PHY 2004

Lectures 16-20

MOMENTUM

Collision

Impulse I = Ft

 $F=ma=m(V_f-V_I)/t$

Hence:

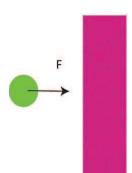
 $I = mV_f - mV_i$

Momentum P = mV

NO impulse, no force, no collision

NO CHANGE IN MOMENTUM

called conservation of momentum



Example:

80 kg 5 m/s

You jump off a boat

Before jump P=0

Therefore, after jump P=0

$$P_{after} = P_{Man} + P_{boat}$$

Therefore
$$P_{boat} = -P_{man} = -400 = M_{boat}V_{boat} = 60 V_{boat}$$

THUS $V_{boat} = -6.7$ m/s (minus sign means goes backward)

ELASTIC COLLISIONS

 M_1 M_2 V_1 V_2

Momentum initial = Momentum after

$$M_1V_1^{Init} + M_2V_2^{Init} = M_1V_1^{after} + M_2V_2^{after}$$

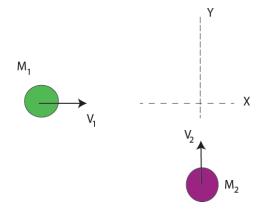
No energy losses, therefore

$$(1/2)M_1(V_1^{\text{Init}})^2 + (1/2)M_2(V_2^{\text{Init}})^2 = (1/2)M_1(V_1^{\text{after}})^2 + (1/2)M_2(V_2^{\text{after}})^2$$

USE both equations can show;

$$V_1^{lnit} + V_1^{after} = V_2^{lnit} + V_2^{after}$$

USED often



Collisions in TWO Dimensions

Separate momentum into components in X and Y direction

P total in X direction is constant

AND

P total in Y direction is constant

Chapter 9

ANGULAR MEASUREMENTS

In time t

sweep out $\boldsymbol{\theta}$

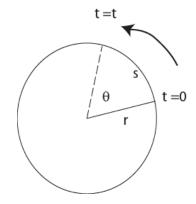
$$\theta = \frac{s}{r}$$

θ is in RADIANS

1 Revolution = **360** degrees = **2** π radians

ANGULAR VELOCITY

 $\omega = \theta/t$ radians / sec.

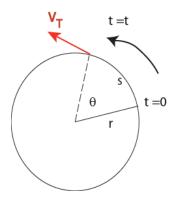


TANGENTIAL VELOCITY

 $V_T = r\omega$

r must be in radians /sec.

V_T is in m/s if r is in meters



CENTRIPETAL ACCELERATION

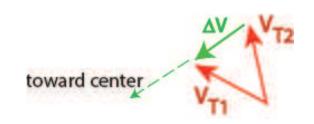
Tangential velocity is CONSTANT in magnitude

BUT direction changes by ΔV

THEREFORE there is an

acceleration toward the center

$$a_C = V_T^2/r$$



PLANETS

Constant angular speed (approximately)

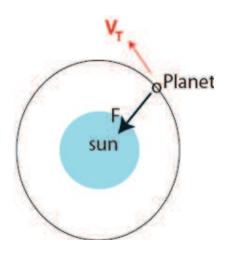
Centripetal acceleration = V_T^2/r

Provided by gravitational force

F=GMm/r²

HENCE

$$V_T = \sqrt{(GM/r)}$$



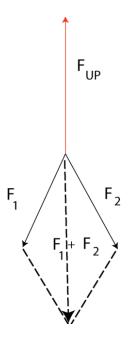
PHY 2004 LECTURES 10-12

EQUILIBRIUM Chapter 8.

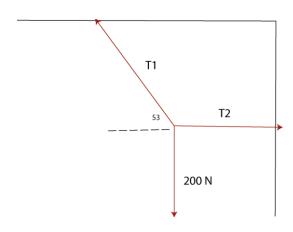
No motion (OR constant motion i.e. no acceleration)

Vector sum of forces =0

I.e. in figure to right $F_1 + F_2 = F_{UP}$



In figure below,



Equilibrium requires

For horizontal direction;

$$T1 = T2 \cos 53 = 0.6T2$$

For vertical direction;

Turning effect

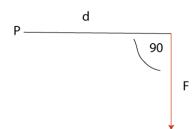
Measure of turning or twisting (rotational or angular) motion

Torques must cancel

Torque

 τ = d * perpendicular component of force to axis d

= dF

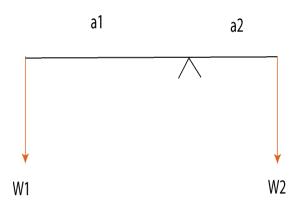


Has a sense of rotation about P: clockwise (+) or anticlockwise (-)

Equilibrium:

Sum of all torques about ANY point in system must =0

E.g seesaw



Sum of torques =0

W1 *a1 +W2*a2 =0

PHY 2004, Lectures 8-9

ENERGY, WORK

Work

W = FxD.

D = distance in the same direction as the force

Work by gravity

F=mg If move against gravity do positive work

W =mgh

This energy is stored, e.g placing a mass on a shelf at height h

Can recover this POTENTIAL energy

Knock mass off shelf. Object gains KINETIC energy

Use $V_F^2 = 2gh$

to show final kinetic energy $K = (1/2)mV^2$

LECTURE 7 PHY 2004

FRICTION

Force of friction proportional to force NORMAL to motion



 μ = coefficient of friction

f=μW

Rubber on concrete $\mu \approx 0.8$

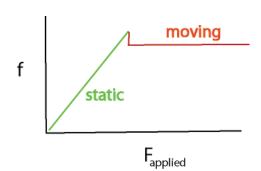
Steel on steel 0.07

Skater on ice 0.02

Static versus sliding friction

Object does not move until

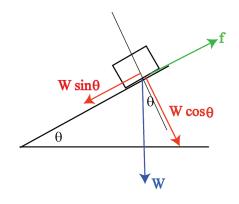
F_{applied} overcomes static friction



Inclined plane

Force normal to plane

 $F = W\cos\theta$



Friction

$$f = \mu W cos \theta$$

SLIDES when

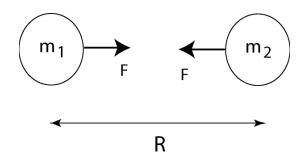
 $Wsin\theta = f$

OR

$$tan\theta = \mu$$

LECTURE 6 PHY 2004

Gravity

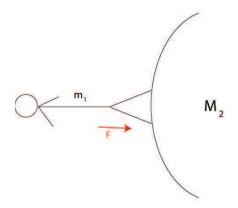


Force

$$F = \frac{Gm_1m_2}{R^2}$$
 G is universal constant (same everywhere)

Weight

$$F = m_1 g = \frac{Gm_1 m_2}{R^2}$$



Thus

$$g = \frac{Gm_2}{R^2}$$
 for mass on surface of planet M₂

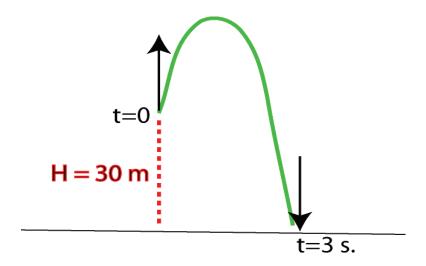
Problem 3.41

$$g(moon) = 1.6m/s2$$

Weight on Earth = 9.8(4) 39.2 N

LECTURE 5 PHY 2004

Chap. 2 #43



$$Y = V_i t + (1/2)at^2$$
(1)

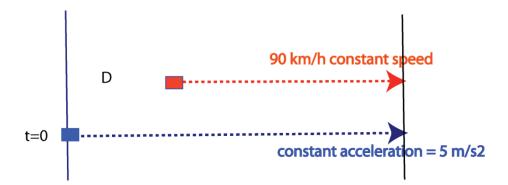
At end Y = -30 m (below origin)

acceleration a = -g = -9.8 m/s 2

Put in Eq'n (1)

$$V_i = (4.9)3 = 4.7 \text{ m/s}$$

Chap 2. # 35



Red speed constant = 90 km/h = 25 m/s

Blue does not start until 5 seconds after red passes, D=(5)(250)=125 m

Need to find t, then calculate distances

NOTE:
$$X_{blue} = X_{red} + 125$$
Eq'n (1)

$$X_{red} = 25 t$$

$$X_{\text{blue}} = (1/2) \text{ at}^2 = (1/2)5t^2 = 2.5t^2$$

Use Eq'n (1)

$$2.5 t^2 = 25t + 125$$
, or

$$t^2 = 10t + 50$$
,

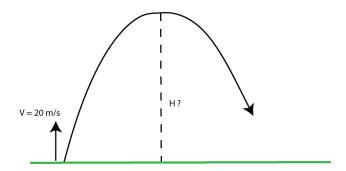
or t=5 $\pm \sqrt{(75)}$ (-ve sign non-physical)=5 +8.7 = 13.7s

$$X_{red} = 25 t = 341.5 m$$

$$X_{blue} = 466.5 \text{ m}$$

LECTURE 3 PHY 2004

Gravity constant at Earth's surface (always "down")



Typical problem

Throw ball up at 20 m/s. How high will it go?

$$V_F^2 = V_i^2 + 2aH$$

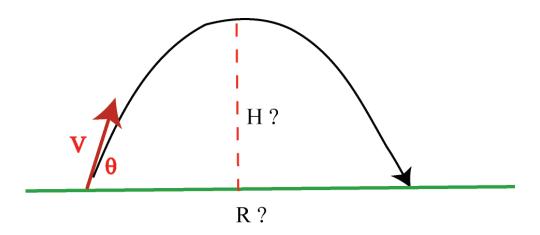
$$a = -9.8 \text{ m/s}^2 \text{ (gravity DOWN deceleration)}$$

$$V_F = 0$$

$$0 = 202 - 2(9.8)H$$

$$H = 400/19.6 = 20.4 \text{ m}$$

Projectile Motion



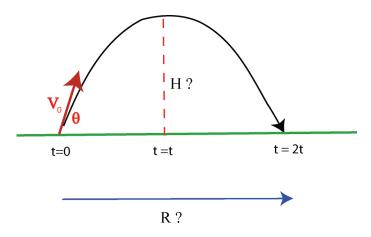
Initial velocity V at angle $\boldsymbol{\theta}$ to horizontal

Calculate R

Calculate θ

LECTURE 4 PHY 2004

Continuing the above problem from lecture 3.



Key point to remember, the x and y motions are independent.

Resolve V into x and y motions

$$V_X = V_0 \cos\theta$$

$$V_Y = V_0 \sin\theta$$

Consider vertical motion. $V_y = 0$ at top where y =H

$$V_{avg}$$
 (y-direction) = (1/2) $V_0 \sin\theta$

At top use $V_F = V_i + at$, or $0 = V_0 \sin\theta$ - gt which gives $t = (V_0 \sin\theta)/g$

 $H=V_{avg}.t=(1/2)V_0 \sin\theta.(V_0\sin\theta/g)$ No need to memorize this formulae,

just remember simple red equations

R= (total time) $V_x = 2t V_0 \cos\theta$

PHY 2004: Applied Physics in our world today

Neil S. Sullivan Fall 2010

NPB Rm 2235 Textbook:

Email: sullivan@phys.ufl.edu

Tel. 352-846-3137

Class meets: MWF (Period 8) 3:00 -3:50 PM

NPB 1001

Office Hours: MWF (Period 4) 10:40 – 11:30 AM

Technical Physics

NPB 2235 F. Bueche & D. Wallach (4th ed., J. Wiley & Sons, 1994)

PHY 2004

GENERAL POINTS

Reference materials, important dates: CHECK course web site

Course Goals

General introduction to use of physics in everyday life
Simple applications, useful in professional careers
Emphasis on principles (not lengthy calculations)

Exams:

Some problems in exams will be from problems discussed in class and in in-class quizzes (clicker responses)

Make-up exams (date TBD) Need SIGNED documentation from Dr. coach teacher etc.

HITT:

Have remotes by September 7 (to have in-class quizzes recorded)

PHY 2004 Exams Fall 2010

All here in NPB 1001

Mid-term: Best two 30 points each

```
1. Sept. 20 Pd 8 (3-3:50 PM)
```

- 2. Oct. 20 Pd 8 (3-3:50 PM)
- 3. Nov. 19 Pd 8 (3-3:50 PM)

4.

Final Dec. 13 (3-5 PM) 40 points

unless third midterm better than final in which case

final =30 points and other mid-term=10 points)

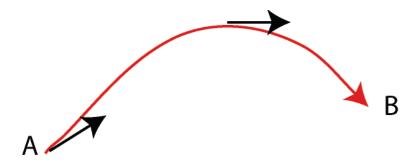
In class questions = bonus of 5 %

LECTURE 2 PHY 2004

MOTION

Speed (scalar) distance per unit time meters/sec

Velocity (vector) speed + direction



Direction different at different points

Average velocity = displacement vector AB/time

Acceleration (vector)

Rate of change of velocity

$$a = (V_F - V_I)/t$$
 OR $V_F = V_I + at$

Uniform acceleration (typical in this class)

e.g. gravity, rockets

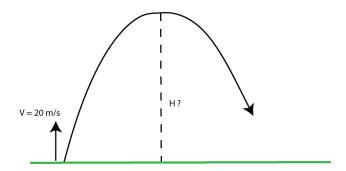
$$X = V_{avg} t$$
 where V_{avg} is average velocity $V_{avg} = (V_1 + V_F)/2$

THUS
$$X = (V_F^2 - V_I^2/2a)$$
 OR $V_F^2 = V_I^2 + 2aX$

ALSO
$$X = V_{avg} t$$
 OR $X = V_{l}t + (1/2)at^2$

LECTURE 3 PHY 2004

Gravity constant at Earth's surface (always "down")



Typical problem

Throw ball up at 20 m/s. How high will it go?

$$V_F^2 = V_i^2 + 2aH$$

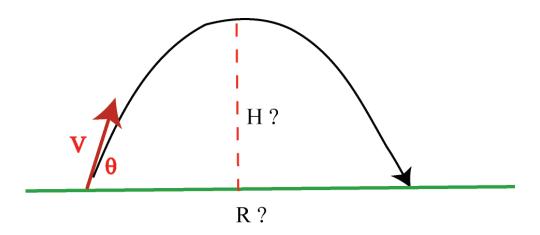
$$a = -9.8 \text{ m/s}^2 \text{ (gravity DOWN deceleration)}$$

$$V_F = 0$$

$$0 = 202 - 2(9.8)H$$

$$H = 400/19.6 = 20.4 \text{ m}$$

Projectile Motion



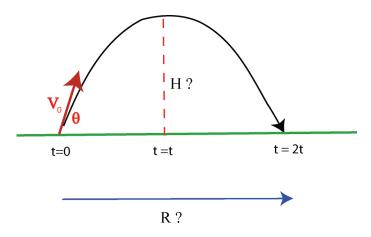
Initial velocity V at angle $\boldsymbol{\theta}$ to horizontal

Calculate R

Calculate θ

LECTURE 4 PHY 2004

Continuing the above problem from lecture 3.



Key point to remember, the x and y motions are independent.

Resolve V into x and y motions

$$V_X = V_0 \cos\theta$$

$$V_Y = V_0 \sin\theta$$

Consider vertical motion. $V_y = 0$ at top where y =H

$$V_{avg}$$
 (y-direction) = (1/2) $V_0 \sin\theta$

At top use $V_F = V_i + at$, or $0 = V_0 \sin\theta$ - gt which gives $t = (V_0 \sin\theta)/g$

 $H=V_{avg}.t=(1/2)V_0 \sin\theta.(V_0\sin\theta/g)$ No need to memorize this formulae,

just remember simple red equations

R= (total time) $V_x = 2t V_0 \cos\theta$