First answer is the Instructor(s) correct answer

РНҰ	7 2004		PHYSICS DEPARTM Midterm Exam		February 1, 2012		
Name (print, last first):):		Signature:	· ·		
				_			
YOUR TEST NUMBER IS THE 5-DIGIT NUMBER AT THE TOP OF EACH PAGE. (1) Code your test number on your answer sheet (use lines 76-80 on the answer sheet for the 5-digit num Code your name on your answer sheet. DARKEN CIRCLES COMPLETELY. Code your UFID number of answer sheet. (2) Print your name on this sheet and sign it also. (3) Do all scratch work anywhere on this exam that you like. Circle your answers on the test form. At the end test, this exam printout is to be turned in. No credit will be given without both answer sheet and printout. (4) Blacken the circle of your intended answer completely, using a #2 pencil or blue or black ink. It make any stray marks or some answers may be counted as incorrect. (5) The answers are rounded off. Choose the closest to exact. There is no penalty for guessing. It believe that no listed answer is correct, leave the form blank.							
			$g = 9.80 \text{ m/s}^2$				
1.	(3 points) A ball i	s thrown up vertically	at 25 m/s. How high wil	ll the ball go?			
	(1) 31.9 m	(2) 3.20 m	(3) 0.51 m	(4) 40.8 m	(5) 7.10 m		
2.	(3 points) Jane se	ts out on a walk. She w	valks 8 km east and then	a 3 km north. How far i	s she from her starting point?		
	(1) 8.5 km	(2) 23 km	$(3)~17.1~\rm km$	(4) 3 km	(5) 30 km		
3. (3 points) A stone is dropped from a bridge. It hits the water 1.5 seconds after it is dropped. What is the he bridge above the water?							
	(1) 11.0 m	(2) 39.2 m	(3) 19.6 m	(4) 5.5 m	(5) 1.10 m		
4.	(3 points) A block of mass 10 kg sits on an inclined plane. The coefficient of static friction between the block and the surface is 0.51. At what angle (in degrees) must the block be raised before it begins to slide?						
	(1) 27°	$(2) 75^{\circ}$	(3) 47°	(4) 15°	(5) 67°		
			xing up at a speed of 5 r		automobile begins accelerating?		
	(1) 12 m	(2) 0 m	(3) 6 m	(4) 3 m	(5) 9 m		
	this moment the c	ar begins to accelerate i	20 m/s. A car traveling in the forward direction a far does the cruiser trav	at a rate of 2 m/s^2 , and	t 30 m/s passes the cruiser. At the cruiser begins to accelerate to the car?		
	(1) 55.5 m	$(2) 27.9 \mathrm{m}$	(3) 100 m	$(4) 15.7 \mathrm{m}$	(5) 175 m		
7.	(4 points) An astr	onaut wants to measur	e the acceleration of gray	vity on planet X. On E	arth his powerful dart gun will		

- 4. (4 points) An astronaut wants to measure the acceleration of gravity on planet X. On Earth his powerful dart gun will shoot a dart a maximum horizontal distance of 30 m before the dart returns to the same height from which it was shot. She performs the same experiment on planet X, and finds that the dart gun shoots the dart a maximum distance of 45 m. What is the value of the acceleration due to gravity on Planet X?
 - $(1) 6.5 \text{ m/s}^2$
- $(2) 7.6 \text{ m/s}^2$
- (3) 9.8 m/s^2
- $(4) 14.8 \text{ m/s}^2$
- $(5) 2.5 \text{ m/s}^2$

- 8. (5 points) A 5 kg mass is held in equilibrium by 2 ropes as shown. What is the value of T_2 , the tension in rope 2?

 - (1) 36 N (2) 13 N (3) 47 N (4) 61 N (5) 72 N

Ir

(1) 7 m

(2) 3 m

Inst	$\operatorname{cructor}(s)$: N. Sulli	van		3 (F23)(F)		
PHY 2004			PHYSICS DEPART Midterm Exam	1 2	March 2, 2012	
Name (print, last first):):	Signature:			
	On	my honor, I have neit	ther given nor received u	nauthorized aid on this	examination.	
(2) (3) (4) (5)	Code your test: Code your name answer sheet. Print your name of Do all scratch wortest, this exam pr Blacken the cir make any stray m The answers ar believe that no	number on your anson your answer sheet. on this sheet and sign rk anywhere on this excitation is to be turned to the following of the control of the contro	it also. can that you like. Circle in. No credit will be give d answer completely, may be counted as incor oose the closest to e crect, leave the form be	6-80 on the answer slower Scompleters. Completely. Com	neet for the 5-digit number). ode your UFID number on your e test form. At the end of the	
			$g = 9.80 \text{ m/s}^2$			
1.		kg slab of limestone itage of this elementary		ined at 20 degrees to th	ne horizontal. What is the ideal	
	(1) 2.92	(2) 1.46	(3) 12.80	$(4) \ 0.35$	(5) 0.87	
2. (3 points) A satellite is circling a small planet at a speed of 3.60 rev/day. If the satellite's orbit has a diameter of km, how fast is the satellite moving (at a tangent to the orbital path)?						
	(1) 3900 m/s	$(2)~4.7~\mathrm{m/s}$	$(3)\ 1940\ \mathrm{m/s}$	$(4)\ 175\ \mathrm{m/s}$	(5) 0.175 m/s	
3. (4 points) A 1200 kg car is traveling along a road with a speed of 20m/s at point A. The driver stops accelerat he passes point A, and 70 m away at point B his speed has dropped to 12 m/s. Calculate the average force of between A and B.						
	(1) 2190 N	(2) 219 N	(3) 19 N	(4) 190 N	(5) 0 N	
4. (4 points) A hydraulic lift is used to raise an object of weight 30,000 N. If the input piston has a diam and the output piston has a diameter of 8.0 cm. Calculate the force needed at the input piston to raise						
	(1) 66 N	(2) 13.2 N	(3) 132 N	(4) 6661 N	(5) 13,200 N	
5.	5. (3 points) A 17 kg box which is initially at rest is allowed to slide down an inclined plane that makes an angle to the horizontal. The friction between the box and the surface of the plane is negligible. If the point where t is released is 2.5 m above the ground at the end of the inclined plane, calculate the box's velocity when it reach ground level.					
	(1) 7.1 m/s	$(2)~5.2~\mathrm{m/s}$	$(3)~1.35~\mathrm{m/s}$	(4) 15.70 m/s	$(5)~0.35~\mathrm{m/s}$	
6.	of 10 m/s. A force along the incline.	F = 150 N is applied	in a 30° incline with an indicate to the block in the upper lettic friction $\mu_k = 0.7$. Scoming to rest?	ward direction	$V_I = 10 \text{ m/s}$ $V_I = 150 \text{ N}$	

(3) 1.5 m

(4) 14 m

(5) 23 m

7.	(5 points) A	A ping-pon	g ball of mass 4	gm and tra	veling with	a velocity o	f 4 m/s collid	es with stationary	tennis ball of
	mass 5 gm.	Calculate	the magnitude o	f the velocit	y of the ten	nis ball after	the collision,	assuming the colli	sion is elastic.

- (1) 3.6 m/s
- (2) 0.44 m/s
- (3) 2 m/s
- (4) 0.67 m/s
- (5) 7.2 m/s

8. (3 points) The wheel of a car is rotating at a speed of 6.0 rev/s. If the wheel has a diameter of 30 cm, how fast is the car going along its straight line path?

- (1) 5.6 m/s
- (2) 2.4 m/s
- (3) 1.4 m/s
- (4) 3.7 m/s
- (5) 0.33 m/s

77777

Instructor(s): N. Sullivan

PHY 2004 Name (print, last first):			PHYSICS DEPARTM Midterm Exam 3		April 6, 2012				
	On m	ny honor, I have neither	given nor received una	authorized aid on this exc	amination.				
(2) (3) (4) (5)	Code your test nu Code your name on answer sheet. Print your name on Do all scratch work test, this exam prin Blacken the circl make any stray man The answers are	this sheet and sign it a anywhere on this exam tout is to be turned in. e of your intended a rks or some answers may rounded off. Choos sted answer is correct sheet separately.	r sheet (use lines 76–ARKEN CIRCLES of that you like. Circle you like. Circle you not be completely, use the closest to exact, leave the form black.	your answers on the to without both answer shasing a #2 pencil or ject. act. There is no penank.	et for the 5-digit number). your UFID number on your eest form. At the end of the				
		g = 9.80	10 m/s^2 $R = 831$	14 J/kmole K					
1.	(5 points) A cubic kg/m3, what is the	(5 points) A cubic block of wood floats in water with 11% of its volume above water. If the density of water is $1,000$ kg/m3, what is the density of the wood?							
	$(1)~990~\rm kg/m^3$	(2) 1100 kg/m ³	$(3)~2200~\mathrm{kg/m^3}$	$(4)~890~\rm kg/m^3$	$(5)~110~\mathrm{kg/m^3}$				
2.		(4 points) A steel beam has a length of 10 m and a cross-sectional area of 1 cm ² . If the length of the beam changes by 5 mm with an applied force of 10,000 N, what is the Young's modulus of steel?							
	(1) 200 GPa	(2) 112 GPa	(3) 15 Gpa	$(4)~2000~\mathrm{GPa}$	(5) 7,200 GPa				
3.		(4 points) A 2 m ³ steel gas cylinder contains natural gas at a pressure of 200 kPa at a temperature of 27°C . If the gas is compressed to 300 kPa, what is the final temperature?							
	(1) 177°C	(2) 300° C	(3) 57°C	(4) 200° C	(5) 427°C				
4.	(4 points) A 15 m^3 volume of ideal gas is compressed adiabatically. If the work done by the outside force is 2700 J, what is the change in internal energy of the gas?								
	(1) 2700 J	(2) -2700 J	(3) 1350 J	(4) -1350 J	(5) 0 J				
5.	(3 points) A 2 meter length of steel changes length by 2.4 mm during the course of a day. If the coefficient of thermal expansion of steel is 12 parts per million per °C, what is the change in temperature of the steel?								
	$(1) 100^{\circ} C$	$(2) 24^{\circ} C$	(3) 12° C	(4) 373°C	(5) 273°C				
6.	(3 points) The heat capacity of an object is 3500 J/kg K . Calculate the amount of heat required to raise the temperature of the object by 1.5°C if its mass is 60 grams.								
	(1) 315 J	(2) 720 J	(3) 7.5 J	(4) 1350 J	(5) 125 J				
7.	(5 points) A piece o in air is 2.2 kg and	f metal is weighed in air the weight in the oil is	and then weighed while the december and	le immersed in oil of density of the metal.	sity 600 kg/m^3 . If the weight				
	(1) 1890 kg/m^3	(2) 8.86 kg/m^3	(3) 135.1 kg/m^3	$(4)~3.68~\mathrm{kg/m^3}$	(5) 1.89 kg/m^3				