PRELIMINARY EXAMINATION

DEPARTMENT OF PHYSICS UNIVERSITY OF FLORIDA Part C, 15 August 2003, 09:00 - 12:00

C1. Consider scattering in three dimensions off a spherical square well or "top-hat" potential V(r), which may be written as

$$V(r) = \left\{ egin{array}{ll} V_0 & ext{for} & r < a \ 0 & ext{for} & r \geq a \ . \end{array}
ight.$$

- (a) (4 points) In the Born approximation, what is the differential cross section $\frac{d\sigma}{d\Omega}$ for scattering from this potential? Do attractive and repulsive potentials behave differently?
- (b) (4 points) What is the total cross section σ in the limit $ka \to 0$? For what V_0 does σ exceed the "geometric" cross section $\sigma = \pi a^2$?
- (c) (2 points) What is the total cross section σ as a function of k?
- C2. A capacitor is formed by a rigid metal sphere of radius a and a spherical shell of radius b_0 made of a conductor. The shell surrounds the sphere in a concentric manner.
 - (a) (4 points) What is the capacitance C_0 of this capacitor?
 - (b) (6 points) Suppose the spherical shell is elastic, so that a uniform radial force F on it will cause the radius b_0 to become $b_0 + \frac{F}{k}$, where k is a constant. When voltage V is applied between the shell and the sphere, give the radius b of the shell to the lowest order beyond b_0 . For clarity, the expression may contain only a, b_0 , C_0 , and V, and no ϵ_0 is allowed to appear.

PRELIMINARY EXAMINATION

DEPARTMENT OF PHYSICS UNIVERSITY OF FLORIDA Part C, 15 August 2003, 09:00 - 12:00

- C3. The Otto Cycle is a highly idealized engine. Assume the working substance of this engine is an ideal gas, and this cycle is sketched on the P vs. V diagram as shown below. Steps $(1 \rightarrow 2)$ and $(3 \rightarrow 4)$ are adiabatic processes, while steps $(2 \rightarrow 3)$ and $(4 \rightarrow 1)$ are isochoric processes.
 - (a) (5 points) Calculate the efficiency of this cycle if $\gamma=1.4$ and the compression ratio $V_i/V_f=10$.
 - (b) (5 points) Calculate the work done on the gas in the compression process $(1 \rightarrow 2)$, assuming $V_i = 2$ liters and $P_i = 1$ bar.

