This makes it possible to rewrite Eq. (6.44) as an integral over positive

frequencies.

2co
6(a)) = &

n

In p(co')

dm' (6.46)
(co')

2 - of

We now need an expression for the phase shift 9; the magnitude of the

reflectivity amplitude p(a>) is determined directly from experiment. The
integration of Eq. (6.46) must be done numerically. It is also necessary to

have some means of extrapolating experimental results over regions for

which data are not available. After 6{oj) is determined, the optical constants

n and k can be determined from

p(co)e
w = (n - 1 + ik)/(n + 1 + ik) (6.47)

A brief discussion of the numerical integration of Eq. (6.46) and methods
of extrapolation are given in Appendix G.

6.3 Sum Rules

We have already encountered sum rules in Section 3.5 and seen their

usefulness in several applications in Section 3.6. We will now show how
these sum rules follow from the Kramers-Kronig equations.

Equation (6.33) can be written as

, , t
2 [•«>' a>'E2 (w') ,

2 f
00

co'fi2 (co')

n Jo (a> ) - co 7i J mc (co')
2 - cd

2

(6.48)

Let cac be a cutoff frequency such that there is no absorption at higher

frequencies. Then, e 2(co) = for co > coc . If we determine s^co) for co P coc ,

then co' can be neglected in the denominator of the first integral in Eq. (6.48).

The second integral is zero because £2 ((U') = for co' > o)c . Under these

conditions, Eq. (6.48) becomes

s^co) = 1 - (2/7rco
2
) cq's2 {co') dco', a>> (oc (6.49)
Jo

At sufficiently high frequencies, all the electrons can be considered free

and the real dielectric function is given by the Drude result, Eq. (3.32),

fil (co) = 1 - (co_
2
/co

2
) = 1 - (4nNe2

/m) (6.50)
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where m is the free-electron mass. Comparison of Eqs. (6.49) and (6.50)

shows that

coe2(co)dco = \%co (6.51)

where the upper limit of integration has been extended to oo because

e2 (co)
= for co > coc . Equation (6.51) is the sum rule related to the rate of

energy absorption by transverse fields (photons).

The sum rule related to the rate of energy absorption by longitudinal

fields (electrons) can be obtained in the same way as Eq. (6.51). The real and

imaginary parts of the reciprocal of the dielectric function are also related

by dispersion relations. By direct analogy with Eq. (6.33), we can write

Re
s(co)

- 1 = — 0>

n

co' Im[l/e(a/)]

(co')
2

dco'

CO
(6.52)

The number one has been subtracted from Re(l/e) so as to ensure that

the integral along the semicircle vanishes when its radius tends to infinity.

That is,

Re(-1- 1 = ,

" x

, - 1 (6.53)

ei
2 + e2

2

For frequencies sufficiently high that absorption no longer takes place,

e2 (co) = 0, and

Re 1 =

cor cor

CO

co $> cov (6.54)

Following through just as in the derivation of Eq. (6.51), we obtain

co' Im( - l/e(co')] dco' = jTtco
p
2

(6.55)

A sum rule for the real, static dielectric constant is obtained directly

from Eq. (6.33) simply by setting co = 0. Thus

MO) = 1 +
e2 (co') dco'

co
(6.56)

In the case of a metal, both e^co) and s2 (co) approach infinity as co tends
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toward zero. For semiconductors and insulators, we see from Eq. (6.56)

that the static dielectric constant e^O) is strongly influenced by interband
transitions at low frequencies. We thus expect relatively high static di-

electric constants for narrow gap materials. This is what we indeed found
to be the case in Section 3.1.

PROBLEMS

6.1 Derive Kramers-Kronig relations between the derivatives ds
1/da> and

ds2/dco.

6.2 For studies of lattice vibrations by means of infrared reflectance, one
takes e^co) -> e^ =£ 1 as co -> oo . Here, eK is the infrared dielectric constant;
it is the low-frequency optical dielectric constant e^O) used for analysis

of reflectance in the visible and ultraviolet. How are Eqs. (6.33) and (6.34)

modified for the analysis of infrared reflectance?

6.3 What are the Kramers-Kronig relations for the refractive index n
and the attenuation coefficient /c?

6.4 Show by carrying out an integration by parts, that the dispersion

relations (6.33) and (6.34) can be put in the form

poo

s.ico) - 1 = (1/tc) [de2(co')/dco'] ln[|(a/)
2 - co

2\~^ dco'

Jo

e2(co) = - (1/tt) [_ds
1
{aj)/d(o'~\ ln([co' + co]/\co' - co\)dco'

Discuss the behavior of the reflectivity in the neighborhood of co' = co.

What is the effect of a sharp edge in e2(co) resulting from the sudden onset
of interband transitions?

6.5 Assume a frequency co sufficiently high that cot > 1, so collisions can
be neglected. Then, the conductivity a(co) is Ne2

/mco. It is all right to use this

formula for numerical values of a(co) in many cases. However, a literal

interpretation of this procedure says there is no damping mechanism.
Show that in this case, the response of the system as indicated by current

flow J(t) is such that a (5-function pulse

S(t) = (l/2n)
\

e- imt dco=\ E{co)e~
io}t

dco
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applied at t = produces a current signal J{t) which exists for t < 0.

This result violates causality. Show that formally, even in the absence of

collisions, one must write

a = i(Ne
2
/m) [(1/co) - in 5{co)~]

This result can be obtained by switching off the collisions gradually by

letting

co = lim (co -f- iT)

r-o

in the formula for the response function. Show that the new term in d(co)

gives a current which just cancels the previous contribution to the current

for t < 0.
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Chapter 7

SELF-CONSISTENT FIELD APPROXIMATION

In this chapter, we shall derive an expression for the dielectric function

in the self-consistent field approximation. A number of authors have used

this approach to study the response of electrons to an external perturba-

tion [1-5]. However, we shall follow quite closely the steps outlined by

Ehrenreich and Cohen in their classic paper [1].

Ehrenreich and Cohen considered the response of an electron gas to an

external charge density. Under these conditions, the system is acted on by a

scalar potential. Thus an analysis of the response of the system leads to a

derivation of the longitudinal dielectric function. The longitudinal dielectric

function is much easier to derive than the transverse dielectric function.

Since the two are equal in the long-wavelength limit, it is quite satisfactory

to use the longitudinal dielectric function for optical properties. Then, in

Chapter 9, where plasmas are considered, the same longitudinal dielectric

function can be used even when q ^ 0.

7.1 Self-Consistent Field Approximation

From Eq. (3.8), we can write the dielectric function as

e = (E + 4tiP)/E (7.1)

186
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Using Eext = E + 471E, e can be written as

— 47raEi„„

(7.2)

1 _ Eext - 4ttP _ Eext - 47iaEloc

Now, assuming that wave functions are available so that a can be calculated,

what do we use for Eloc? One possibility is to say that Eloc « Eext
. This

approximation yields the Hartree-Fock dielectric function

1/£hf = 1 - 47ta (7.3)

Such an approximation is valid only when the interaction of an electron

with the induced fields in the rest of the medium is very weak. The dielectric

function obtained in this manner is called the Hartree-Fock dielectric

function simply because it is equivalent to the usual Hartree-Fock ap-

proximations in the calculation of the ground-state energy of the electron

gas. The Hartree-Fock approximation actually includes Coulomb inter-

actions ; the labeling eHF has to do only with the fact that eHF leads to the

Hartree-Fock ground-state energy (a topic beyond the scope of this book).

The next degree of approximation is to at least include the effect of the

induced fields in the medium. Thus, if we take Eloc « E, the dielectric

function obtained from Eq. (7.1) is

£rpa = 1 + 47ra (7.4)

and is known as the dielectric function in the random-phase approximation

(RPA). It is also known as the self-consistent field approximation (SCF)

as well as by a variety of other names corresponding to the method used

to reach the same result as Eq. (7.4). The approach here will be to study the

time-dependent interaction of a single electron with the self-consistent

field arising from the external perturbation and the induced fields. We shall

designate the dielectric function eRPA = escFas e because this is really the

approximation that has been used throughout this book and is the common
approximation used in the literature. It is usually a good approximation

except for dielectric materials such as NaCl. For insulators, local field

effects such as discussed in Appendix B must be included.

Before proceeding with the derivation of e in the SCF approximation,

it is worth noting several aspects of the approximation. One is that e can be

computed with the use of Feynman diagrams and time-dependent per-

turbation theory. If Eq. (7.4) is expanded as

£r^a = 1 - (4na) + {4na}
2 - (47ia)

3 + . .

.

(7.5)

each term in the expansion corresponds to one of the terms in the series
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of Feynman diagrams. It is clear from inspection of Eqs. (7.3) and (7.5)

that £hp is the lowest-order term in an expansion of g^. Further dis-

cussion of this approach (which is beyond the scope of this book) is found

in the literature [6-8].

The second point, the important one, is that it should be clear that eRPA
is equivalent to neglecting local field corrections. By taking the local field

to be the average macroscopic field, we include all long-range self-consistent

field effects, but we are neglecting the short-range screened interactions

between electrons. (See Problem 7.1.)

We are now ready to derive the longitudinal dielectric function following

the treatment of Ehrenreich and Cohen [1]. The basic idea is that some
external perturbation causes a redistribution of charge within the system.

The redistributed charge produces an induced potential which acts to

screen the original external potential. The total self-consistent potential </>

consists of the original external potential </>

ex
plus the induced screening

potential (j)

m
. The final distribution of charge must be consistent with the

total potential.

We shall first consider a free-electron gas. We begin with the Liouville

equation of motion for the density operator

ihdpJdt = [H,pop] (7.6)

and the single-particle Hamiltonian

H = H + V(r, t) (7.7)

The Hamiltonian for the unperturbed system satisfies the Schrodinger

equation
H |k> = *Jk> (7.8)

for the free-electron gas. The eigenstates for the unperturbed system are

|k> = Q _1/2 expikT (7.9)

where Q is the volume of the system.

We now write

Pop = Pop + Pop (7-10)

where p°
op is the density operator for the unperturbed system, and we make

the Fourier expansion of the total perturbing potential energy

V(r,t) = ^V(q',t)expiq'-r C7 - 11 )

i'

With these expansions for pop and V, Eq. (7.6) becomes

ih (d/dt) (p°op + p'
op) = \H + £ V(q', t) exp iq • r, p°op +P

'

op] (7.12)
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Using the Liouville equation for the unperturbed system

ihdp°Jdt = [H ,p°op]

Eq. (7.12) becomes

ih dp'/dt = [H
,
p' ] + £ 7(q\ t) exp iq • r, p°

p + p'
01

(7.13)

(7.14)

Taking matrix elements between states |k> and |k 4- q>, and keeping only

linear terms, the equation of motion for the matrix elements of the per-

turbation term in the density operator is

ih (d/dt) <k + q|p;p|k>
= <k + q| [H ,

p'
op] |k>

Lq
+ <k + q V V{q', t) exp iq' • r, p\ |k>

(7.15)

Now let us look at the terms on the RHS of Eq. (7.15) and see how they

can be simplified. The first term is

<k + q|[H ,p;p]|k>
= <k + q|HoP;p

|k> - <k + q|p;pH |k>

= <fk + q<k + q|p;p|k>
- <fk<k + q|P;p|k>

= (^k +q - <«V)<k + q|p;p|k>

The second term on the RHS of Eq. (7.15) is

(7.16)

<k + q| £ V(q', t) exp iq' • r, p
c

c
|k>

= <k + q

-<k + q

X V{q', t) (exp iq' • r) p\

PopZ^(q'.0(expiq'T)

k>

k> (7.17)

The density operator operating on a state |k> gives the occupation

probability of that state. Thus,

P
°

op|k> =/(<rk)|k> (7.18)

where /(<fk ) is the Fermi-Dirac distribution function. Using this result,
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Eq. (7.17) becomes

<k + q X V{q', t) exp iq • r, p
c

c

= [/W-/(<W]<k + q

k>

Inq',0(expiq'T) k> (7.19)

Substituting explicit expressions for the plane wave states |k> and |k + q>
from Eq. (7.9), we find that

<k + q

= n~ 1

S ^(q'.O(expiq'T) k>

{exp[-/(k + q)-r]} X 7(q', (exp iq • r) (exp ik • r) dr

= J>(q',f) ffl-^p^q'-qj-r]*
q' J

= E^(q',0^qq ' = ^(q,0
q'

so that Eq. (7.19) reduces to

(7.20)

<k + q X V(q', t) exp iq' • r, p°
r

k> = [/(^k)-/(^k+q)]K(q, 0(7.21)

Substituting Eqs. (7.16) and (7.21) into Eq. (7.15) yields

ih (d/dt) <k + q|p;p|k>
= (^k+q - ^k ) <k + q|p;p|k>

+ [/W-/(^k +,)]^(q,0 (7.22)

We now have a time-dependent equation for the contribution to the

density operator arising from the induced charge density. It is rather

straightforward to carry through from here to a formal expression for

the dielectric function. Before following through the steps, however, let

us digress briefly to discuss the dielectric function we are working toward

and how we might expect to get there. Should we consider turning on the

perturbation at time t = and doing some sort of integration from time

t = to time ft That is the procedure we followed in Chapter 3-5. How-
ever, that leads to a real dielectric function unless a phenomenological

damping term is included. We included such a damping term in our earlier

treatments in order to arrive at a dielectric function having real and imag-
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inary parts. We did it because we wanted to account for energy absorp-

tion in the medium as well as shielding of external fields. In fact, we are more

interested in the former than in the latter.

The necessity of a damping term is clear if we consider the response

of the system to an external impulse. In the absence of an energy loss

mechanism, the response of the system persists forever. We do not want such

an unphysical result. One way to avoid this dilemma is to turn on the per-

turbation gradually, with a time dependence proportional to em . This

is a mathematical device known as the adiabatic approximation. It ensures

that in the infinite past, there was no perturbation, but that a finite per-

turbation exists for positive values of time. One can let r\ -> at the end of

the calculation. The adiabatic approximation leads directly to a complex

dielectric function. This is because it satisfies causality (Problem 7.1).

We now assume that the external potential
ext

(r, t) is turned on with a

time dependence

</>

ext
(r, t) = </>

ext
(r, co)e-

ia
*e»* (7.23)

We need consider only a single Fourier component of the potential since

in the linear approximation all the Fourier components are independent.

The induced screening potential, the total potential, and the corre-

sponding density fluctuations all have the same time dependence e~ iaV f

as the external potential acting on the system. Thus, Eq. (7.22) yields

We now have an equation for the induced density matrix in terms of

the total perturbing potential energy; i.e., the self-consistent potential

energy. What we "know," what we can directly control, is the external

potential. What we can most easily calculate, though, is the induced screen-

ing potential. Our course, then, is to relate the total potential to the screening

potential by means of the dielectric functions and then to express the

induced screening potential in an appropriate explicit form.

Working in terms of the potential energies corresponding to the total,

external, and induced potentials, we have

V(q, t) = Fext
(q, t) + Vmd(q, t) (7.25)

and

V{q,t) = Vsx
\q,t)/8(q,oj) (7.26)

From these last two equations, we obtain

F(q,t)= Kind
(q,0[l-e(q,co)] (7.27)
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The induced screening potential energy is related to the induced change
in electron density by Poisson's equation:

V 2Find(r,t)= -4ne2 3n (7.28)

The induced fluctuation in electron density within the system can be

obtained from the density matrix as follows.

The density operator is defined by

pop = X|m>Pra<m| (7.29)

m

where Pm is the probability of finding the system in one of the states |m>.

Since we are concerned with an independent-particle model, we take Pm
as the probability of finding an electron in the one-electron state |m>.

The charge density within the medium is then given by

n = Tr[pop <5(r
e -r)] (7.30)

where 5(re
— r) is the electron position operator. We will now evaluate

the trace in the representation of plane-wave states appropriate to a free-

electron gas. Thus,

" = X<l|Pop<5(re
-r)|l>

i

= £<l|p„p|m><m|I><l|S(re -r)|l>
l,m

= I<l|Pop|m><m|l> (7.31)
l,m

Substituting from Eq. (7.9) for the eigenstates of the unperturbed system,

Eq. (7.31) becomes

n = Z Q ~ HexpL'fl - m) * r]} <l|pop|m> (7.32)
l,m

Now, to get density matrix elements of the same form as in Eq. (7.22),

we let m = k, 1 = k + q. Thus

n = Q" 1 £ (exp iq • r)<k + q|pop|k> (7.33)

k,q

n + Sn = Q~ 1

J (exp iq • r) <k + q|p°op + pjk) (7.34)

k,q

where Eq. (7.34) follows directly from Eq. (7.33). From inspection of Eq.
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(7.34), it is clear that

5n = Q" 1 X (exp iq • r)<k + q|P;p|k> (7.35)

k,q

Note that the induced screening charge is directly related to the perturba-

tion density operator p'
op . That p'

op does not include the external test charge

follows from the definition of the density operator; it describes how the

charge fluctuation density of the system itself is distributed among the

various states.

From Eqs. (7.28) and (7.35), we have

V 2Find
(r, t)= - (4ne

2
/0) £ (exp iq • r) <k + q|P;p

|k> (7.36)

k,q

Expressing Vmd(r, t) as

rnd
(r,t) = Z^n%0expiqT (7.37)

Eq. (7.36) yields

Fnd
(q, t) = (4ne

2
/q

2
Q) Z <k + q\p'JO (7.38)

k

where the factor 4ne2
/q

2
is the Fourier transform of the Coulomb potential.

Using Eqs. (7.24) and (7.27), we can now find an expression for the di-

electric function. The first step is to sum Eq. (7.24) over all values of k,

S <k + q |P;p
|k> = k(„, o x

/('^-/W
k k (^k+q - ^k) - no - ihn

and notice that the LHS of Eq. (7.39) is simply related to Find
(q, t) by means

of Eq. (7.38). Thus

V'"% = ^K(%t)I /(^"{W
., (7.40,

q
zQ t (<fk+q - <Tk) - hco- ihrj

Substituting for V(q, t) from Eq. (7.27) yields the Lindhard dielectric func-

tion

/ , i ,.
4ne2 _ /(^k+ o) -/W

e(q,co) = 1 - hm-f— Z
JK k+v—^-^ (7.41)

u-o <? " k (<^k+q - A) - hco - ihn

Equation (7.41) has been derived for a free-electron gas. However, to

apply the dielectric function to real solids, we should at least include the

periodicity of the lattice. It is an easy step to generalize the previous results

using Bloch functions rather than simple plane waves. We shall assume
that the core states of the atoms composing the solid are tightly bound and
can be neglected, and that the valence bands and conduction bands are

sufficiently broad that local field corrections are unimportant. Then, using
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the Bloch functions,

|k/> = £T 1/2 (exp ik • r) «k/(r) (7.42)

where / is a band index and wk/(r) is the spatially periodic part of the wave

function, we can carry the treatment through just as for plane waves (see

Problem 7.3). The result is

e(q, cd) = 1 - lim-^- £ |(k + q, f|k/)|
2

r)->0 <? *' k,l,l'

x
-A^k + q.r) -f(&ki)

^7A2)

where

(k + q, /'|k/) = (1/A) ^+q,r(rK/W dx (7.44)

J cell

and A is the volume of a unit cell.

We arrived at Eq. (7.44) by neglecting local field effects. What would we

have to do to include local field effects? Bloch functions would still provide

satisfactory wave functions. However, we could not simply work within

the reduced zone scheme. We must include Umklapp processes, i.e., work

with a repeated zone scheme. This can perhaps best be seen by looking at

the expression for the potential energy. Equation (7.11) is not an expansion

in a complete set of basis functions when working in the reduced zone.

The shortest wavelengths in the expansion, corresponding to q at the Brill-

ouin zone boundary, are just equal to two lattice spacings. These are clearly

not short enough to describe rapid variations of potential within a unit

cell. To describe such variations in potential requires including all reciprocal

lattice vectors G in the expansion. We must write

V(r, t) = X V(q, G, t) exp[i(q + G) • r] (7.45)

q,G

The treatment goes through more or less as before, but is more tedious to

carry out. It is discussed in papers by Adler and Wiser [2, 3]. The way

to define polarizability including local field effects is discussed briefly in

Appendix B.

7.2 Special Cases and Applications

In order to develop a better feeling for the dielectric function, we shall

consider several limiting forms of the dielectric functions we have just
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derived. We also want to see the relationship of the present form of the
dielectric function to the earlier forms. Presumably, they must be equivalent
and we shall show that they are indeed, but it does take a little manipulating
to show it. Other limiting forms of e(q, oj), more appropriate to a discussion
of plasmons, will be taken up in Chapter 9.

Let us consider first the zero-frequency, small-wavevector limit for a
free-electron gas. Equation (7.41) can be simplified in this limiting case by
using the approximations

^k +q -^k *q-Vk<f(k) (7.46)

/(^k +q )
- f{6\) * q ' idf/dS) Vk<f(k) (7.47)

and approximating the summation over k by an integral over all the corre-

sponding energy states. Thus, with the transformation

£-QJjV(*)<te (7.48)

where N(£) is the density of states, the real dielectric function is

< m i
4ne2 f <r(#7^)vk(<rk)

£i q,0 = 1 — ~— ' '"— N{S)d£
<i

2
J q-vk <fk

_ 4?r<?: df
i~N{£)&$ (7.49)

In the zero-temperature limit, f{£) is unity for £ < £F and zero for £ > £
Thus df/d£ is essentially a S function, i.e.,

lim (8f/d£) = - S(£ - £¥) (7.50)
r-o

so that Eq. (7.49) becomes

e^q, 0) = 1 + {4%e
2
/q

2
) N(£F)

= 1 + (W) (7.51)

where

X 2 = 4ne2N(£F ) (7.52)

Thus the effective potential (energy) in the medium is

V(q, 0) = —-— = —

—

(7.53)
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In the limit q -+ 0, e^q, 0) -> oo, and an external field of long wavelength

is perfectly screened out. For q small, but nonzero, Eq. (7.53) expresses the

fact that because of polarization of the medium, the Coulomb force due to

an external potential is effective only over distances of the order of A' 1
.

The characteristic distance X~ l
is exactly the same as that obtained for the

screening distance of an electron gas by elementary Thomas-Fermi theory.

What we have just derived is the static dielectric constant of a free-

electron gas. However, in the study of the optical properties of solids,

we are more interested in the finite-frequency, long-wavelength limit.

Thus, for real solids, we want to determine s(q, co) from Eq. (7.43).

In Appendix H, it is shown that in the limit q -> 0,

|(k + q, /'|k/)|
2 = 5 lv + (1 - 5U .) (q/mojn )

2
\P^\

2
(7.54)

where

Pfc = (1/Acell ) "k/'P^^kj dr

ton = *w - *u (7 - 56)

and p" is the momentum operator associated with the direction of propa-

gation q. Other quantities in Eq. (7.43) can also be found to lowest order in

q. What follows is the separation of complex quantities in Eq. (7.43) into

real and imaginary parts, and the expansion of these parts to lowest order

so as to determine s^q, co) and e 2(q, co).

From the general mathematical theorem

lim —1— = &>—+ in d(X) (7.57)

,^ + X - if] X

where 0* denotes the principal value, we have

/(W)-/C>j_ . J/(W)-/wl + inim^ ,,,

^k+,,r - #w - hco- ihrj Kk+q ,r
- ^ - h(o )

-f(*J]K*w-*u-to>) (7 -58)

Working with only the real part of the RHS of Eq. (7.58), we have

y /(*k + <,r)-/(*ki) _y /(^k + q ,r) y
/(*ki)

k ^k + ,.r - ^ki - hw t *k+,.r - *ki -to* k *k + ,.r ~ *w - ^
(7.59)

The point in breaking up the expression into two terms is to allow the
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easy introduction of a dummy index so that the Fermi-Dirac function

/(«fk+qr ) can be replaced by/(^kr )- Thus, making the substitution k + q -» k

in the first term on the RHS of Eq. (7.59) yields

y /(*t + q,r)-/(*n) = y /(<M y
/(^kl)

k ^k+,.r - ^w - ho) t ^r - ^k- q ,j
-hco ^ <fk+q>r - 4; - fo»

(7.60)

That the substitution k + q -»• k is allowed is because the summation over

the set of states k + q includes all the same states as the summation over k.

Now, in order to further simplify our task, let us first calculate the intra-

band contribution to e x {q, co). For that case, we take / = /', so that the initial

and final states are within the same band. Then, the appropriate contribu-

tions from Eqs. (7.43), (7.54), and (7.60) yield

Ajie
2 ( 1

intraband
( j = { _ y /((f }

\+,.i - *u ~ fuoj <T& \^,)
2 - (hmf

k +q> /
- *u)

2 - (MZ
J

(7.61)

Recognizing that for small q, (<fk+q ,,
- <fkf)

2 « (<^kJ - ^k - q ,/)

2 < (hco)
2

, we

get

q
2
Q{h(D)

2
tT

Now, for small g,

(7.62)

'kf 1 2 ^ ^kl™ = '« + q
-ik

+
2*-air ,163)

k- q ,
= ^-,-^+-,2 --f (7.64)

a/c 2
2

dk

so that Eq. (7.62) becomes

. k a 4ne2 „ d
2
<fk ,mtraband^

ffl) = j _ ^_^ £/(<rJ
«

Q(ft<y)
z

k/ 5/c/
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Now making the transformation

J>(Q/47T
3)j^k

Eq. (7.65) yields

„ intraband
(q, co) = 1 - I dkfVJ

nhco J V J ^
v Kt/ ^^2

(7.66)

(7.67)

To determine the interband contribution to e t (q, co), we consider all

terms /,
/' such that / ^ /'. Then, the appropriate contributions from Eqs.

(7.43), (7.54), and (7.60) yield

s interband/ \
tvEc ^-,j

Se 1 (q,co) = ^ XI
q Q /r \ mcor/

9
I DM |2
\

r
l'l\

s
/(<V) /(*j

k-q,Z hco k + q,C S\ hco
(7.68)

where the prime on the summation indicates terms with / = /' are to be

excluded. Now, since / # /', we can ignore the q dependence of $ in the

denominators of Eq. (7.68) since the only significant contribution to the

energy differences arises from the difference in energy of the bands /,
/'.

Thus,

Se'l
interband

(q, co) =
4ne2

T
hq Q. w \mcon

k

/(<M
covl — CO

\pn |2

\

r
l'l\

/(*kl)

COy, — CO

(7.69)

The last factor in Eq. (7.69) can be simplified as follows. Looking only

at the term f(6\ l
)/(coll

— co), and making the transformation /' ->
/,

/(*«•) f(*td

COn — CO cow — CO

Now, since colv — — con , we can rewrite this as

>

COyi — CO COy, + CO

(7.70)

(7.71)
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Making this substitution into Eq. (7.69), we obtain

c interband/ n
47Ig

V'/
x

\ I PM |2

1 1

+
CO/-, + CO OJyi — COL W /'J

(7.72)

k

Introducing the oscillator strength

^ = (2/frconm)|P^|
2

(7.73)

and making the transformation (7.66) from a sum to an integral, Eq. (7.72)

becomes

interband/ n
e w I >. f(&u)fn

Ssf
eiband

(q, CO) = =- Y' Jk ^-^^2 (7 -74)

mnz
w J atf , - or

The total real dielectric function is thus given by

6l (q, co) = £
;

ntraband
(q, co) + <5ei

nterband
(4, co) (7.75)

and Eqs. (7.67) and (7.74) if core states are neglected.

We must now go through a similar series of steps to determine e2(q, co).

From Eq. (7.43) and the imaginary part of Eq. (7.58), we obtain

s 2(q,CD) = -(4n 2
e
2
/q

2
Q) £ |(k + q, /'|k/)|

2

kll'

x [/(*k + q .r) -/(*«)]Wk+q .r - ^u -M (
7 -76)

Once again, the intraband contribution is obtained from the terms with

/ = /'. Thus, using Eq. (7.54),

ef
r&band

(q,co) =

- (4rcV/*2n)£ [/(*k + , fI ) -/(<^i)] *(*k + q .i
- Su - M (7.77)

i

Breaking this expression up into two terms, making the substitution

k + q -> k as was done in Eq. (7.60), and making the transformation (7.66),

we obtain

e
mtraband^ ^ = (e?tfn) £ dk /(*kI )

x [S(£k+tiJ - gu - hco) - <5(<fk _ q ,
- gu + M] (7-78)
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Following the same general procedures as before, and using Eqs. (7.54),

(7.66) and (7.76) to determine the interband contribution yields

^mterband^^ = (^^2) £, L^f^) -/(*„.)]*(*„. - gu - hco)

IV J

(7.79)

The total imaginary dielectric function is given by

e 2(q, co) = g2
ntraband

(q, co) + <5e2
nterband

(q, co) (7.80)

and Eqs. (7.78) and (7.79).

Now let us see what we can learn from some simple limiting cases. For
example, if we consider a monovalent, nearly-free-electron metal, and
neglect interband transitions, the real dielectric function is given by Eq.

(7.67). If we make the substitution

1/m* = (l/h
2)d 2£/dk2

(7.81)

we get

M©) = 1 - (e
2/m*n2

co
2
) £

J

dk /(*kI ) (7.82)

For a simple monovalent metal, we need consider only one band, so we
can drop the summation over /. Also, the Fermi-Dirac distribution func-

tion is unity over half the volume of the Brillouin zone and zero elsewhere.

Thus,

X
I

dkf{Su) = \
' Jbz

dk = ${Sn 3
/A) (7.83)

BZ

where A is the volume of a unit cell. The real dielectric function then reduces

to

e x
(co) = 1 — (4ne

2/m*co2
A)

= 1 - (4nNe2/m*co2
) (7.84)

in agreement with our earlier results.

For insulators, the second term of Eq. (7.65) vanishes. Thus, from Eqs.

(7.65), (7.74), and (7.75),

/ \ 1 ,

e v ji J\$vvivi /too

IV J "Tl

Now let us consider an idealized insulator for which only two bands are

important, namely the valence band / and a higher-lying conduction band
/'. Then, f{Sk/)

= 1 since all valence band states can be assumed to be
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occupied. Also, ffi = 1 because of the sum rule for oscillator strengths.

Thus, /.

£l (co) = 1 + |>
2
/m7r

2
(ft^ - co

2
)-] dk (7.86)

The integral J<ik has already been obtained in Eq. (7.83). One must simply

recognize that for an idealized insulator, there are two electrons per atom

in each band. Then, following through as before, we obtain

8l (co) = 1 + [4izNe2
/m(a)h - a>

2
)] (7.87)

This is of the same form as Eq. (3.14) except that here we have not included

lifetime broadening of the states. The way to include broadening in all

that we have done is outlined in Problem 7.5.

There are several other things that can be learned from a study of Eq.

(7.85). One is that the plasma frequency must be greater than the band gap.

To see this, we write the double summation as £,< L>r>L , where L is the

highest-lying valence band. That this is permissible is easy to see. All states

/ > L make no contribution, since for these states, /(<fk/) = 0. All states

/' < L can be excluded since for each term/,?/ appearing in the summation,

there will be a corresponding term fft. also appearing. Because fft = —
ffi

and the denominator of Eq. (7.85) is symmetric in / and /', there is no net

contribution from terms /' < L. Thus,

e
2

e^co) = 1 +—T £mn l<L,l'>L J wi'l

Now, as we have seen earlier, the condition for the existence of plasma

oscillations is that e^coi) = 0. The only way in which e^co) can be zero

is for the integral in Eq. (7.88) to be negative. Since all the individual terms

in the integral are positive, the integral can be negative only if the denom-
inator is negative. That is, only if a>vl < co can plasma oscillations exist.

Thus, the plasma frequency must lie above the band gap.

PROBLEMS

7.1 Prove that using the factor e'
1 ' in Eq. (7.23) is equivalent to satisfying

causality.

7.2 Show that 4%e2
/q

2
is the Fourier transform of the Coulomb potential.

7.3 Derive Eq. (7.43) with the help of the summation technique used in

Section 5.2.

7.4 Read H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959).

Modify Eq. (28) of this paper by introducing a collision term as described

dk J1
'

1

7
(7.88)

cof
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in footnote 19 of H. Ehrenreich and H. R. Philipp, Phys. Rev. 128, 1622
(1962). Use this to derive Eq. (1) of the paper by Ehrenreich and Philipp.

7.5 Show that, by writing the summation in Eq. (7.85) in the form E,< L r ,

where L is the highest-lying valence band, the plasma frequency can be
obtained rather simply if core states can be neglected and a> ^> colL for all

bands /' that contribute appreciably to absorption.

7.6 Read S. L. Adler, Phys. Rev. 126, 413 (1962). Derive Eq. (1.23) of Adler's

paper starting with Eq. (1.19). Note that it is the assumption of Eq. (1.9)

that permits the derivation of a general dielectric function from which
transverse and longitudinal dielectric functions can be projected.

7.7 Read N. Wiser, Phys. Rev. 129, 62 (1963). Find the trivial error in

Eq. (10) of Wiser's paper. Summarize the important results of this paper.
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Chapter 8

CURRENT-CURRENT CORRELATIONS AND THE
FLUCTUATION-DISSIPATION THEOREM

An equation relating voltage fluctuations (noise) in electrical systems

to the electrical resistance was derived in 1928 by Nyquist [1]. This was

an accomplishment of great fundamental importance, for Nyquist was

able to describe an irreversible process (the dissipation of energy in an

electrical resistor) in terms of a thermal equilibrium property (voltage

fluctuations) of the system. The Nyquist relation has since been extended

and generalized by Callen and Welton [2]. Further advances, with ap-

plications to optical properties, have been made by Kubo [3].

The Kubo formalism is abstract, and has not been used by experi-

mentalists studying the optical properties of solids. However, it is com-

pletely rigorous for linear systems, and enables the complete conductivity

tensor to be expressed in terms of current fluctuations occurring in a system

in thermal equilibrium in the absence of perturbing radiation. It is thus

of great theoretical interest and is useful for casting new insights into the

optical properties of solids.

In this chapter, it is first shown that the absorption of a system can be

expressed as a product of two terms, one representing the probe and the

other representing the thermal equilibrium current fluctuations of the

system. Next, a simple relationship concerning current fluctuations is

derived. Finally, these results are used in a simple application of the fluctua-

tion-dissipation theorem to derive the conductivity of a Drude-like system.

203
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8.1 Transition Rate and Current-Current Correlations

Consider a system in state |s> that absorbs a photon in state |q>. After

absorption of a photon, the system is in state \s'}. Using occupation number
formalism to describe the photons in state |q>, the transition rate is

Ws
,

s
= (2n/h

2
) |

<sYn, - 1
|

Hen
\
s, n

q >\
2
S(co - co

s
,

s) (8.1)

where n
q

specifies the photon density when the system is in state \s) and
n
q
— 1 specifies the photon density when the system has been excited to

state \s'}.

The Hamiltonian

Hext = - (1/c) dr J(r) • Aext
(r, t) (8.2)

describes the coupling of the external perturbation (the light wave) to the

system. The operator Aext
(r, t) is given (see Appendix E) in the Schrodinger

picture by

Aext
(r, t) = (2nhc2

/co)
1/2 £ {fc

q>I|if[exp i(q • r - cot)]

+ bin*** exP - *'(q ' r - <*>')} (8.3)

where t\ is a polarization index, and where bqrj and b^^ are photon an-

nihilation and creation operators, respectively.

If we consider monochromatic polarized light incident on an isotropic

system, and if we consider only the absorption of light, we can take

Aext
(r, t) = {2nhc

2
/co)

1/2 b
q
exp i(q -x -cot) (8.4)

Then the matrix element for the interaction is, from Eqs. (8.2) and (8.4),

and following the conventions of Chapter 3,

<|i/
ext

|> - - {Inh/co)
112

<s', nq - 1| f dr J(r)fc
q
exp iq • r|s, n

q > (8.5)

The action of the photon annihilation operator changes this to

<|/f
ext

|> = -{2nhn
q
/co)

1/2
(s',n

q
- 1| dr J(r)exp iq • r\s, n

q
- 1> (8.6)

Equation (8.6) is further simplified by introducing the Fourier transform

J*(q) = [1/(2tt)
3
] dr J(r) exp iq • r (8.7)
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so that the transition rate can be written as

ŝ
,

s
= (2n)

6
(4n

2
n
q
/hco) <s|J(q)|s'> <s'|J*(q)|s> S(co - cos

,

s) (8.8)

Equation (8.8) is not yet very useful. The S function really has meaning

only as part of an integrand, and the system is never in a pure state. If we
describe the system by a mixture of states, with each initial state weighted

by a density operator to give the proper statistical distribution of initial

states, we can replace Eq. (8.8) by the more general formula

X Ws
,

s = (2nf (4n
2
n
q
/hco) £ P s<s|J(#'> <s'|J*(q)|*>^ - cos

,

s) (8.9)

s's s's

A summation over final states has also been included in Eq. (8.9). It is now
convenient to replace the S function by

S{(D - co
s

.

s)
= (1/27T)

|
exp[i(a> - cos

,

s
)t~] dt (8.10)

so that the transition rate becomes

Too

^ Ws
.

s
= {2n)

6 {2nn
q
/hco) dt (exp icot)

s's J - 00

x£p.<4*(q)|s'> OlJ*(*> exp[-i(ov - o,)t] (8-11)
s's

Equation (8.11) can be further modified by expressing the time-dependent

terms exp[— ico
s
>t] and exp(ico

s
t) as exponential operators acting on the

states |s'> and |s>. Thus,

X Ws
,

s
= (2tt)

6
{2nnJhoj) dt e** X Ps

s's J — oo s's

x <s|J(q)|s'><s'|e-
;/for/

*J*(q)e
lHot/

*|s> (8.12)

The operators J(q) and J*(q) are time-independent in the Schrodinger

picture. The corresponding time-dependent operators in the interaction

picture are

J
q
(t) = e iHot/hj^-iHot/h

(8 13)

J
q
*(t) = e

- iHot/h
J*(q)eiHot/*

(8.14)

Using these operators, and the condition of closure for a complete set

of states,

Zls'Xs'l = 1 (8.15)
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Eq. (8.12) becomes

X Ws
,

s
= (2;r)

6 (lunjtuo) dt e
ioH £ ps<s|Jq(0)Jq*(#> (8.16)

s's J s

The transition rate has now been expressed as a product of two factors.

One depends on the probe (the light beam with intensity proportional to

the photon population density n
q ); the other depends on the correlation

between current fluctuations in the ground state of the system at different

times. The correlation function contains all the information about the

system that can be obtained in an optical experiment. The power absorption

of the system is just given by the product of transition rate and energy fico

absorbed per transition. Thus,

Power = (2n)
62nn

q
[dt e

i01t £ ps
<s|J

q(0)Jq*(0|*> (8.17)

8.2 Current Fluctuations

We have just found the power absorption of a system to depend upon the

correlation of current fluctuations in the system in thermal equilibrium.

The expectation value of J
q
(t) is of course zero, but the presence of spon-

taneous fluctuations in J
q
(t) leads to a finite expectation value for J 2

(0
- T

2

A convenient way to determine <s|J
q

2
|s> is through the Heisenberg

equation of motion for J
q
(t) and the relationship

(d/dt)J
q
(t) = j

q
(t) = - icoJ

q
(t) (8.18)

From Eq. (8.18),

<J
q
2
> = (l/co

2)<J
q

2
> (8.19)

and thus the expectation value of J
q
2
in the state |s> can be written

<s|J
q

2
|s> = (1/co

2
) X <s|

J

q
|s'> <s'\J

q
*|s> (8.20)

s'

Now, introducing the equation of motion for J
q

in operator form,

J
q
= (i/h)(HJ

q
- J

q
H) (8.21)

Eq. (8.20) becomes

<s|J
q

2
|s> = (l/fc

2
co

2
)<s|//J

q
- J

q
H\s'} <>'|//J

q
* - J

q
*H|s>

= ltf a
~ S\)

2
lh

2
oj

2
-] |<s'|J

q
|s>|

2
(8.22)
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For a Fourier component having wave vector q and frequency co,

\S
s
- ga\

= hco (8.23)

Thus

<4*q
2
l*> = II<4*«M

2
(8 -24)

s'

This simple identity is used in the next section in the calculation of the

conductivity for a simple system.

8.3 The Fluctuation-Dissipation Theorem and the Conductivity

In Chapter 4, we discussed the classical theory of nearly-free-electron

metals. It is helpful to reconsider some aspects of that model as a simple

example of the relationship between fluctuations and dissipation within a

system.

Imagine that we can watch the motion of a single electron in a metal.

The motion is random as a result of the thermal motion of the lattice

and all other electrons in the metal. It is much like the Brownian motion
of colloidal particles which can be observed with the aid of a microscope.

These fluctuations exist even in thermal equilibrium.

If an electric field is applied to the metal, the electrons undergo a forced

motion superposed on the existing random motion. Along with the applied

driving force, there is a damping force which arises from impacts with the

lattice (phonons). These impacts are exactly the same as those which result

in random motion of the electrons in thermal equilibrium, but now they

act to produce a constant average viscous damping force proportional to the

velocity.

It is clear that the frictional force and the random force are of the same
origin and so they must be related. The relationship between these micro-

scopic forces is stated in quite general terms by the fluctuation-dissipation

theorem.

We have already calculated the dissipation (the power absorption) in the

system in Section 8.1. In the more general treatment of Callen and Welton

[2], the dissipation calculation also includes a term for emission of energy.

At normal temperatures and for typical optical frequencies, that is a negli-

gible contribution. Now, rather than derive the generalized fluctuation

-

dissipation theorem, we will relate the dissipation to current fluctuations

and obtain the optical conductivity of a simple system.

We can define the conductivity of the system in terms of power absorp-
tion in the usual way as

Power = oE2
(8.25)
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The question is, "What do we use for £2?" We have just seen that in the

simple model of a metal, the frictional forces leading to energy absorption

are of the same origin as the random forces causing fluctuations. Based on
this simple physical model, we assert that the appropriate E2

to use is just

that value of E • E* produced by the fluctuations in current. The fluctuating

electric fields and the dissipation mechanism are all part of the same thing

!

That is, we imagine the fluctuations in electric field to be produced by

the same fluctuations in current we wish to calculate. In this way, using

Eqs. (8.4), (8.17), and (8.25), we obtain

a(co) = [(27r)7frco] dte
iat J>s

<s|J
q
(0)J

q
*(0|s> (8.26)

for ho 5> kT. The generalization of this result to obtain the elements of the

conductivity tensor at all frequencies yields (following Kubo [3])

t \

{2n)

faocoth(/rco/2/cT)
\dt(F* £ Ps<s\JJ0)

J*
x
(t)|s> (8.27)

An explicit calculation of Eq. (8.26) is, in general, impossibly complicated.

There is one simple and instructive case, however, for which an explicit

calculation can be easily made. If we assume a constant correlation time t

for all states of the system, such that J
q
(t) = J

q
(0)e~

t/T then Eq. (8.26)

becomes

o{co) = [{Inf/hco] d^e
-

|t|/T

2>s<s|Jq
2
|s> (8.28)

Note that x is a measure of the average time a current persists in a particular

state ; it is the same as the relaxation time as we used it in Chapter 4. Using

Eq. (8.24), we now get

a{d) = [(Inf/haj-]
j

dtefarte- |r|/t

£pJ<s'|Jq
|s>|

2
(8.29)

J s's

Now, if the current operator J
q

is replaced by its Fourier integral expansion

J
q
= [1/(2tt)

3
] dx J(r) exp - iq • r (8.30)

where

J(r) = - (e/2m) £ [p, <5(r - r,) + <5(r - r.)Pi] (8 .31)

i

and if the dipole approximation exp iq • r « 1 is used, Eq. (8.29) becomes

1 e
2

f°°

<*») = t J \

dte^e-M* £ p s |<s'| Pi |5>|
2

(8.32)
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Using the definition of oscillator strength

/,, = 2\to a
\

2/mhco,
M (8.33)

and carrying out the integration and summations in Eq. (8.32) yields

a(a)) = Ne2
T/m(l + coV) (8.34)

We have thus arrived at the same simple expression for the conductivity

as is obtained with the Drude model of a metal.

PROBLEM

8.1 We arrived at the Drude expression for the conductivity, Eq. (8.34),

by making some quite special assumptions. Show that the following pro-

cedure leads to an expression for the conductivity which is essentially

equivalent to that of the Lorentz model for interband transitions. Start

with Eq. (8.26) and insert a projection operator |s'> <s'| such that the cor-

relation function becomes

Xps
<s|J

q(0)|
S'><S'|J*

q
(t)|s>

ss'

Rewrite the operator J*
q(0 in terms of the Schrodinger picture using

Eq. (8.14), but recognize that J*(q) in the Schrodinger picture is equivalent

to J
q
*(0) in the interaction picture. Show that the operators exp( — iH t/h)

and exp(iH t/h) operating on the states <s'| and |s> lead to a term exp(— icoss t)

and hence, following the procedure of Section 8.3, lead to a Lorentzian-like

expression for the conductivity.

REFERENCES AND FURTHER READING

1. H. Nyquist, Phys. Rev. 32, 110 (1928).

2. H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).

3. R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).

4. V. L. Bonch-Bruevich, Fundamentals of Solid State Optics, in "Optical Properties of
Solids" (J. Tauc, ed.), Academic Press, New York, 1965.

5. P. C. Martin, Measurements and Correlation Functions, in "Many-Body Physics" (C.

DeWitt and R. Balian, eds.), Gordon and Breach, New York, 1968.



Chapter 9

PLASMONS AND CHARACTERISTIC

ENERGY LOSSES

We have discussed plasmons in a number of places in previous chapters.

We have seen the sharp drop in reflectance for free-electron metals at the

plasma frequency and the dramatic shift in the plasma frequency of silver

caused by the d bands. All of this earlier discussion is related to bulk plas-

mons or volume plasmons. Surface plasmons also exist, and we shall discuss

them briefly at the end of this chapter, but what is meant here by the term

plasmon is a quantized collective oscillation of electrons in the bulk of a

material.

Confusion sometimes results from the common implication that volume

plasmons are actually excited in the usual normal-incidence optical reflec-

tance experiment, but the implication is wrong. Volume plasmons are

not excited by light at normal incidence. The excitation of plasmons by

light at nonnormal incidence is discussed in some of the references listed

at the end of this chapter. This is a field of considerable recent interest

and activity, but it is one which is not so directly related to the central theme

of this book. Thus the discussion within this chapter is limited to interactions

at normal incidence.

Plasmons are oscillations of fluctuations in charge density. These oscil-

lations cannot be produced by divergenceless transverse electromagnetic

waves. The appearance in the optical reflectance of what are called plasma

oscillations results simply from the fact that (for isotropic material) the

210
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transverse and longitudinal dielectric functions are numerically equal in

the long-wavelength limit. Even anisotropic materials can be included if

the prescription in Section 2.9 is followed. Thus, when an optical reflectance

spectrum is measured to determine the dielectric function and plasma

frequency, it does not mean that a plasmon is actually excited during the

experiment. It simply means that one has determined the frequency at

which a plasma oscillation would occur if one had a means of exciting it.

To excite a plasmon, it is necessary to produce a fluctuation in charge

density. The simplest way to do this is with a beam of electrons or other

charged particles. Such a beam can excite collective modes of oscillation

by means of the long-range Coulomb forces. It also can excite all the usual

single-electron and exciton transitions.

Because an electron beam can excite single-electron and many-electron

modes, it provides a probe for determining the dielectric function. The

essence of the experiment consists in shining a monoenergetic beam of

electrons onto a sample and measuring the distribution in energy and angle

of the electrons transmitted or reflected by the sample. A Kramers-Kronig

analysis of the loss function obtained in this way allows a determination of

&
x
and e 2 . The utility of the experiment is that it makes possible the determina-

tion of optical properties in an energy range which is inaccessible or for

which surface contamination or some other sample preparation problem

makes optical reflectance measurements not feasible. Of course, this

utility depends upon the equivalence of the longitudinal and transverse

dielectric functions.

In this chapter, we shall first consider some aspects of single-electron

excitations that will clarify the role of Coulomb forces in introducing

a new feature into the excitation spectrum, namely plasmons. After discuss-

ing plasmons in free-electron metals, we shall see how well the optical

properties obtained from characteristic energy loss measurements agree

with those obtained from optical measurements. Finally, we shall briefly

discuss surface plasmons (which sometimes can be excited by light) and

their effect on optical properties and photoemission.

9.1 Single-Electron Excitations in Metals

We consider first a free-electron metal of unit volume. The ground state

is that in which two electrons are assigned to each of the lowest N/2 energy

levels. All the states in k-space are occupied out to a radius kF , the radius of

the Fermi sphere. The excited states of the system are states in which an

electron has been removed from the Fermi sphere, leaving a hole behind.

If the perturbation causing the transition imparts momentum hq to an
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electron in state k, then the energy imparted is

h 2
(k + q)

2 h 2
k
2

hco —
2m 2m

fi
2
(q

2

. , +k-q (9.1)
m \2

The region in k-space from which electrons can be excited is illustrated

in Fig. 9.1. The solid circle of radius kF defines the surface of the Fermi
sphere. A change in momentum hq must take an electron from a state in

the Fermi sphere to an unoccupied state outside the Fermi sphere. Thus,

the possible initial states are found to lie within the shaded crescent found

by translating the Fermi sphere by — q.

Fig. 9.1 Region in k-space from which electrons can be excited with momentum change hq.

The possible initial states lie within the shaded crescent found by translating the Fermi sphere

(solid circle of radius kF) by — q.

Now let us find the possible values of hco consistent with Eq. (9.1). If

q < 2/cF , transitions are possible from states on the Fermi surface to states

infinitesimally outside the Fermi surface. For these transitions, even though

of possibly large q, the energy change is zero. The most common example

of this is ordinary electron-phonon scattering. If q > 2/cF, transitions must

take place from a state in the Fermi sphere to a state lying outside the

Fermi sphere. The minimum-energy change is for a transition of the type

illustrated in Fig. 9.2. Thus,

hcomin = 0, q< 2/cF

h2
(q

2 \
= —[ — - qkF ], q> 2kF
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k
f =K+q

Fig. 9.2 A transition of minimum energy for q > 2kF . The initial state kj lies on the Fermi

surface. The final state kf
is antiparallel to k; and lies outside the opposite surface.

The maximum change in energy is for a transition from a state k< on the

Fermi surface to a final state k such that kj||q. Thus,

fa»max =
h
2
(q

m
+ qki q $> (9.3)

The spectrum of possible single-electron (electron-hole pair) excitations

is shown in Fig. 9.3. For each value of q, the range of possible excitation

energies lies along a vertical line between the curves for hcomin and hcomax .

If electron-electron interactions are included, single-electron excitations

qc
/k

F
q/k

F

Fig. 9.3 Spectrum of excitations for a free-electron gas. A collective plasma mode splits off

from the continuum of single-electron excitations below a critical wave vector q c . In this

illustration, hcov has been taken equal to twice the Fermi energy, hence ha>p = h2kF /m.
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still exist, although the energies are slightly shifted. This is because the

Coulomb interactions are strongly screened, as was discussed in Section

7.2. However, Coulomb interactions introduce a new feature, the pos-

sibility of collective oscillations, or plasmons.

9.2 Plasmons in Simple Metals

Plasma oscillations can exist because for small q, the dielectric function

does not always act as a screening factor. The long-range Coulomb inter-

actions then make possible collective oscillations of large numbers of

electrons. We have already seen that the condition for plasma oscillations

is £i =0, and that in the limit q -> 0.

e x
= 1 - (co

p
2
/co

2
) (9.4)

The derivation of the plasma frequency as given in Fig. 3.19 is for q = 0;

it is implicit in the model used there. However, we are now in a position to

determine the q dependence of the plasma frequency. We simply require

that e(q, co) as given by Eq. (7.41) equal zero. If we assume damping to be

small, we need be concerned only with e t (q, co). Then, since for a free-

electron metal only the equivalent of intraband transitions arise, we can

follow through more or less the same steps as those leading to Eq. (7.84).

The only difference is that in order to include the q dependence of the

dielectric function, we cannot neglect the terms {S'k+ql — $v j)

2 and (<fk/

— <^k _ q> /)
2
in the denominator of Eq. (7.61). If these terms are included, we

get, instead of Eq. (7.65),

Then, following through as in Eqs. (7.81)-(7.84), we get, instead of Eq. (7.84),

4nNe2
1

e t {q, co) = 1 2" 2//2\/ 2
—2T t9,6)

For a free-electron gas,

and

<k2>=ffcF
2

(9-7)

hkF/m = vF (9.8)

where vF is the velocity of an electron on the Fermi surface. Using these

results and assuming

h
2
q
2(k2y/m2

to
2 < 1 (9.9)
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Eq. (9.6) becomes

4nNe2 ( - a2vJ
8^,(0) « 1 r 1 +

mco
q

z
\

5 2
CO„

2 ' fv
2

CO,

-l-^L-fl + jl^-] (9.10)

Since the second term in parentheses in Eq. (9.10) is small, we can ap-

proximate co
q

there by co
p, the infinite-wavelength plasma frequency.

Then, setting £
x (q, co) = 0, we get

(o
q
*cop

(l+^^-) (9.11)

The dispersion curve for plasma oscillations is also shown in Fig. 9.3.

The plasma dispersion curve merges into the continuum of single-electron

excitations at a cutoff wave vector qc .

9.3 The Plasmon Cutoff Wave Vector

An estimate of the cutoff wave vector qc can be obtained from a classical

analysis of plasma oscillations. We shall now carry through such an analysis.

We assume the usual jellium model of a free-electron metal. The positive

ions are smoothed out to form a uniform background of positive charge.

The electrons move about at random, but on the average, the electronic

charge density just cancels out the uniform positive background.

The potential energy associated with the Coulomb interaction between

the jth and /cth electrons is

e
2A> = XK,exp«i-i> (9-12)

q

where (see Problem 7.3)

V
q
= 4ne2

/q
2

, q^O (9.13)

is the Fourier transform of the Coulomb potential. For q = 0,

(e
2
/rjk)drk (9.14)

which is just the potential energy of the jth electron due to a uniform
distribution of one electronic charge. Thus, if we want the Fourier ex-

pansion of the potential energy of the 7th electron due to all other electrons

as well as a uniform positive background, we can simply exclude the terms
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with q = 0. Then, the positive contributions to the potential energy arising

from electron-electron interactions are exactly cancelled by the negative

contributions arising from the interaction with the uniform positive back-
ground. The result is

v(rj) = I X' (*™
2
/q

2
) exP "1

'
rjk (9. 1 5)

k q

where the prime on the summation denotes that the term with q = is

to be excluded. The force on the jth electron is

Fj = mij = - VF(r
7) (9.16)

so that the acceleration of the y'th electron is

4ne2
o

tj = ?
j
= " ~^r l^^ exp I-q

' r^ (9 - 17 ^m k q H

The term with k = j is not now explicitly excluded in the summation of

Eq. (9.17); it is zero because of the symmetric distribution of the q vectors.

We can relate the acceleration of the jth electron to density fluctuations

(the origin of plasma oscillations) as follows. The electron particle density is

p(r) = I d(r - rk ) =^pq
exp iq • r (9.18)

q

where

Pq = P(r) exp(- iq- r) dr = £ exp - iq • rk

Thus, Eq. (9.17) becomes

Ane2
q

v,- = l L^P* exP *Q
'
r
j (9.20)

to
q r

We already know that plasma oscillations are oscillations of density fluctua-

tions. Thus, to determine the dispersion equation for plasma oscillations,

we need to know the equation describing the oscillations of the various

Fourier components of the density fluctuations. From Eq. (9.19), we have

pq = {d/dt) I X - iq • \k exp - iq • rk

= £[-(<!• v
fe)

2 ~ "I * vj exp - iq • r
fc

(9.21)
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7

Substituting for vk from Eq. (9.20) yields

pq = -Z(<r vk)2exP(-"r r
fc)

k

-—Z Z'7^ p,' exPW - i)
• r^ <9 -22)

m k ^ tor

Now, we argue on physical grounds that only those terms with q' = q

contribute to the double summation in Eq. (9.22). To see that this must be

approximately true, we can use Eq. (9.19) to rewrite the summation over

q' as

£g p,. exp[,(q' - q) • rj -
£ j£ "WV -, <9 '23 >

It is clear that the density fluctuations pq must be small if q ^ 0, for the

concentration of electrons is large and fairly uniformly distributed. Further-

more, the q vectors that appear in the phase factors exp iq • rk are fairly

uniformly distributed; for each q, there is, at least approximately, a -q.

Also, the time average of the density fluctuations must be zero. The point

of all this is to say, again, that unless q = q', the double summation in Eq.

(9.22) is approximately zero, at least for reasonably small values of q. This

is known as the random-phase approximation.

Using the random-phase approximation, Eq. (9.22) becomes

4ne2N
Pq = ~ Z (<i

* ykf exp(- iq • rk) pq
v m

= - <Vpq - Z (q * yk)
2 exP - iq • n (9 -24

)

k

In the limit q -> 0, we see that

Pq = - ^pVq (9-25)

and the density fluctuations oscillate with the infinite-wavelength plasma

frequency a>p
. These oscillations exist because of the long-range electron-

electron interactions. For small but finite q, Eq. (9.24) can be rewritten,

using Eq. (9.19), as

Pq = - ZK2 + ^ • v*)
2
] exp - iq • rk (9.26)

k

The term (q • vk)
2
arises from the thermal motions of the electrons. It is the

origin of the dispersion of plasma oscillations.
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From Eq. (9.26), we may expect that plasma oscillations exist if

G)
p

^> qvF or q
2

«§ qc

2
(9.27)

where q c
« co

p
/vF and vF is the velocity of an electron at the Fermi energy,

the maximum energy of an electron at T — 0°K. However, for q $> qc ,

the plasma behaves like a system of free particles.

An estimate of the cutoff wave vector qc can be obtained by putting in

typical values for ca
p
and vF . For typical metals,

qc « co
p
/vF « 108 cm -1

(9.28)

corresponding to a minimum wavelength of ~6A. This is not surprising.

Plasma oscillations are collective modes involving many electrons. The

concept of organized oscillations has little meaning when the wavelength

of the oscillations is comparable to the mean distance between electrons.

9.4 Characteristic Energy Loss Spectra

When a beam of monoenergetic electrons impinges on a solid, the excita-

tions in the solid can be recognized by the energy losses of the electrons [1].

These energy losses, whether arising from plasmon excitations, interband

transitions, exciton creation, or any other excitation, are characteristic of

the material. The initial electron energy has no effect on the values of the

energy losses.

Figure 9.4 shows the energy loss spectra for a beam of 20-keV electrons

IUUUuVtv^^^ :

1 2 3 4 5 6 7

Energy loss, units of AE

Fig. 9.4 Energy loss spectra for a beam of 20-keV primary electrons passing through an Al

foil of thickness 2580A. The unit of energy loss, A£, is about 15 eV, the plasmon excitation

energy for Al. [From L. Marton, J. A. Simpson, H. A. Fowler, and N. Swanson, Phys. Rev.

126, 182(1962).]
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incident on an Al foil. In this case, the characteristic energy loss peaks are

all due to the excitation of one or more plasmons by electrons passing

through the foil.

Other experiments, utilizing different electron beam energies, have shown

the same characteristic energy losses as in Fig. 9.4. However, the intensities

AE (ev)

Fig. 9.5 Characteristic energy loss spectra of 50-keV electrons for KC1 and KBr. The broken

lines represent optical measurements of — Im(l/e). [From M. Creuzburg and H. Raether,

Solid State Commun. 2, 345 (1964).]
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of peaks differ, for even though the initial electron energy has no effect on
the values of the energy losses, it does strongly affect the cross section and the

angular distribution of scattered electrons. These topics are discussed at

length in the references and we shall not go into them here. We want to

show only that if one does a careful characteristic energy loss experiment,

the optical properties can be obtained.

Figure 9.5 shows the energy loss functions for KC1 and KBr as obtained

from characteristic energy loss experiments. Also shown are the loss func-

tions obtained from the optical data. The peaks at 13.9 and 13.4 eV for

KC1 and KBr, respectively, are the plasma resonances associated with the

collective oscillation of the electrons in the valence band. The other peaks

are from excitons and interband transitions.

The excellent agreement between the curves shown in Fig. 9.5, as well

as for many other materials, shows that characteristic energy loss measure-

ments provide a useful tool for the study of optical properties.

9.5 Surface Plasmons

The bulk plasmons we have considered so far are purely longitudinal.

They cannot couple to transverse electromagnetic waves. However, at the

surface of a solid, an oscillation of surface charge density fluctuations is

possible. These surface plasmons exist in a number of modes. Some of these

modes can radiate and hence can also be excited by light.

For a bounded slab we have, referring to Fig. 9.6,

V • D = V • (eE) = lim n • (eE) dS V
K-0

= ed£z = o+ ~ em£z=o- (9.29)

where n is the unit surface normal for the Gaussian pillbox. In the absence

of any external charge, the electric field arises only from polarization

charges on the boundary. Thus, by symmetry,

£z=0 _ = - Ez=0+ (9.30)

From Eqs. (9.29) and (9.30), we then get

em = - ed (9.31)

as the condition for a nontrivial solution, that is, one which allows a finite

electric field at the boundary.

If we neglect damping and assume a free-electron metal with

e = 1 - ((op
2
/co

2
) (9.32)
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Dielectric

Metal

Fig. 9.6 Boundary condition at a metal-dielectric interface in the absence of external charge.

The electric field arises only from surface polarization charge and, by symmetry, is of the same

magnitude but opposite sign on opposite sides of the interface.

then Eq. (9.31) yields for the surface plasmon frequency

cos = co
p
/(ed + 1)

1/2

For the case in which the dielectric is simply the vacuum, we get

(9.33)

(Do CO, (9.34)

The model presented here is much too simple to allow a discussion of

radiative and nonradiative modes or of the effects of retardation and

hydrodynamic dispersion. All these are essential for a full understanding

of the effects of surface plasmons. However, the intent here is merely to

point out the existence of surface plasmons and to give a few examples

of their effect. A full quantitative treatment of the many interesting aspects

of surface plasmons is to be found in the references.

The oscillation of surface charge fluctuations at the frequency co
p/^/2

cannot ordinarily be excited by light. One mechanism that leads to surface

plasmon absorption is the coupling of a surface plasmon to light by means
of surface roughness. An example of the effect is shown in Fig. 9.7. The dip

in reflectance near X = 3400A arises from surface plasmon absorption.



222 Chapter 9 Plasmons and Characteristic Energy Losses

The reflectance is for an unannealed film of pure silver. It is the same film for

which the reflectance after annealing is shown in Figs 3.15 and 5.14. Stanford

has measured decreases in reflectance as much as 30% for samples with an

rms surface roughness of 24A [2].

If a sample is sufficiently thick, each surface can sustain independent

surface oscillations. However, if qd < 1, where q is the plasmon wave

vector and d is the sample thickness, the oscillations become coupled.

A splitting of frequencies results. One mode corresponds to electrons

flowing back and forth across the sample foil at nearly the full bulk plasmon

frequency co
p

. This mode can be excited by light polarized parallel to the

plane of incidence. The optical excitation of this mode is sometimes referred

to as the optical excitation of volume plasmons, but it is not the same as the

volume plasmons which we have discussed in this book.

Surface plasmons can of course be excited by an electron beam. An in-

teresting example of this is shown in Fig. 9.8, which shows the energy

distribution of photoelectrons emitted from cesium. The high-energy

peak results from electrons excited from the valence band followed by

escape with only inelastic scattering. The second peak is separated from

the first by 2.1 eV, the surface plasmon energy for cesium. Similar results

have been obtained for the other alkali metals. The implication is that

although surface plasmons are important, the mean escape depth for

photoelectrons is sufficiently short because of electron-electron scattering

1 1 1 1 1 1 1

_
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Fig. 9.7 Normal-incidence reflectance for an unannealed film of silver. The dip in reflectance

at 3400A arises from surface plasmon excitation made possible by surface roughness. This dip

in reflectance is not present in the annealed film (same sample) shown in Figs. 3.15 and 5.14.

[From T. Huen, G. B. Irani, and F. Wooten, Appl. Opt. 10, 552 (1971).]
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i.Oxio-4 F

2 0.6-

-9 -8 -7 -6 -5 -4 -3 -2 -I

E -ftcu + e<£(eV)

Fig. 9.8 Photoelectron distribution curves for Cs plotted versus the energy of the initial

state for unscattered electrons. The zero of energy is thus the Fermi energy. The peak at — 3 eV
arises from excitation of a surface plasmon by an escaping photoelectron. Values given on the

various curves are hco in electron-volts. [From N. V. Smith and G. B. Fisher, Phys. Rev.

3, 3662 (1971).]

that the contribution of volume plasmon excitation to the mean free path

is unimportant at these low energies.

PROBLEMS

9.1 Show that the average distance between electrons in a free-electron

metal is d = (3/4nN) 113
. Assuming an average interelectronic force e

2
/d

2
,

show that this is equivalent to a characteristic frequency e
2/md3

. Show that

this is comparable to the plasma frequency, and thus electrons are not

really free except at frequencies well above the plasma frequency.

9.2 Show that the ratio of the energy of a plasmon to the energy of an
electron at the Fermi energy in a free-electron metal is ftft>

p/0.94<fFrs
1/2

,

where rs is the interelectronic spacing measured in Bohr radii. At metallic
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densities, 1.8 < rs < 6, and thus thermal excitation of plasmons does not

take place at room temperature.

9.3 Show, starting from Eq. (7.41), that

lim e(q, at) = 1 — (co
p
2
/co

2
)

w-* 00

9.4 Verify the curves plotted in Fig. 9.3.

9.5 Use the results of Problem 9.2 to estimate the cutoff wave vector for

plasmons. Is the estimate reasonable?
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Appendix A
DECOMPOSITION OF A VECTOR HELD INTO

LONGITUDINAL AND TRANSVERSE PARTS

Any vector field that describes a real physical phenomenon can be

uniquely decomposed into two vector fields, one of which is irrotational

and the other divergenceless. We shall discuss this decomposition in

somewhat more detail than was done in Chapter 2, but with less mathe-

matical rigor than can be found in Morse and Feshbach [1].

Consider a vector field that satisfies the equation

V2W = - F (A.l)

The solution is, in analogy with Poisson's equation for the scalar potential,

F(r')
W(r) = (1/4tt)

Using the vector identity

V2W = V(V • W)

and defining

we get

VW = u,

dr'

V x (V x W)

V x W = A

F = VU + V x A

(A.2)

(A.3)

(A.4)

(A.5)

That a vector field can be uniquely expressed as the sum of a gradient and
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a curl is known as Helmholtz's theorem. Given a vector field F, the de-

composition into a gradient and a curl can be carried out using Eqs. (A.2),

(A.4), and (A.5).

We now define two new vectors

FL = VU, FT = V x A (A.6)

so that

F = FL + FT (A.7)

and

V x FL = 0, V • FL = V • F

V • FT = 0, V x FT = V x F (A.8)

We call FL and FT the longitudinal and transverse parts of the vector

field F, respectively. The reason for the names longitudinal and transverse

can be seen from some simple cases. For example, if we expand a transverse

field in plane waves, the vector FT is perpendicular to the direction of wave

propagation. This follows directly from Eqs. (A.8).
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Appendix B

THE LOCAL HELD

The concept of a local field as first introduced by Lorentz was used to

describe the force acting on an electron. It was defined to be the microscopic

electric field acting on a particular electron due to all other charged particles

in the system plus all applied fields. Thus, for a localized electron, the local

field is the total microscopic field at the position of the electron minus the

singularity caused by the electron itself. The term local field when applied

to nonlocalized electrons is a misnomer. We shall use it anyway. What is

meant is that the original concept of a local field can be generalized and
defined in such a way as to give the correct polarization for an electron

cloud and which, in the limit of point charges, reduces to the classical

Lorentz local field.

We shall discuss the local field for two cases. The first is for an insulator

consisting of noninteracting atoms and for which it is sufficiently accurate

to assume that the electrons are all localized point charges. The second is

for the case in which the electrons are spread throughout the crystal in an

electron cloud.

B.l Insulators

For gases at low pressures, where the interactions between molecules

can be neglected, it is to be expected that the locally acting field will be

identical to the externally applied field. At high pressures, however, and

227
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particularly in the condensed phase of the solid state, the field acting on a

molecule may be considerably modified by the polarization of the surround-

ings. To take this effect into account, we consider the following simple

model of an insulator. We assume an insulator to consist of polarizable

molecules or atoms arranged in a cubic array and idealized for mathe-

matical purposes as point dipoles. Figure B.l illustrates the effect of an

external field on the dipoles within the insulator. The external field is

produced in this example by placing the insulator between the plates of a

charged capacitor. The average macroscopic field within the insulator

is E. It is produced by those charges on the capacitor plates which are

uncompensated by opposite charges at the ends of the dipole chains in

the insulator.

OQQBOOOOO
Fig. B.l The atoms in an insulator placed

in an applied field are polarized. Here, the

applied field is produced by a charged capac-

itor. The macroscopic field E within the in-

sulator is less than the total external field

Eext
. The field E ext

is determined by the total

surface charge density on the capacitor plates

;

E is less than E ext because the free ends of

the dipole chains in the insulator cancel a

fraction of the total surface charge on the

capacitor plates. The reduced field E is given

by E = E ext
/ £l .

Figure B.2 shows a reference atom surrounded by an imaginary sphere

of such extent that beyond it, the insulator can be treated as a continuum

insofar as its interactions with the reference atom are concerned. If the atoms

within this sphere were removed with no change in the rest of the system,

the field acting on the reference atom would stem from two sources: The

macroscopic field E and the field E2 produced by the free ends of the dipole

chains that line the walls of the cavity. Of course, there are atoms within

the sphere, and these cannot be neglected, but they are so near the reference

atom that they must be considered individually on a microscopic basis.

The individual atoms within the cavity contribute a field E 3 to the local

field acting on the reference atom. Thus

E loc
= E + E 2 + E 3

(B.l)

where Eioc is the field produced at an atomic site by all other atoms acting

on the reference atom.
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Fig. B.2 The Lorentz field E 2 arises from the

free ends of the dipole chains that terminate

on the walls of the fictitious spherical cavity.

The field E2 produced by the polarization charges on the surface of the

fictitious cavity was first calculated by Lorentz. The Lorentz field is calculat-

ed by assuming all dipoles to be aligned parallel to the applied field. Then,

since the polarization is the dipole moment per unit volume and is readily

shown to be equal to the surface density of induced charge, the field E2 can be

calculated using Coulomb's law. That the polarization can be expressed

as surface charge density can be seen most simply by imagining the insulator

in Fig. B.l as one large dipole. Let Q be the induced charge at each surface

of the polarized insulating slab of area A and thickness d. The dipole moment

for the slab is then Qd and the dipole moment per unit volume is Qd/Ad

= Q/A. Thus the polarization is the surface charge density, i.e., P = Q/A.

We are now ready to calculate the Lorentz field E2 in the fictitious

cavity. Referring to Fig. B.3, which illustrates a cross section of the Lorentz

cavity, we see that since P is the magnitude of the charge density per unit

area normal to the external field, the charge density per unit area of cavity

surface is - P cos 6. Thus the charge dQ on an annular ring as shown in Fig.

B.3 is

dQ= - 2nr2P cos 6 sin 6 dd (B.2)

Fig. B.3 Lorentz field arising from an an-

nular ring of charge on the Lorentz spherical

cavity.
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From Coulomb's law, this gives rise to a force per unit charge at the center of

the cavity given by

dE2 = - dQ (cos 6)/r
2

= 2nP cos 2
6 sin 9 dd (B -3)

Thus the total Lorentz field is

E 9 = UE, = 2nPcos2
6 sinO d9

o

= |ttP (B.4)

The field E3 produced by the dipoles within the cavity is the only term

in Eq. (B.l) which depends on crystal structure. However, as may readily

be seen from a simple sketch, if the crystal structure is cubic and all atoms

can be idealized as point dipoles aligned parallel to the applied field, then

E3
= 0. Thus, for simple isotropic solids,

E loc =E + f7rP (B.5)

Ideally, Eioc as given by Eq. (B.5) is the local field which should be used to

describe the force on a bound electron in an insulator. In fact, it is not

really correct. It is wrong to assume that the atoms within the Lorentz

cavity are point dipoles. There may be considerable overlap of adjacent

atoms. As a result, the field which is effective in polarizing an atom is

between E and E + f ttP, tending to the simple E.

B.2 Nonlocalized Electrons

We saw in the discussion of the Lorentz model in Section 3.1 that the

polarization is related to the microscopic local electric field Eioc through

the equation

P = JVa<Eloc> (B.6)

In the Lorentz model, E !oc is averaged over discrete local sites. To generalize

this model for nonlocalized electrons, the polarization can be written

P(r) = N \dx' <x(r, r')e(r') (B.7)

where a(r, r') is a microscopic polarizability which provides a weighting
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factor to account for variations in polarizability throughout the unit cell

and e(r') is the total microscopic electric field. [Recall that in Eq. (B.6),

E loc is the total microscopic field acting on an electron minus the field due

to the electron itself. Here, the total microscopic field e(r') itself can be used

since, for electrons spread throughout the crystal, one electron makes a

negligible contribution to the total field at a point.] The generalized local

field Eloc(R) can then be defined in terms of a weighted average over the

unit cell such that the correct polarization is obtained. Here, R is the macro-

scopic position variable indicating the position of the unit cell. The bar in

Eloc(R) indicates that the local field is now a macroscopic field, but it is not

generally equal to the average macroscopic field E. The latter is an un-

weighted average of the microscopic field e(r). For a free-electron gas,

the spatial charge distribution is uniform and all regions are equally polariz-

able. Then, Eioc and E are equal. However, for electrons described by Bloch

functions, there is some nonuniformity of the electron cloud and E loc ^ E.
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Appendix C

REFLECTION AT NORMAL INCIDENCE

The reflectance for light impinging at normal incidence onto an ideal

solid surface can be derived rather simply from a consideration of the

boundary conditions for E and H at the interface. From a consideration of

Fig. C.l, we can write

E
{
+ E

T
(C.l)

where the subscripts i, r, and t represent, respectively, the incident, reflected,

and transmitted waves at the interface. Similar equations hold for H,

but with a change in sign for H
T

. That is, having adopted the convention

implicit in Eq. (C.l), we must remember that H is perpendicular to E in

the sense that E x H is in the direction of the wave propagation. Thus if

£
;
and E

T
are in the same direction at the interface, H

{
and HT must be in

opposite directions, so that

H
{

- H
T
= H

t
(C.2)

In the vacuum, E = H, whereas in the medium,

(C.3)H = (h/y/n)E

as can be shown by substituting plane-wave expressions of the form

expi(q-r — cot) — exp i[(co/c)n • r — cot\ into Maxwell's equations (2.75)

and (2.77) for E and H. Thus, Eqs. (C.l) and (C.2) become

£i + Er
= E

t
(C.4)

232



Appendix C Reflection at Normal Incidence 233

Fig. C.l Illustration of incident, reflected, and transmitted waves at a vacuum-crystal

interface.

E
{
— E

r
— hE

t
(C.5)

where the permeability \i has been taken as unity. Equations (C.4) and (C.5)

are easily solved to yield a reflectance wave amplitude

r = EJE {
= (1 - n)/(l + h) (C.6)

The reflectivity is then given by

R = f*r = |(1
_ n)/(l + h)\

2

= [(1 - n)
2 + fc

2
]/[(l + n)

2 + /c
2
]

The reflectivity can also be put in a form commonly used by radio engi-

neers and when dealing with the anomalous skin effect. Recalling from

Chapter 4 that the surface impedance is

Z = (4tt/c)E/H (C.8)

we obtain for nonmagnetic materials, with the help of Eqs. (C.3) and (C.7),

R -
Z - (4n/c)

(C.9)



Appendix D
THE /-SUM RULE FOR A CRYSTAL

The/-sum rule for a periodic crystal can be derived by direct comparison

of a Taylor's series expansion for the energy of an electron with the cor-

responding terms in a second order perturbation analysis.

A Taylor's series expansion of the energy in the neighborhood of k gives

d£ n{k)
£n(k + q) = £n(k) + ~~-- qa

1

+
2

d
2
<Sn{k)

+ (D.l)
dka

"*
2 dka dkp

where [3<f„(k)/dka] qa means the partial derivative evaluated at k and the

subscripts a and /? are directional components.

Second-order perturbation theory as described in most textbooks on

quantum mechanics yields

,
. ^ |(n'k|H'|nk)|

2

Sn{k + q) = <f„(k) + (nk'H'\nk) + £' ^-±-LJL- (D.2)

where \nk) denotes u„k (r), the periodic part of the Bloch function which is a

solution to the Schrodinger equation in the absence of a perturbation, and

H' is the perturbation. The /-sum rule follows from direct comparison

of the third term on the right-hand side of Eq. (D.l) with the corresponding

term in Eq. (D.2).

Equating these terms yields

1 d2S n{k)

2 dk„ dkR

(ISp = Z
|(n'k|H'|nk)|

2

l?Jky~<^(k)
(D.3)
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We now need to evaluate the right-hand side of Eq. (D.3).

The perturbation term in Eq. (D.3) is given by Eq. (H.7) of Appendix H as

ftqp fc
2qk h2

q
2

,_ A
.

H' = Hk+q - Hk = -^ + -5— + -— (D.4)
k+q m m 2m

Let us evaluate some of the matrix elements needed for Eq. (D.3). Taking

the first two perturbation terms of Eq. (D.4), we obtain

nk'
frqp n

2q-k

m
nk) = — -<n'k|p|nk> (D.5)

m

where |nk> represents the full Bloch function iA„k(r) = (exp ik • r)u„k(r).

That the expression on the RHS of (D.5) is correct is most easily seen by

substituting the full expression for a Bloch function on the RHS of (D.5)

and showing that one obtains the LHS of (D.5), which is in terms of the

periodic part of the Bloch function.

The last term in Eq. (D.4) is not an operator and does not require the

use of perturbation theory, but it must be included in the second-order

energy shift. It is second order because of the second-order dependence on

the shift q in going from k to k + q. Thus the second-order shift in energy,

corresponding to the third term on the RHS of Eqs. (D.l) and (D.2), is

1 d
2£jk)M (second order) = - -r^—^-q^

2 oka okp

- ^i! ^L y <"'kklnk> <wk|p/>
|w'k>

" 2m'
+
m2 jf <f„(k) - <f„(k)

~ qA*

Recalling that (1/n
2
) d

2S/dk 2 = 1/m*, we see that we can obtain from Eq.

(D.6) an equation for the elements of the effective mass tensor. Thus,

_m_ _ 2^ <n'k|pa|nk) <nk|p
g
|»'k)

-

n^-^P + m L ^(k) _^,(k)

Comparison of the summation in Eq. (D.7) with the definition of oscillator

strength given in Eq. (3.82) shows that Eq. (D.7) is equivalent to the /-sum

given in Eq. (3.88) for an isotropic crystal. We can now write it in the more

general form

mlm% = daP + Ylf& (D - 8)

«'

where /„"£ is the oscillator strength.



Appendix E

INTERACTION OF RADIATION WITH MATTER

The Hamiltonian for a system in the presence of an external vector

field Aext and scalar field <£
ext can be written

1
N

2m , = 1

Pi -Aot(r,t)
c

+ I V^)

+ *£' + /+ E^VfrO (E.l)

where the indices i and 7 are summed over all N electrons (per unit volume),

Vfai) is the potential energy of the ith electron in the field of all ion cores,

and the Coulomb interaction ofan electron with itself is excluded as indicated

by a prime on the third summation. Here, / represents the interaction of

the ion cores with each other.

The total Hamiltonian can be rewritten as

H = H + He

where

(E.2)

Lm i=\ i=\ i,i

+ I
r, - r ;

(E.3)
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and

2mc i=1

Hext = - --- X [Pi *
A£Xt

('.> +
ACXt

('" f)
'
PJ

+ X ^ext
(r, t) (E.4)

The term e
2
y4

2
ext/(2mc)

2 has been neglected in Eq. (E.4) because we are

interested in the linear response of the system to weak fields.

Equation (E.l) includes the full Coulomb interaction between electrons

and thus includes the presence of polarization fields induced by the external

fields. One then computes the response of the system treating Aext_and </>

ext
as

perturbations inducing transitions in the system. In this case, H does not

correspond exactly to the Hamiltonian for the unperturbed system since

it includes the polarization effects induced by the external fields. In the

solution of the Schrodinger equation

- ih dW/dt = HV (E.5)

the appropriate functions in which to expand *F are thus not the eigen-

functions of the unperturbed system but the eigenfunctions for an electron

acted on by the self-consistent potential arising from the presence of an

external potential.

An alternative method is to treat the polarization field (the induced

field) as an additional "external" field. One then computes the response

of the system to the effective fields, i.e., the total fields

A = Aext + Aind (E.6)

</> = <jf* +
(f>

ind
(E.l)

This is the procedure that is usually more convenient for nonrelativistic

systems. It also is perhaps more satisfying in that it recognizes explicitly

that the electrons in a solid respond to the total field, including the induced

field due to other electrons, and not just to the external field. This is the

approach used throughout this book, except for Chapter 8.

If we treat the electrons as responding to the total electric field, we can

write the total Hamiltonian of the system, the radiation field, and the inter-

action energy as

H = (l/2m)X
e

Pi - - A(r
{ ,

c
+ IW

+ tf°Coul+/ + I><Wr i,0 (E.8)
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We can write this as

Appendix E Interaction of Radiation with Matter

H = H + H' (E.9)

where

H = (l/2m) £ Pi
2 + £ Vfa) + # °coui (E.10)

i i

and X; V^r
t ) + H Cou i

is the self-consistent field in the pure crystal, and

H' = (-e/2mc)XDPi- A + A- Pi] + £ e<^ (E.H)
i i

is treated as the perturbation term. Again, we have dropped the term in A 2
.

In the formulation of Eqs. (E.8)-(E.ll), the Coulomb interaction H°Cou]
contains only the residual interactions between electrons in the absence of

an external field. Thus the wave functions which are solutions to

H ij/ = Sty (E.12)

are exact solutions to the unperturbed system. These are the eigenfunctions

calculated by band theorists who use a self-consistent potential. Now,
of course, the properties of the medium are incorporated into the perturba-

tion term itself. Thus we will be calculating the response of the system to a

perturbation which already includes the properties of the system. Formally,

we do this by relating the total fields to the energy density via the dielectric

function. We will return to this point when we normalize the vector po-
tential A.

If we consider the interaction of electrons with an electromagnetic

field, we can take the scalar field as zero if we work in the Coulomb gauge.

Then, Eq. (E.ll) describing the interaction of the system with the radiation

becomes

H' = - (e/2mc) £ (p ;
• A + A •

Pi ) (E.13)

In general,

p-A-A-p=-iftV-A (E.14)

so that p • A ^ A • p. However, since we have chosen to work in the Coulomb
gauge, V • A = 0, and hence p • A = A • p. Thus, introducing the current

operator

J(r) = (e/2m) I \p t
<5(r - r,) + <5(r - r^] (E.15)

i

the interaction term becomes

H' = - (1/c) dv J(r) • A(r, t) (E.16)
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It is clear that Eq. (E.15) can be interpreted as the operator for the current.

It is a sum of terms of the form of the velocity of the ith particle times the

density operator <5(r — r
t) of the ith particle. The current operator is ex-

pressed in a symmetric form so as to fulfill the requirement that it be a

Hermitian operator. However, Eq. (E.15) does not describe the true current

in the presence of an electromagnetic field. The velocity of an electron in the

presence of an electromagnetic field is given by

v = (p/m) - {e/mc) A(r, t) (E.17)

not by p/m. Thus the true current operator is given by

J
true

(r) = J(r) - (e/mc)A(r, t)p(r) (E.18)

The term J(r) is known as the paramagnetic current. The term proportional

to A(r, t) is called the diamagnetic current. We shall ignore the diamagnetic
current as we are interested only in linear response and we already have
the vector potential A(r, t) included in the interaction Hamiltonian of

Eq. (E.16).

The vector potential A(r, t ) can be represented by the sum of plane waves

(2%hc2\ 12

A(r, t) = £ {&qirv[exp i(q • r - cot)]

\ Si© / q,„

+ b,V exp - i(q ' r - cot)} (E.19)

where 1/ is a polarization index, and b^ and b^ are photon annihilation

and creation operators, respectively. (The reader unfamiliar with annihila-

tion and creation operators can simply let these operators be unity.) The
normalization factor is chosen to give an energy density in the medium
corresponding to one photon per unit volume for each mode specified

by q, i\. That is, we take

V„ = s^E2yj47t = (eJ4n) (cd
2
/c

2
) <A

2
>q„

= tuo (E.20)

where the zero-point energy has been ignored.

When working with Aext
(r, t), as in Chapter 8, rather than A(r, t), the

appropriate results are obtained simply by setting £ x
= 1 in Eqs. (E.19)

and (E.20).



Appendix F

Mi CRITICAL POINTS

We shall derive an expression for the density of states in the neighborhood

of an Mj-type critical point. We shall consider an electron energy band,

but the joint density of states for an optical energy band is of the same form.

If the energy in the neighborhood of a point kc in k-space can be expressed

as a quadratic in (k — k c),
then kc is a critical point. Now, consider the

constant-energy surface which, with a suitable choice of coordinate axes,

can be expressed as

h
2
k

2

<f(k) = *(k c ) + ~—- +
2m-

+
2m-

h
2/2m 3 = £ 3

(F.l)

(F.2)

Take $(kc) as zero for convenience and let

h
2/2m

t
= jg l5 h2/2m2

= 2 ,

Then, for an M^type critical point

« = /*iV + £2 /c2
2 - /* 3 /c 3

2
(R3 )

For S > 0, the constant-energy surfaces are hyperboloids of one sheet

as illustrated in Fig. F.l. Such a hyperboloid resembles a saddle, and for

this reason the critical point is known as a saddle point. It is usually designat-

ed by Mj or Su where the subscript indicates the number of negative

signs in equations such as Eq. (F.l).
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Fig. F.l A hyperboloid of one sheet.

We cannot enclose all states within a constant-energy surface for a

hyperboloid as we did for the ellipsoid in Section 5.3. Here, the surface

is unbounded. We must introduce some kind of arbitrary cutoff in the

integration. This is allowable since we are interested in only a small neighbor-
hood of the critical point kc where the quadratic expansion is valid. The
main requirement is that the results not be sensitive to the choice of cutoff.

We shall use the volume bounded by the surfaces of constant energy and
the planes perpendicular to /c3 and passing through k3

= ± k .

These boundaries are illustrated in Fig. F.2, which represents a plane pass-
ing through the hyperboloid of Fig. F.l. The volume enclosed within these
boundaries is given by

Ckn

Q = 2 Adk-. (F.4)

where A is the area of the ellipse denned by

fei
:

+
{sip,) [i + (/y<f)/c 3

2
] &/p2 ) [i + (/y<r)/c 3

2
]

= i (F.5)

Fig. F.2 A plane through the hyperboloid of Fig. F.l showing the region of integration.
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The area is

A = %g

(«2 )

1/2

Carrying out the integration yields

2%g

l + 4r*3
2

zg

(F.6)

(F.7)

For g < 0, the constant-energy surfaces are paraboloids. Referring to

Fig. F.3, we see that

fco

Q = 2
Tig

(-*lh)m
iPM 1 '2

1 + —k 3
2 )dk 3

2ng

ifiJzY
172

ko +
iW

+
An

3g ) 3(PJ2P3 )

Tni-gf 11
(F.8)

We now need only multiply by the density of states in k-space per unit

volume of crystal, l/4?r
3
(including spin), and differentiate with respect to

Fig. F.3 Section of paraboloids showing region of integration.
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£ to obtain the density of states near the saddle point. Using

d d dk d

~d£ ~ ~d£ d£ dk

d 1 d

(F.9)

d£ 2p3k dk

the density of states is found to be

p{£)
1

4t?

1

47?

nk 2n
1/2 \

A/2
%£

nkn

PMlP2)
ll2k J

£ >
(PJ2)

112
p3(PJ2 )

1/2k

If k is sufficiently large, it is seen that

p{S) = Cl - c 2 {-£)
1/2 - 0{£), £<0

= Ci- 0{£), £ >

This is illustrated in Fig. F.4.

£ <0

(F.10)

(F.ll)

c,-

Fig. F.4 Contribution to the density of states from an M x
critical point.

From Eq. (F.ll) and Fig. F.4, we see that the density of states near a

saddle point can be fairly well described as a sum of two terms, a smooth

function p(e) and a term <5p(e) which is different from zero on that side of

the critical point where the number of sheets of constant energy has in-

creased by one.



Appendix G
REFLECTANCE AND PHASE -SHIFT DISPERSION
RELATIONS

In section G.l, it is shown that the complex reflectivity amplitude r(co)

can be analytically continued into the complex frequency plane and that

Eq. (6.46) for the phase shift can be derived from an appropriate contour

integration.

Section G.2 consists of a brief discussion of the numerical integration of

the phase-shift equation.

G.l The Phase-Shift Dispersion Relation

We have seen in Section 6.2 that the derivation ofthe phase-shift dispersion

relation requires that the complex reflectivity amplitude r(co) be analytically

continued into the complex frequency plane. We now show that r(co),

and hence In r(co), can be analytically continued into the upper half of the

complex frequency plane, which we denote as domain D. A contour integra-

tion as indicated in Fig. G.l then yields the desired dispersion relation.

The linear causal relation between E
r
(co) and E;(o>) requires analyticity

of r((o) in D as shown by the following. We can write

E
r(0 - E

T
{a))e-

i(0t
dco

E
t
(cd) = r(co)Ei((o)

(G.l)

(G.2)
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Contour C Domain D

Fig. G.l Integration contour in complex frequency plane.

and

E
tM = (1/2ti) Ei(t') exp(icot') dt' (G.3)

Combining these relations, we have

E
r(0

= r{co) (exp — icot) (1/2tc) Ei(t') (exp icot) dt' dco

= (l/27i) E-Jif)dt r(co)exp - ico(t - t')dco

G(t - t')Ei(t') dt'

J — 00

where

/*+00

G(t - t') = (l/27i) r(co) exp -ico(f - f') dco

J — 00

is the transform of r(co). If this transform can be inverted,

r{o)) - G(T)ei(oT dT, T = t - t'

(G.4)

(G.5)

(G.6)

Causality requires G(T < 0) = 0, and integration over negative time



246 Appendix G Reflectance and Phase-Shift Dispersion Relations

difference T can be omitted. From Eq. (G.6), it is seen that r(cb) is analytic

in D by virtue of the factor exp[- T Im(co)], where T and Im(co) are positive.

G(T) is the ratio of reflected and incident fields and must be defined, so

r(cb) and dr(cb)/dcb are defined in D.

We further need to show r(cb) has no zeros in D since these are branch
points of ln[r(d>)]. From Eq. (6.39), a zero requires h(cb) = 1, e{cb) = 1, and
e 2(cb) = 0. Since absorption processes are physically inescapable, e2 (cb) ^ 0,

and r(cb) # 0. Thus ln[f(<w)] has no branch points in D and the same is

true of In p(cb).

We want to derive a dispersion relation for In r(co), i.e., we want an integral

relationship between In p(co) and 6(co) so we can eliminate one of the un-

knowns in Eq. (6.42). However, |ln r(cb)\ -> oo as \cb\ -> oo and so a function

other than In r(cb) must be used for the integration over the contour shown
in Fig. G.l. The function

(1 + co cb)\n[r(cb)']

(O.V)/(<&)
(1 + cb

2
)(co — cb)

suffices. It can be integrated over the contour C. It is physically plausible

that r(cb) < b((b)~
s

, \a>\ -* oo, where b and s are positive constants. For
\cb\ -* oo, the absolute value of Eq. (G.7) is less than

(1 + co (b) (— s In w + Inb)

(1 + or) (co — d>)
0, \Oi\ 00

Thus the contribution to the integral from the large semicircle may be

neglected as we let its radius become infinite.

Integrating Eq. (G.7), we have

(1 -I- co cb) ln[f(o))]

(1 + cb
2
)(co — cb)

deb = 2ni Yj Res(cbj).

This becomes

(1 + coqCo) ln[r(cb)]

(1 +co2
)(co - co)

dco + in ln[r(co )] = 2ni
1 + ico

_2i(co — i) _

(G.8)

ln[r(0]

in ln[r(i)] (G.9)

since the only pole enclosed by the contour is cb = i, and the only pole

on the contour is cb = co . Principal value is indicated by &. From Eq.

(G.6), we see f(i) is real, so ln[r(0] is real. Equating real parts of Eq. (G.9),

we find

0{coo)=— 0>
1 + co co

In!>(«)]
dco

COn — CO
(G.10)
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We may rewrite this as an integral over positive frequencies by remember-

ing that r{(o) is the transform of the ratio of physical, thus real, quantities.

Namely, the real fields are given by

r+ao

E
r
(f) = E

r(co)e-
itot do (G.ll)

J — oo

"Real" implies

Therefore,

and similarly

E
r
{t) = E

r
*(0 (G.12)

E
r*M = E

r
(-o>) (G.13)

Ei*(cso) = Ej(-co) (G.14)

Using Eq. (G.2), we see that

f*(co) = E*{co)/E.*(co) = E
r(-co)/Ei(-o)) (G.l 5)

so

r*(co) = r{-a)) (G.16)

and

ln[pM] = ln[p(-ft))] (G.17)

Considering integration of Eq. (G.10) over negative frequencies and
using Eq. (G.17), we have

Lap f°
(l+ <^)lnpM^ 1 ,. p (1- 0)00)) In p(-a,)

^ J_ 00 (l + C0
2
)(0) -to) 71 J^ (1 + ft)

2
) (C0 + OJ)

7T Jo (1 + ft)
2
) (ft) + ft))

(G.18)

Thus Eq. (G.10) becomes

2ft) ^
+ Q0

fl(a> ) = —-5- ^
In p(ft))

-^-^dco (G.l 9)

o "'oft)n — ft)

The singularity at w = co is removed by subtracting

2ft) f In p(co n)HK
°' dw = (G.20)

ft)n — ft)
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from Eq. (G.19) and then, using Eq. (6.42) to obtain the desired dispersion

relation,

^.^rmw^to (G .21)
n Jo (o ~ a>

Equation (G.20) is proved through a similar contour integration. The lack

of a singularity at co = co is seen by applying L'Hospital's rule.

There are several notable features of Eq. (G.21). A fractional error in

reflectance, that is, a measurement which yields the same percentage error

in reflectance at all frequencies, does not affect the phase. Such errors still

yield the correct reflectance ratio R(co)/R{co ). Also, no contribution to

the phase results from regions with reflectance equal to R(co ).

G.2 Numerical Integration of the Phase-Shift Equation

The integrand of the phase-shift equation (G.21) is a smooth, well-behaved

function and can be approximated between two neighboring frequencies

by a linear interpolation. The integral can then be evaluated by Simpson's

rule, summing trapezoidal areas defined by pairs of points, where each

point equals the value of the integrand for a particular frequency. Although

it is not obvious from Eq. (G.21), a significant contribution to the integral

comes from the reflectance at frequencies well removed from co when dR/dco

is large. Thus the extrapolation of reflectance to regions outside the range

of experimental measurement must be done with great care.

Evaluation of the phase-shift equation requires separation of the integra-

tion into spectral regions. This is depicted in Fig. G.2 for an idealized

reflectance spectrum, a spectrum which, for purposes of discussion, we

imagine we have obtained partly with the use of three different mono-

chromators. Thus, for example, the regions of "our" experimental data

(regions b, c, d) have been taken respectively with the use of an infrared,

a visible, and a vacuum-ultraviolet monochromator. The range of ex-

perimental data is extended to higher energy by using the measurements

(region e) of other investigators. Extrapolations are used for the remaining

regions, (a) (f), and (g).

For metals (as assumed implicitly here) the reflectance approaches

unity at zero frequency. For nonmetals, the reflectance can usually be

extrapolated with sufficient accuracy from the available experimental

data. The phase contribution from regions (a)-(e) can then be calculated

numerically by applying Simpson's rule.

The high-energy regions (e), (f), and (g) are the most difficult to treat

accurately and are the largest source of error in the phase calculation.

Most experiments do not include the full range of interband transitions
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Fig. G.2 Idealized composite reflectance curve. Spectral regions: (a) low-energy, linear

extrapolation of data from region (b); (b) near-infrared; (c) visible and ultraviolet; (d) vacuum-

ultraviolet; (e) data from other investigators; (f) empirical power-law extrapolation; (g) free-

electron-gas asymptotic reflectance extrapolation.

and thus the reflectance at even fairly high frequency cannot be assumed

to vary as (co/a>
p
)~ 4

, the asymptotic form, but is characterized by structure.

In our hypothetical case, we assume that some data (region e) are available

from other investigators.

In region (f), we assume that there is still some contribution from inter-

band transitions and approximate the reflectance by

R((d) — Ref(a)ef/cof, co > coef; s > 0, (G.22)

where coef is the frequency of the last measured reflectance value R ef at the

boundary between regions (e) and (f), and s is a parameter. In region (g),

we assume that the frequency is sufficiently high that the reflectance is

accurately described by the free-electron asymptotic limit

R(co) = Rfg((ofg/oj)
4

, (G.23)CO > COfg

Substituting Eqs. (G.22) and (G.23) into Eq. (G.21), and using series ex-

pansions, the integration can be performed, yielding

1

4fw ) = —- In
ATI

+

R<

R(co )j

In
1 - (CQoMf)

__
1 + (w /coe( )

(O) /OJef )

,2*1 + 1

(2n + l)
2

+ (4 - S)
(2w + l)

2
(G.24)

where 9h{co ) is the contribution to the phase at co arising from the two
high-energy regions (f) and (g). The parameter s and the frequency cofg are
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chosen to give a best fit to the calculation of the optical constants. What
determines a best fit depends on the particular situation. One possibility

is that the parameters are chosen such that the calculated optical constants

are in agreement with those obtained at a few particular frequencies by an

independent experiment such as reflectance as a function of angle. Another,

useful for intrinsic semiconductors and insulators, is to require that e2

be zero at frequencies less than the band gap. There are, of course, numerous

variations of extrapolation schemes and methods to obtain a best fit.

The experimentalist must work out the details of the most suitable ap-

proach for his particular problem.
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Appendix H
k p PERTURBATION THEORY

We can derive Eq. (7.54) with the help of a form of k • p perturbation

theory. We begin with the Schrodinger equation

[(p
2/2m) + V] <K, = SuKi

Substituting the Bloch function

«Ak/ = (expik-r)uk,(r)

and operating with p
2

gives

"

p
2

h h 2
k
2

-^ +—kp + -—
2m m 2m

+ V(r)

Defining an operator

Eq. (H.3) becomes

—
- + — k-p +

2m m
h
2
k

2

2m

Mi. i — S if/Ui,

+ V{r)

IllzU.1,1 0|./U|.

(H.l)

(H.2)

(H.3)

(H.4)

(H.5)

What we need to know is the function Mk+q>r . Then, from Eq. (7.44), we

can determine Eq. (7.54). We can find uk+qJ < in terms of ukr by perturbation

theory if q is small. By starting with the function iK +q>r , and following the

251
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same steps as those leading to Eq. (H.5), we find

#k+qMk + q,r — ^k+q,rMk + q,r (H.6)

hq-tp + hk) h
2
q
2

Hk+q = Hk + m
+— (H.7)

The difference Hk+q — Hk as obtained from Eq. (H.7) can be regarded

as a perturbation. The state «k+q r can then be found by doing perturbation

theory around the state ukr , belonging to Hk . The periodic part of the

Bloch function to first order in q is then found by time-independent perturba-

tion theory to be

*k + q ,v = |k + q, I')

•k/'

= |kO + ^r|kr,-^-fL- ,h,,
m I" ©kZ' ~ & kl"

if the state |k/') is nondegenerate. Note that the terms in q • k and q
2
ap-

pearing in Eq. (H.7) do not show up in the last line of Eq. (H.8). These

terms are not operators and so can be taken outside the integral. What

remains is then an integral over two orthogonal functions. Thus the integral

for these terms is zero.

The name k • p perturbation theory comes from the (usual) appearance

of k • p in the matrix element of Eq. (H.8). Here, we are using q as the pertur-

bation in wave vector and thus have q • p appearing in Eq. (H.8).

Using Eq. (H.8), we obtain

h _ (k/|k/")(k/"|q-p|k/') /tt ^
(k/|k + q, /') = (k/|k/') + - £' -±---^—~ (H.9)

m l" & kl
— & kl"

The term (k/|k/") appearing in Eq. (H.9) is zero unless / = /" because the

periodic parts of Bloch functions are orthogonal. Thus Eq. (H.9) simplifies to

,Mk + q,n = v + -Z-^'4,:L- (H10)
m r * A

Defining

1

kl' ~ <°kl

pg. = (k/|p"|kO

= (l/ACe„)U ;pXr* (H.11)
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and

tuon = S\v
- Svl (H.12)

where p" is the momentum operator associated with the direction of propa-

gation q, we obtain

ha P'
1

(k/|k + q, /') = ^r + - IV-- (H.13)
m v ncovl

Of course, there is really no summation left. Both / and /' are given. We
merely require that the summation give no contribution for / = /' by

writing

(k/|k + q, /') = Sir + (1 - du .) (q/mcon ) Pfr (H.14)

Equation (7.54) follows directly from Eq. (H.14).
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