
1

Reflection and transmission at oblique incidence

The normal incidence reflectance (the ratio of the intensity of inci-

dent and reflected light) is proportional to |Er|2, i. e., R = rr∗. With

N = n+ iκ. The reflectance is

R =

∣∣∣∣1−N

1 +N

∣∣∣∣
2

=
(n− 1)2 + κ2

(n+ 1)2 + κ2
.

(1.1)

The range of R is 0 ↔ 1.

Now, I’ll consider the reflectance at non-normal incidence. Two

neat effects will appear: zero reflectance at Brewster’s angle and zero

transmittance in the regime of total internal reflection. I’ll first discuss

the relations amongst the angles of incident, reflected, and transmitted

rays and then go on to obtain the transmission and reflection coeffi-

cients.

I’ll work out the angle relations in two ways: first using Fermat’s

principle and second by the boundary conditions. Fermat’s Principle

of Least Time may be stated as “light travels between two given points

along the path of shortest time.” In a single medium, this statement

is equivalent to saying that light travels in straight lines.∗ Fermat’s

∗ I ignore the lensing of light by strong gravitational fields. But see Ref. 1.
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2 Reflection and transmission at oblique incidence

principle may be regarded as an axiom, as an experimental observation,

or as the results of solutions to Maxwell’s equations.

Reflection and refraction

In Fig. 1.1, an incident light ray IO strikes (at point O) the inter-

face between two media of complex refractive indices Na = na + iκa

and Nb = nb + iκb. Part of the ray is reflected as ray OR and part

transmitted as ray OT. The angles that the incident, reflected, and

transmitted rays make to the normals of the interface are θi, θr and θt,

respectively.

Fig. 1.1. Non-normal incidence at the interface between two media. The

wave vectors qi, qr, and qt for the incident, reflected and transmitted

waves are shown. The points I and R are separated along the interface

(vertically here) by distance � and are distances hi and hr above the

plane. The point T has the same vertical distance from O as does R,

but is ht below the interface.

Light in medium a travels with speed va = c/na. The time it takes

for the light to go from point I to point R via point O is the length of

the path taken divided by the speed:

T = Ti + Tr =

√
y2 + h2i
va

+

√
(�− y)2 + h2r

va

with the lengths defined in Fig. 1.1. Now the light could in principal
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take any path that starts at I, ends at O, and includes the interface.∗

For instance, it could go horizontally to the right to the interface and

then slant up to R, so that y = 0. There are an infinite number of such

paths and Fermat tells me that the one taken has the minimum value

of T . If so,

dT

dy
= 0 =

y

va
√

y2 + h2i
− �− y

va
√
(�− y)2 + h2r

.

I look at the triangles in the figure and see that sin θi = y/
√

y2 + h2i
and sin θr = (�− y)/

√
(�− y)2 + h2r. Hence, after substitution and a

modest amount of algebra, I find that the angle of the light leaving

the surface is the same as the arrival angle. This result is the law of

reflection,†

θi = θr. (1.2)

I drew Fig. 1.1 with points I, O, R in the plane containing also

the normal to the surface. I should consider whether the light could

take some skewed path and reach R by going out of the plane defined

by I, O, R and the normal. But a little thought convinces me that

such a path, which would go via a point on the interface O′ that is

above or below point O, is longer than the one shown and so does not

satisfy Fermat’s Principle of Least Time. The plane containing the

wave vector of the incident light (qi) and the surface normal is called

the plane of incidence and the law of reflection says that this plane

also contains the reflected wave vector qr. By the same argument, the

transmitted wave vector qt is also in this plane.

∗ Although I did not specify it, the interface must be smooth on the scale if the

wavelength; this is the case of specular reflection. If the surface is rough, light

can travel from point I to point R from many places on the interface. This second

case is called diffuse reflectivity (or transmissivity) and is what you want for

illumination. Metal mirrors are specular; white paper is diffuse.

† I understand the diffuse reflection from a rough surface as satisfying the law of

reflection locally, but the roughness makes the local normal, when averaged over

the surface, point in many of the possible directions.
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When light is transmitted across the interface, its speed changes to

vb = c/nb. The time taken for light to travel from I to T is

T = Ti + Tt =

√
y2 + h2i
va

+

√
(�− y)2 + h2t

vb
.

I set the derivative to zero and note that sin θt = (�− y)/
√
(�− y)2 + h2t .

So after a modicum of algebra, including substituting for the velocities,

I get Snell’s law:

na sin θi = nb sin θt. (1.3)

Let me now consider what the boundary conditions on the fields

tell me. I’ll orient the coordinates so that the x axis is along the in-

terface normal, into medium b. I’ll put the y axis in the interface and

in the plane of incidence and the z axis in the interface perpendicu-

lar to the plane of incidence. For these coordinates, the real parts of

the three wave vectors are Reqi = (ω/c)na(cos θix̂+ sin θiŷ), Reqr =

(ω/c)na(− cos θrx̂ + sin θrŷ), and Reqt = (ω/c)nb(cos θtx̂ + sin θtŷ).

The fields in medium a are the superposition of incident field and re-

flected field; in medium b the transmitted field. The boundary condi-

tions to consider now are the continuity of tangential electric field and

tangential magnetic field. These generically may be written (at x = 0)

as

Fie
i(

ωi
c nay sin θi−ωit)+Fre

i(ωrc nay sin θr−ωrt) = Fte
i(

ωt
c nby sin θt−ωtt), (1.4)

where F is either the electric or magnetic field of the light wave and I

have put subscripts on the frequency to allow me to think whether the

frequencies of all three waves need to be the same.

I can address the frequency issue quickly. So that the boundary

conditions remain satisfied at all times, given that they are satisfied at

one instant of time, the three harmonic terms must vary in time at the

same rate. This conclusion follows from the linear nature of Maxwell’s

equations. Hence, all fields vary in time as e−iωt.
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Now, the boundary conditions must be satisfied at all points on

the interface as well. Suppose that they are satisfied at one particular

point, such as y = z = 0. Then, in order that they remain true for

other points on the interface, each term in Eq. 1.4 must vary in the

same fashion I move along the y axis and in the plane of the interface.

This requirement means that the coefficients of y must be equal. I get

ω

c
na sin θi =

ω

c
na sin θr =

ω

c
nb sin θt.

The first pair reduce to the law of reflection θi = θr and the first and

third give Snell’s law na sin θi = nb sin θt.

Absorbing media

The propagation in strongly absorbing materials of waves incident

at oblique angles to interfaces is complicated. Let me pose the problem

and discuss it qualitatively. For the moment, I’ll take the material in

which the incident and reflected waves are traveling to be nonabsorb-

ing.∗

The geometry is shown in Fig. 1.2. The incident wave arrives at

the interface at an angle to the normal. The planes of constant phase,

to which the incident wave vector qi are normal, are also inclined.

Because medium a is nonabsorbing, the intensity at the interface (or

just before the interface) is everywhere the same.

Light reaching the interface is refracted to continue as the trans-

mitted wave. The planes of constant phase for the refracted wave,

perpendicular to qt, are also inclined to the interface.

What about the planes of constant amplitude? If the fields were

to be written as eiqt·r−ωt, the planes of constant amplitude would also

be orthogonal to qt. But this claim is not correct. I see where the

misconception comes from by looking at the four rays shown as dashed

∗ A semi-infinite absorbing medium poses conceptual dissonance. For a finite

amount of energy to arrive at the interface, it must have started with infinite

energy.
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Fig. 1.2. Non-normal incidence at the interface between two media, one

with refractive index na and the other with complex index Nb. The

wave vectors for the incident, reflected and transmitted waves are

shown. Also shown are the plane of incidence, the plane of constant

phase for the incident wave, and the plane of constant amplitude for

the transmitted wave.

lines in Fig. 1.2. When they arrive at a plane perpendicular to qt, the

rays will have gone different distances in the absorbing medium, with

the one at the bottom of the diagram having gone the farthest and the

one at the top the shortest distance. Now, after crossing the interface,

each ray or pencil of light does follow E∼e−κbωr/c and, after reaching

a depth d in medium b, has amplitude e−κbωd/c cos θt . The planes of

constant amplitude are parallel to the interface, as indicated in the

figure. A wave where the planes of constant phase and the planes of

constant amplitude are not the same is an inhomogeneous wave.2–4 The

details are worked out in Born and Wolf.2 To evade this complication,

I will take the refractive indices as real. The interesting phenomena
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and physics are in transparent media anyway.

For further ease, I’ll take the materials to have μr = 1. The equa-

tions with different values of permeability may be seen in Jackson.5

Amplitude equations

It turns out that the oblique-angle reflection depends both on the

angle of incidence of the light and on its polarization (E-vector di-

rection). The equations are called the “Fresnel equations” and it is

conventional (and correct) to work them out separately for the electric

field parallel and perpendicular to the plane of incidence. Any other

polarization direction can be worked out by superposition.

The terminology is diverse and often used without explanation. If

the electric field lies in (is parallel to) the plane of incidence, I’ll call

it p polarization, for “parallel.” The English word for perpendicular

starts with same letter∗ so it is termed s polarization (from “senkrecht,”

German for perpendicular). Other terms used for p polarization are

transverse-magnetic (TM), pi-polarized, π-polarized, tangential-plane-

polarized, and ‖-polarized; s polarization can be called transverse-

electric (TE), sigma-polarized, σ-polarized, sagittal-plane-polarized, or

⊥-polarized. Finally, the plane of incidence, to which the field is either

perpendicular or parallel, is the plane defined by the normal to the

flat interface and the incident wave vector, qi.
† The boundary condi-

tions are that the normal components of D and B and the tangential

components of E and H are continuous across the interface. (With

μr = 1, B = μ0H.) I’ll use the coordinate system of Fig. 1.2, with the

x axis perpendicular to the interface. The y and z directions lie in the

interface, with y also in the plane of incidence and z perpendicular to

it.

∗ One source of confusion.

† It is not the plane of the interface. Also, normal incidence has no plane of incidence

(or has all planes as the plane of incidence) and the subscripts p and s need not

be used.
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Electric field perpendicular to the plane of incidence (s)

The coordinate system and field directions are shown in Fig. 1.3. I

write the fields (at the origin and at t = 0) as

Ei = ẑ

Er = rsẑ

Et = tsẑ

(1.5)

Bi = na(x̂ sin θi − ŷ cos θi)

Br = nars(x̂ sin θi + ŷ cos θi)

Bt = nbts(x̂ sin θt − ŷ cos θt)

(1.5)

where I took the amplitude of the incident field as unity, rs is the

amplitude of the reflected field, and ts is the amplitude of the trans-

mitted field. For the magnetic fields, I used q̂× ê for the direction and

Eq. <Hinside> (H = NE) for the magnitudes.

Fig. 1.3. Geometry of transmission and reflection for s-polarized light.

The interface between the two media (with refractive indices na and

nb) is the y-z plane. The plane of the paper is the plane of incidence.

Now, I apply the boundary conditions. Tangential E is continuous.



9

I dot the E field with ẑ and equate the fields on left and right side of

the interface:

1 + rs = ts, (1.6)

because the electric field is purely tangential. Tangential B is contin-

uous. The magnetic field has both tangential and normal components.

For the former, I dot with ŷ yielding

−na cos θi + nars cos θi = −nbts cos θt. (1.7)

I substitute ts from Eq. 1.6 into Eq. 1.7, and solve for the reflectivity

rs =
na cos θi − nb cos θt
na cos θi + nb cos θt

. (1.8)

Now, I put rs from Eq. 1.8 back into Eq. 1.6. It cleans up nicely:

ts =
2na cos θi

na cos θi + nb cos θt
(1.9)

The angle θi = 0 at normal incidence as is θt = 0, by Snell’s law.

Equations 1.8 and 1.9 reduce to the equations for normal incidence as

they should. The other limit, θi = 90◦, requires∗ me to specify that

na < nb, in which case rs = 1 and ts = 0.

I used two of the four boundary conditions. What about the other

two. Well, D · x̂ = 0 for all three fields, so the normal D condition is

trivially satisfied. As to normal B, I use μr = 1 for both materials, so

taking the dot product of the magnetic fields in Eq. 1.5 with x̂ gives

na sin θi + rsna sin θi = tsnb sin θt.

But, Eq. 1.6 gives 1 + rs = ts. By use of this boundary condition, I

rederive Snell’s law.

∗ Otherwise Snell’s law requires an angle for which the sine is greater than 1.
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Electric field parallel to the plane of incidence (p)

The coordinate system and field directions are shown in Fig. 1.4.

I’ve set the field directions so that the case where θi = θr = 0 in

Fig. 1.4 uses the same convention as in Fig. 1.5: the electric fields are

parallel and the magnetic fields antiparallel. I should warn you that

about half the time I see a different convention. Some books6,7 use this

convention; others2,5,8 use the opposite one.

I write the fields (at the origin and at t = 0) as

Ei = −x̂ sin θi + ŷ cos θi

Er = rp(x̂ sin θi + ŷ cos θi)

Et = tp(−x̂ sin θt + ŷ cos θt)

Bi = naẑ

Br = −narpẑ

Bt = nbtpẑ

(1.10)

where I took the amplitude of the incident field as unity, rp is the

amplitude of the reflected field, and tp is the amplitude of the trans-

mitted field. I used q̂ × ê for the direction of the magnetic fields and

(B = NE/c) for their magnitudes.

Now, I apply the boundary conditions. Tangential E is continuous.

I dot the E field with ŷ and equate the fields on left and right side of

the interface:

cos θi + rp cos θi = tp cos θt. (1.11)

Tangential H (= Bμ0) is continuous. The magnetic field has only

tangential components. I dot with ẑ yielding

na − narp = nbtp. (1.12)

I substitute tp from Eq. 1.12 into Eq. 1.11, and solve for the reflectivity

rp =
na cos θt − nb cos θi
na cos θt + nb cos θi

(1.13)
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Fig. 1.4. Geometry of transmission and reflection for p-polarized light.

The interface between the two media (with refractive indices na and

nb) is the y-z plane.

Now, I put rp from Eq. 1.13 back into Eq. 1.12. It cleans up nicely:

tp =
2na cos θi

na cos θt + nb cos θi
(1.14)

Eqs. 1.13 and 1.14 reduce to Eqs. <rab> and <tab> at normal incidence,

as they should. The other limit, θi = 90◦, again requires me to specify

that na < nb, in which case rp = 1 and tp = 0.

As far as the other two boundary conditions go, the condition on

Bn is trivially satisfied and the condition on Dn gives Snell’s law.

Equations 1.8, 1.9, 1.13, and 1.14 all contain both cos θi and cos θt.

These quantities are not independent; Snell’s law (na sin θi = nb sin θt)

relates them. When I need to, I can use

cos θt =

√
1− n2a

n2b
sin2 θi (1.15)

to eliminate cos θt. Meantime, however, I’ll calculate the reflected am-

plitudes in 4 cases: both polarizations with nb > na and both polar-

izations with nb < na. The results are in Fig. 1.6.

The left panel shows the results for the case where the light is

incident from the “less dense” (smaller n) material onto the “more
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Fig. 1.6. Amplitude reflectivity for p- and s-polarized light as a function

of angle of incidence. Left panel: The media have na = 1 and nb = 2.

Right panel: The media have na = 2 and nb = 1.

dense” (larger n) material. At normal incidence θi = 0, the reflectivity

is negative, r = −1/3 (for na = 1 and nb = 2) in both the s and p

cases∗ The reflectivity is basically flat for the first 5◦ or so but the two

curves separate at larger angles. The s-polarized reflectivity becomes

more negative (and hence larger in magnitude) eventually reaching

rs = −1 at 90◦ incident angle. The p-polarized reflectivity becomes

smaller in magnitude and crosses zero at an incident angle (for the

refractive indices used) just above 60◦. Then it grows in magnitude,

reaching rp = +1 at 90◦ incident angle. Thus both polarizations have

identical reflectivities at normal and at grazing incidence but nowhere

in between.

There are differences and similarities when the light is incident from

the “more dense” (larger n) material onto the “less dense” (smaller

n) material. The normal incidence reflectivity is positive rather than

negative, with the same magnitude as the case I discussed above. The

p-polarized reflectivity crosses zero at a smaller incident angle, just

∗ As it should be. There is no plane of incidence when θi = 0. (Or,there is an

infinite number of them.)
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above 25◦ for the parameters used. The reflectivity reaches ±1, but at

angles well below grazing incidence. Both s-polarized and p-polarized

reflectivities reach rs = +1 and rp = −1 at 30◦ incident angle.

Special angles

There is one angle for a given na and nb when the value of rp goes

to zero.∗ All the p-polarized incident light is purely refracted into the

second medium. To find the angle, I set rp = 0 in Eq. 1.13 to find

nb cos θi = na cos θt = na

√
1− n2a

n2b
sin2 θi,

where I’ve used Eq. 1.15 on the right to eliminate θt. I square both

sides, use 1 = sin2 θi + cos2 θi, collect terms, take a square root, use

tan = sin / cos, and find that the angle of zero reflectivity, θB obeys

tan θB =
nb
na

. (1.16)

This angle is known as Brewster’s angle. It is 63.4◦ for the left

panel of Fig. 1.6 and 26.6◦ for the right panel. It is 56◦ for an interface

between glass (n = 1.5) and vacuum or air (n = 1). Finally for a silicon

(n = 3.48)/vacuum interface, θB = 74◦.
When I calculate the angle between the reflected wave and the

transmitted wave (the angle π− θr− θt in Fig. 1.4 when θr = θi = θB),

I find that the angle is 90◦. I can see this in several ways: I can

compute the angle using Eqs. 1.3 and 1.15 as well as some trigonometric

identities and find that the angle is π/2. An alternate way is to compute

the angle for which qr · qt = 0 and find that it is indeed θB.

There is some physics in the fact that the reflectance is zero when

the reflected and transmitted rays are at right angles to each other.

∗ The angle at which rp changes sign! This statement is true for nonabsorbing

media. In contrast, if there is absorption, there is a complex refractive index

and the amplitude reflectivity is complex in turn. The magnitude of the complex

reflectivity is always positive. It can get small at some angle, but will not be zero.
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I can ask “why is there light reflected from a surface and what are

the sources of this light?” Electromagnetic radiation has as its sources

accelerated charges. The transmitted field in medium b induces a time-

varying electric dipole moment/unit volume Pb = χbEt = (εb−1)Et/4π

where χb is the complex susceptibility and εb is the complex dielectric

function. The dipole moment/unit volume is composed of a very large

number of oscillating dipoles, each of which emits dipole radiation. The

reflected light is the superposition of the emitted fields from all these

dipoles. The dipoles are oriented along Et, which is perpendicular to

qt and hence is, for p-polarized light, parallel to qr. But the radiated

power is zero along the axis of the dipole; hence, the reflectivity is zero.

At Brewster’s angle, reflected light is 100% s-polarized and trans-

mitted light is preferentially p-polarized. A variety of devices take

advantage of this selectivity. One of the simplest is a polarizer ori-

ented for p polarization, and therefore suppressing reflected light from

windows in photographs or optical instruments. A “pile of plates,” at

Brewster’s angle, each reflecting a few percent of the s-polarized light,

may be used to provide highly polarized transmitted light over a broad

range of wavelengths.

The other interesting angle, known as the critical angle, appears

in the right panel of Fig. 1.6; it is the angle of incidence at and beyond

which the reflectivity is ±1. The phenomenon is known as “total inter-

nal reflection.” Whereas Brewster’s angle occurs only for p-polarized

light and is found independent of which index is larger, the critical

angle is found only if na > nb and occurs for both polarizations.

Snell’s law, Eq. 1.3, can be written sin θt = (na/nb) sin θi. If na >

nb, then θt > θi. There is then some incident angle for which θt = 90◦.
This, the critical angle is then given by

θc = arcsin

(
nb
na

)
.

All light is reflected and |rs| = |rp| = 1. The critical angle is 41.8◦

for a glass (na = 1.5) to air or vacuum (nb = 1) interface. For silicon
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(n = 3.48) to vacuum, θc = 16.7◦. Recall that the angles are measured

with respect to the normal, so light does not need to be sent to the

interface at near grazing incidence to have total internal reflection.

The effect of total internal reflection is to contain the light inside

the medium. It is the basis of fiber optics and other dielectric wave

guides or light pipes.

That there is no transmitted light does not mean that the fields are

zero in medium b. In fact, there are exponentially decaying evanescent

fields in the second medium.2,5

1.1 Reflectance and Transmittance

The Poynting vectors of incident, reflected, and transmitted waves

tell me the intensities of the light in these beams. But the reflectance

R and transmittance T represent the fraction of the incident energy

that is reflected or transmitted by the interface. Because intensity is

energy/area, I’ll have to consider the change of area of the beams.

For reflectance it is easy: the incident and reflected waves propagate

in the same medium and make the same angle with the normal to the

surface. Consequently the reflectance is

R = |r|2 .

The transmittance T is generally not equal to |t|2 for two reasons.

First, the Poynting vector includes a factor of the refractive index n,

just at it did in the case of normal incidence on p. <Poynting>. Sec-

ond, because the light is refracted into a different direction, the cross-

sectional areas of a pencil or rays is different in the two media. The

transmittance is

T =
nb cos θt
na cos θi

|t|2 . (1.17)

The factor of nb/na comes from the ratio of Poynting vectors. The

factor of cos θt/ cos θi represents the change in area of the pencil of

rays.
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The reflectance for s-polarized light is

Rs =

∣∣∣∣na cos θi − nb cos θt
na cos θi + nb cos θt

∣∣∣∣
2

=

∣∣∣∣∣∣∣∣
na cos θi − nb

√
1− n2

a

n2
b
sin2 θi

na cos θi + nb

√
1− n2

a

n2
b
sin2 θi

∣∣∣∣∣∣∣∣

2

,

while the reflectance for p-polarized light is

Rp =

∣∣∣∣na cos θt − nb cos θi
na cos θt + nb cos θi

∣∣∣∣
2

=

∣∣∣∣∣∣∣∣
na

√
1− n2

a

n2
b
sin2 θi − nb cos θi

na

√
1− n2

a

n2
b
sin2 θi + nb cos θi

∣∣∣∣∣∣∣∣

2

.

To obtain the second form of each equation I eliminated cos θt using

Eq. 1.15.

I can calculate the transmittances for the two polarizations from

Eqs. 1.17, 1.9, and 1.14. As an alternative, I can invoke the conserva-

tion of energy and then the transmission coefficients are given by

T s = 1− R s, (1.18)

and

T p = 1− R p. (1.19)
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