Chap. 15

Heat Transfer

Conduction

Rate of transfer of heat (Joules/second or Watts)

 $Q/t = kA\Delta T/L$, A is the cross-sectional area ΔT is the change on temperature form one end to the other, and L is the length in m

k is the thermal conductivity of the material (units are J/m.K)

Convection

Surface of area A separates two regions that differ in temperature by ΔT

Rate of heat transfer (in Watts) $Q/t = hA\Delta T$ h is the convective surface coefficient

Radiation

Surface radiates heat by radiation (only process for vacuum or outer space)

Q/t= $e\sigma AT^4$ σ is the Stefan-Boltzmann constant = 5.67 * 10^{-8} (W/m².K⁴)

A is the area in m²

e is the emissivity of the surface e=1 for perfect heat emitter

Chap 14.

Thermodynamics

Conservation of energy

Heat into a system

 $\Delta Q = \Delta U + W$ where ΔU is change in internal energy (only a function of temperature) and W is work on the OUTSIDE

Expansion at constant pressure, Work W= $P\Delta V$

Isochoric process V=constant $\Delta Q = \Delta U$

Isothermal process T = constant $\Delta U = 0$, $\Delta Q = W$

Adiabatic process (no heat change) $\Delta Q=0$, $\Delta U=-W$, e.g adiabatic expansion leads to cooling (ΔU is negative)

Heat engine

Efficiency = $W/\Delta Q_{IN}$ where ΔQ_{IN} is the heat input and W is the work done by the machine on the outside

For an ideal system W = ΔQ_{IN} - ΔQ_{out} and the efficiency = 1- ΔQ_{out} / ΔQ_{IN}

For a Carnot cycle, the efficiency = $1 - T_{cold}/T_{hot}$

Chap 13.

Heat Energy

Specific heat C = heat to raise mass m by temperature change ΔT .

 $C = (\Delta Q)/(m\Delta T)$ or $\Delta Q = mC\Delta T$ Units of C are J/kg K

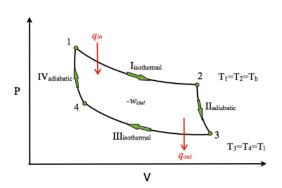
Latent heats

Heat to melt a solid of mass m

 $\Delta Q = mL_M$ L_M is latent heat of melting (J/kg)

Heat to evaporate a liquid of mass m

 $\Delta Q=mL_F$ L_F is latent heat of evaporation



Chap. 12

Temperature and Matter

Absolute temperature scale, Kelvin = Celsius + 273

Ideal Gas Law

PV = nRT

P in Pascals, V in m³, T in Kelvin

n= number of kilomoles R= gas constant =8314 J/kmole/K

ALSO PV = (m/M) RT m= mass of gas, M=molecular weight (kmole)

Kinetic theory of gases

(1/2) mV² = (3/2) kT
$$v$$
 = mean sped of a molecule of mass m
$$k = Boltzmann's \ constant = 1.38 * 10^{-27} \ J/K$$

Thermal expansion

Change in length for change in temperature ΔT

 $\Delta L = \alpha L \Delta T$ α is coefficient of linear expansion

Lectures 21-23

Chap. 11

Properties of Materials

Classes of Materials:

Solids --- fixed shape can be crystals (simple geometrical shape) or amorphous (glasses, plastics)

Liquids -- can flow, fill shape of container BUT incompressible

Gases --- compressible otherwise like liquids

Solids

L

- Can stretch
- ∆L proportional to F up to elastic limit (Hooke's law)

elastic limit
Stretch ΔL

Stress = F/A (N/m2 OR Pascals abrrev. = Pa)

Strain =DL/L

Modulus of Elasticity = Stress/strain

YOUNG's Modulus $Y = \frac{F/A}{\Delta L/L}$ typically a high number ~ 100 GPa

BULK Modulus

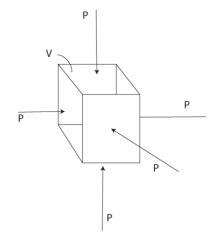
Squeezing a 3D volume V

V to V + Δ V

Stress = P

Strain = - $\Delta V/V$

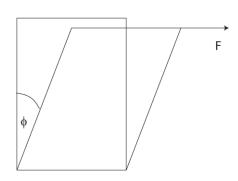
BULK Modulus $B = \frac{P}{-\Delta V/V}$



SHEAR

Shear Modulus $B = \frac{F/A}{\Phi}$

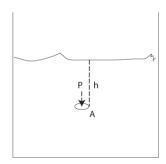
SHEAR



Pressure at depth h in fluid

$$P = \rho gh$$

$$\rho$$
 = density of fluid

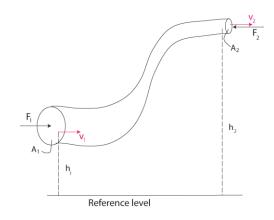


Motion of fluids in pipes

Conservation of mass (fluid incompressible) and conservation of energy

$$\frac{1}{2}\rho v_1^2 + \rho g h_1 + P_1 = \frac{1}{2}\rho v_2^2 + \rho g h_2 + P_2$$

(Bernouillis's eq'n)



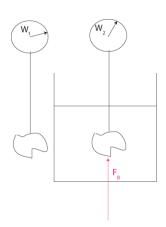
At point 1 height h1 above reference level

V₁ is velocity and P₁ is pressure

Buoyancy

Archimede's Principle

 F_B = weight of fluid displaced = $W_1 - W_2$



PHY 2004

Lectures 16-20

MOMENTUM

Collision

Impulse I = Ft

 $F=ma=m(V_f-V_I)/t$

Hence:

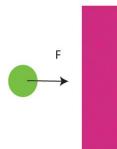
 $I = mV_f - mV_i$

Momentum P = mV

NO impulse, no force, no collision

NO CHANGE IN MOMENTUM

called conservation of momentum



Example:

80 kg 5 m/s

You jump off a boat

60 kg

Before jump P=0

Therefore, after jump P=0

$$P_{after} = P_{Man} + P_{boat}$$

Therefore
$$P_{boat} = -P_{man} = -400 = M_{boat}V_{boat} = 60 V_{boat}$$

THUS $V_{boat} = -6.7$ m/s (minus sign means goes backward)

ELASTIC COLLISIONS

 M_1 M_2 V_1

Momentum initial = Momentum after

$$M_1V_1^{Init} + M_2V_2^{Init} = M_1V_1^{after} + M_2V_2^{after}$$

No energy losses, therefore

$$(1/2)M_1(V_1^{\text{Init}})^2 + (1/2)M_2(V_2^{\text{Init}})^2 = (1/2)M_1(V_1^{\text{after}})^2 + (1/2)M_2(V_2^{\text{after}})^2$$

USE both equations can show;

$$V_1^{lnit} + V_1^{after} = V_2^{lnit} + V_2^{after}$$

USED often

M₁ ---- X

Collisions in TWO Dimensions

Separate momentum into components in X and Y direction

P total in X direction is constant

AND

P total in Y direction is constant

Chapter 9

ANGULAR MEASUREMENTS

In time t

sweep out $\boldsymbol{\theta}$

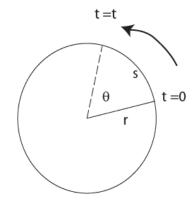
$$\theta = \frac{s}{r}$$

θ is in RADIANS

1 Revolution = **360** degrees = **2** π radians

ANGULAR VELOCITY

 $\omega = \theta/t$ radians / sec.

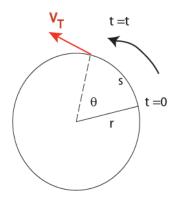


TANGENTIAL VELOCITY

 $V_T = r\omega$

r must be in radians /sec.

V_T is in m/s if r is in meters



CENTRIPETAL ACCELERATION

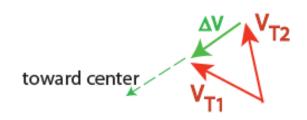
Tangential velocity is CONSTANT in magnitude

BUT direction changes by ΔV

THEREFORE there is an

acceleration toward the center

$$a_C = V_T^2/r$$



PLANETS

Constant angular speed (approximately)

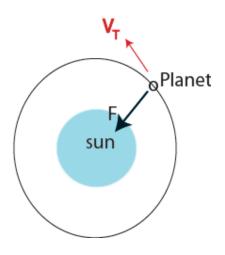
Centripetal acceleration = V_T^2/r

Provided by gravitational force

F=GMm/r²

HENCE

$$V_T = \sqrt{(GM/r)}$$



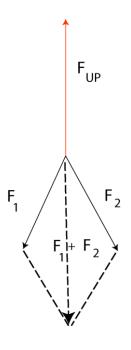
PHY 2004 LECTURES 10-12

EQUILIBRIUM Chapter 8.

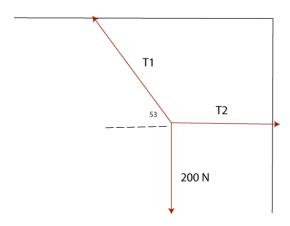
No motion (OR constant motion i.e. no acceleration)

Vector sum of forces =0

I.e. in figure to right $F_1 + F_2 = F_{UP}$



In figure below,



Equilibrium requires

For horizontal direction;

$$T1 = T2 \cos 53 = 0.6T2$$

For vertical direction;

Turning effect

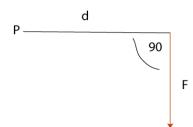
Measure of turning or twisting (rotational or angular) motion

Torques must cancel

Torque

 τ = d * perpendicular component of force to axis d

= dF

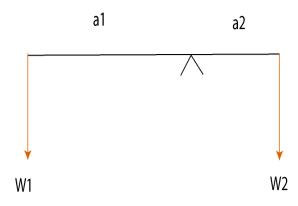


Has a sense of rotation about P: clockwise (+) or anticlockwise (-)

Equilibrium:

Sum of all torques about ANY point in system must =0

E.g seesaw



Sum of torques =0

W1 *a1 +W2*a2 =0

PHY 2004, Lectures 8-9

ENERGY, WORK

Work

W = FxD.

D = distance in the same direction as the force

Work by gravity

F=mg If move against gravity do positive work

W =mgh

This energy is stored, e.g placing a mass on a shelf at height h

Can recover this POTENTIAL energy

Knock mass off shelf. Object gains KINETIC energy

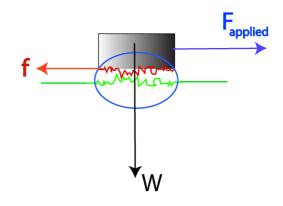
Use $V_F^2 = 2gh$

to show final kinetic energy $K = (1/2)mV^2$

LECTURE 7 PHY 2004

FRICTION

Force of friction proportional to force NORMAL to motion



 μ = coefficient of friction

f=μW

Rubber on concrete $\mu \approx 0.8$

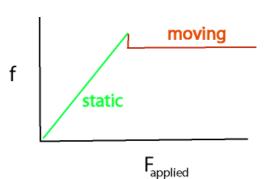
Steel on steel 0.07

Skater on ice 0.02

Static versus sliding friction

Object does not move until

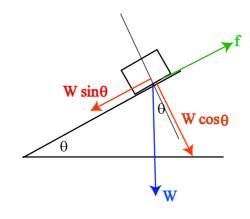
F_{applied} overcomes static friction



Inclined plane

Force normal to plane

 $F = W\cos\theta$



Friction

 $f = \mu W cos \theta$

SLIDES when

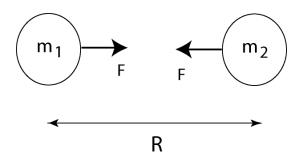
Wsin θ =f

OR

 $tan\theta = \mu$

LECTURE 6 PHY 2004

Gravity

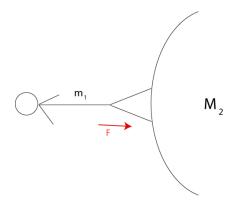


Force

$$F = \frac{Gm_1m_2}{R^2}$$
 G is universal constant (same everywhere)

Weight

$$F = m_1 g = \frac{Gm_1 m_2}{R^2}$$



Thus

$$g = \frac{Gm_2}{R^2}$$
 for mass on surface of planet M₂

Problem 3.41

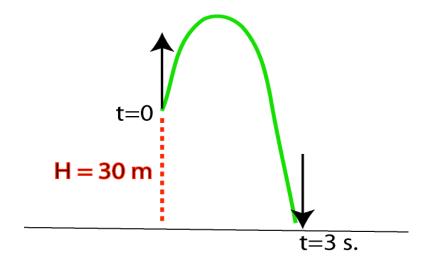
$$g(moon) = 1.6m/s2$$

Weight on moon = 1.6(4) = 6.4 N

Weight on Earth = 9.8(4) 39.2 N

LECTURE 5 PHY 2004

Chap. 2 #43



$$Y = V_i t + (1/2)at^2$$
(1)

At end Y = -30 m (below origin)

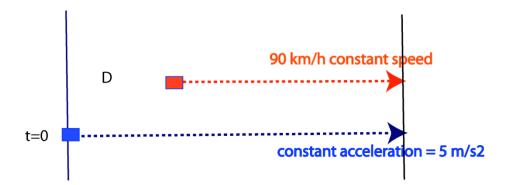
acceleration a = -g = -9.8 m/s 2

Put in Eq'n (1)

-30=V_i 3 -(1/2)(9.8) 9

$$V_i = (4.9)3 = 4.7 \text{ m/s}$$

Chap 2. # 35



Red speed constant = 90 km/h = 25 m/s

Blue does not start until 5 seconds after red passes, D=(5)(250)=125 m

Need to find t, then calculate distances

NOTE:
$$X_{blue} = X_{red} + 125$$
Eq'n (1)

$$X_{red} = 25 t$$

$$X_{\text{blue}} = (1/2) \text{ at}^2 = (1/2)5t^2 = 2.5t^2$$

Use Eq'n (1)

$$2.5 t^2 = 25t + 125$$
, or

$$t^2 = 10t + 50$$

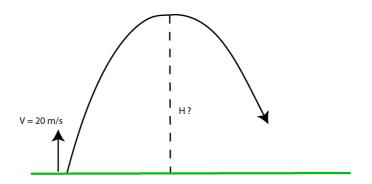
or t=5 $\pm \sqrt{(75)}$ (-ve sign non-physical)=5 +8.7 = 13.7s

$$X_{red} = 25 t = 341.5 m$$

$$X_{blue} = 466.5 \text{ m}$$

LECTURE 3 PHY 2004

Gravity constant at Earth's surface (always "down")



Typical problem

Throw ball up at 20 m/s. How high will it go?

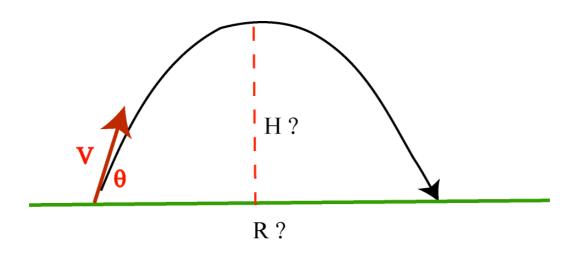
$$V_F^2 = V_i^2 + 2aH$$

$$a = -9.8 \text{ m/s}^2$$
 (gravity DOWN deceleration)

$$V_F = 0$$

$$0 = 202 - 2(9.8)H$$

Projectile Motion



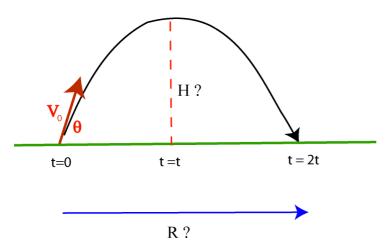
Initial velocity V at angle $\boldsymbol{\theta}$ to horizontal

Calculate R

Calculate $\boldsymbol{\theta}$

LECTURE 4 PHY 2004

Continuing the above problem from lecture 3.



Key point to remember, the x and y motions are independent.

Resolve V into x and y motions

$$V_X = V_0 \cos\theta$$

$$V_Y = V_0 \sin\theta$$

Consider vertical motion. $V_y = 0$ at top where y = H

$$V_{avg}$$
 (y-direction) = (1/2) $V_0 \sin\theta$

At top use $V_F = V_i + at$, or $0 = V_0 \sin\theta$ gt which gives $t = (V_0 \sin\theta)/g$

 $H=V_{avg}$ t = (1/2) $V_0 \sin\theta$.($V_0 \sin\theta$ /g) No need to memorize this formulae,

just remember simple red equations

R= (total time) $V_x = 2t V_0 \cos\theta$

PHY 2004: Applied Physics in our world today

Neil S. Sullivan Fall 2010

NPB Rm 2235 Textbook:

Email: sullivan@phys.ufl.edu

Tel. 352-846-3137

Class meets: MWF (Period 8) 3:00 -3:50 PM

NPB 1001

Office Hours: MWF (Period 4) 10:40 – 11:30 AM

Technical Physics

NPB 2235 F. Bueche & D. Wallach (4th ed., J. Wiley & Sons, 1994)

morro antrov

PHY 2004

GENERAL POINTS

Reference materials, important dates: **CHECK** course web site

Course Goals

General introduction to use of physics in **everyday life**Simple applications, useful in professional careers
Emphasis on principles (not lengthy calculations)

Exams:

Some problems in exams will be from problems discussed in class and in in-class quizzes (clicker responses)

Make-up exams (date TBD) Need SIGNED documentation from Dr. coach teacher etc.

HITT:

Have remotes by September 7 (to have in-class quizzes recorded)

PHY 2004 Exams Fall 2010

All here in NPB 1001

Mid-term: Best two 30 points each

```
1. Sept. 20 Pd 8 (3-3:50 PM)
```

- 2. Oct. 20 Pd 8 (3-3:50 PM)
- 3. Nov. 19 Pd 8 (3-3:50 PM)

4.

Final Dec. 13 (3-5 PM) 40 points

unless third midterm better than final in which case

final =30 points and other mid-term=10 points)

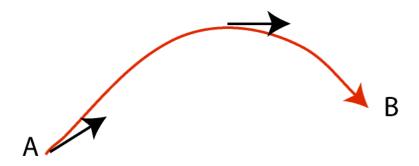
In class questions = bonus of 5 %

LECTURE 2 PHY 2004

MOTION

Speed (scalar) distance per unit time meters/sec

Velocity (vector) speed + direction



Direction different at different points

Average velocity = displacement vector AB/time

Acceleration (vector)

Rate of change of velocity

$$a = (V_F - V_I)/t$$
 OR $V_F = V_I + at$

Uniform acceleration (typical in this class)

e.g. gravity, rockets

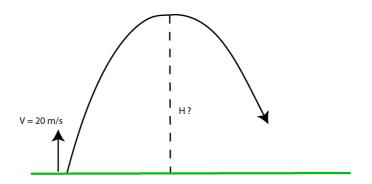
$$X = V_{avg} t$$
 where V_{avg} is average velocity $V_{avg} = (V_1 + V_F)/2$

THUS
$$X = (V_F^2 - V_I^2/2a)$$
 OR $V_F^2 = V_I^2 + 2aX$

ALSO
$$X = V_{avg} t$$
 OR $X = V_{l}t + (1/2)at^2$

LECTURE 3 PHY 2004

Gravity constant at Earth's surface (always "down")



Typical problem

Throw ball up at 20 m/s. How high will it go?

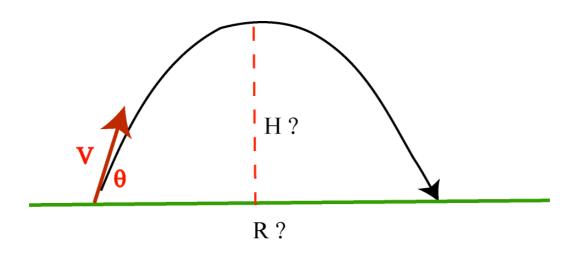
$$V_F^2 = V_i^2 + 2aH$$

$$a = -9.8 \text{ m/s}^2$$
 (gravity DOWN deceleration)

$$V_F = 0$$

$$0 = 202 - 2(9.8)H$$

Projectile Motion



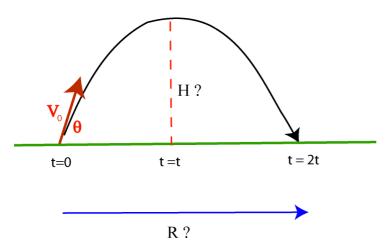
Initial velocity V at angle $\boldsymbol{\theta}$ to horizontal

Calculate R

Calculate $\boldsymbol{\theta}$

LECTURE 4 PHY 2004

Continuing the above problem from lecture 3.



Key point to remember, the x and y motions are independent.

Resolve V into x and y motions

$$V_X = V_0 \cos\theta$$

$$V_Y = V_0 \sin\theta$$

Consider vertical motion. $V_y = 0$ at top where y = H

$$V_{avg}$$
 (y-direction) = (1/2) $V_0 \sin\theta$

At top use $V_F = V_i + at$, or $0 = V_0 \sin\theta$ gt which gives $t = (V_0 \sin\theta)/g$

 $H=V_{avg}$ t = (1/2) $V_0 \sin\theta$.($V_0 \sin\theta$ /g) No need to memorize this formulae,

just remember simple red equations

R= (total time) $V_x = 2t V_0 \cos\theta$