PRELIMINARY EXAMINATION

DEPARTMENT OF PHYSICS UNIVERSITY OF FLORIDA Part C, 9 January 2001, 09:00 - 12:00

C1. Consider a one-dimensional simple harmonic oscillator described by a Hamiltonian

$$\hat{\mathcal{H}}_0 = \frac{\hat{p}^2}{2m} + \frac{1}{2} \, m \, \omega^2 \, \hat{x}^2 \ ,$$

with eigenstates $|\phi_n\rangle$ and energy eigenvalues $E_n=(n+\frac{1}{2})\hbar\omega$. A time dependent perturbation of the form $\hat{W}(t)=\gamma\hat{x}^2$ for $0\leq t\leq \tau$ and $\hat{W}(t)=0$ otherwise, is applied to the oscillator. Here γ is a constant and $\gamma\ll \infty^2$.

- (a) (4 points) To first order, calculate the transition probability from the ground state to the first excited state.
- (b) (4 points) To first order, calculate the transition probability from the ground state to the second excited state.
- (c) (2 points) Assume the oscillator is initially in the third excited state. What final states have non-zero transition probability?
- C2. (a) (2 points) The half-life, $\tau_{1/2}$, of ²³⁵U is 7.04×10^8 y (y means years), and $\tau_{1/2}$ of ²³⁸U is 4.47×10^9 y. Currently, the Earth's crust consists of naturally occurring U which is 99.27% ²³⁸U and 0.72% ²³⁵U. If the approximate age of the Earth is 4.5×10^9 y, what was the abundance of ²³⁵U relative to ²³⁸U when the Earth was formed? Ignore production of either ²³⁵U or ²³⁸U from other nuclides.
 - (b) (2 points) Using the data given in the Table, what is the energy (in MeV) released by the α-decay of ²³⁵U?

Element	Atomic Mass (amu)
⁴ He	4.002602
^{235}U	235.043924
$^{231}{ m Th}$	231.036299
amu ≡ ato	omic mass unit and 1 amu = 931.50 MeV/c^2

amu = atomic mass unit and 1 amu = 951.50 MeV/C

(c) (6 points) What fraction of the decay energy from $^{235}U \rightarrow \alpha + ^{231}$ Th is carried by the α particle?

 2

PRELIMINARY EXAMINATION

DEPARTMENT OF PHYSICS UNIVERSITY OF FLORIDA Part C, 9 January 2001, 09:00 - 12:00

- C3. A yo-yo consists of two disks of mass M each and radius R connected by a shaft of mass m and radius r < R. A weightless string is wrapped around the shaft.
 - (a) (4 points) The free end of the string is held vertical and stationary in the Earth's gravitational field. Find the motion of the yo-yo's center of mass.
 - (b) (3 points) The free end is moved so as to keep the yo-yo's center of mass stationary. What is the acceleration of the free end of the string and the angular acceleration of the yo-yo?
 - (c) (3 points) The yo-yo is transported to empty space with no gravitational field. A force F is applied to the free end of the string. Give the acceleration of the center of mass, the yo-yo's angular rotation, and the acceleration of the free end of the string.

