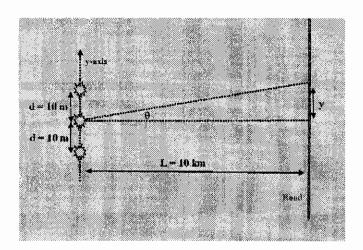
PRELIMINARY EXAMINATION

DEPARTMENT OF PHYSICS UNIVERSITY OF FLORIDA Part B, 12 August 2004, 14:00 - 17:00

B1. (a) (4 points) Calculate the expectation value $\langle \frac{r}{a_o} \rangle$ for the groundstate 1s $(n=1, \ell=0)$ electron in hydrogen, where the wave function is given by

$$\Psi_{10} = \left(\frac{1}{\pi a_o^3}\right)^{1/2} \exp\left(-\frac{r}{a_o}\right) ,$$

and the Bohr radius $a_o = 0.529$ Å. Show all of your work for full credit.

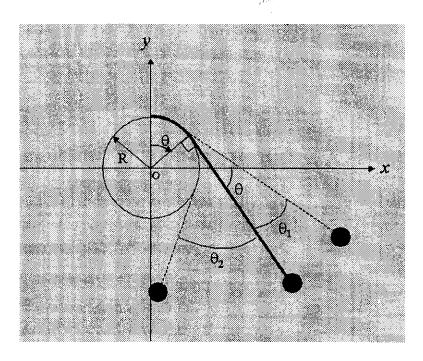

- (b) (2 points) What is the expectation value of L^2 in the eigenstate given in part (a)?
- (c) (4 points) What is the expectation value of L^2 for the hydrogen atom eigenstate with wavefunction

$$\Psi = \frac{1}{4} \left(\frac{1}{2\pi a_o^3} \right)^{1/2} (\cos \theta) \left(\frac{r}{a_o} \right) \exp \left(-\frac{r}{2a_o} \right) ?$$

PRELIMINARY EXAMINATION

DEPARTMENT OF PHYSICS UNIVERSITY OF FLORIDA Part B, 12 August 2004, 14:00 - 17:00

- B2. Three identical radio broadcast towers lie along the y-axis and are a distance d = 10 m apart (the middle tower is at y = 0). All three towers broadcast at a frequency of 100 MHz with equal intensities and in phase. There is a road parallel to the y-axis a distance L = 10 km from the radio towers as shown in the figure. An observer walking along the road with a radio tuned to 100 MHz receives an intenstiy I_o at y = 0 (i.e. $I(\theta = 0) = I_o$). Use the small angle approximation when answering the questions since $L \gg d$.
 - (a) (3 points) If the observer starts at y = 0 and begins walking in the positive y direction, at what distance y (in km) will the intensity of the radio signal be zero due to interference between the three towers (i.e. at what distance y does the first maximal destructive interference occur)?
 - (b) (2 points) The intensity of the radio signal received by the observer on the road at y = 1.5 km may be written as $I(y = 1.5 \text{ km}) = \alpha I_o$. What is α ?
 - (c) (2 points) The intensity of the radio signal received by the observer on the road at y = 3.0 km may be written as $I(y = 3.0 \text{ km}) = \beta I_o$. What is β ?
 - (d) (3 points) Sketch the intensity of the radio signal as a function of the distance along the road. In other words, plot $I(y)/I_o$ from y = 0 to y = 4 km.


PRELIMINARY EXAMINATION

DEPARTMENT OF PHYSICS UNIVERSITY OF FLORIDA Part B, 12 August 2004, 14:00 - 17:00

- B3. A pendulum is constructed by attaching a mass m to an extensionless string of length l. The upper end of the string is then connected to the uppermost point on a vertical disk of radius R ($R < l/\pi$) as shown in the figure.
 - (a) (2 points) Find the x and y coordinates of the mass m in terms of the angle θ . (Use the coordinate axes shown in the figure).
 - (b) (3 points) Using θ as the generalized coordinate, find the Lagrangian for this system and hence provide the equation of motion in the form (i.e. you will need to provide α , β , and γ , if this general form is the correct one):

$$\alpha \ddot{\theta} - \beta \dot{\theta}^2 - \gamma \cos\theta = 0 \quad .$$

- (c) (3 points) Let $\epsilon = \theta \theta_0$ ($\epsilon << \theta_0$). What is the frequency of small oscillations of the mass m about the angle $\theta = \theta_0$?
- (d) (2 points) Find the θ_0 for which the angular motion extends equally in either direction (i.e. $\theta_1 = \theta_2$).

