LECTURE 7 PHY 2004

FRICTION

Force of friction proportional to force NORMAL to motion

 μ = coefficient of friction

f=μW

Rubber on concrete $\mu \approx 0.8$

Steel on steel 0.07

Skater on ice 0.02

Static versus sliding friction

Object does not move until

 $\mathbf{F}_{\mathsf{applied}}$ overcomes static friction

Inclined plane

Force normal to plane

 $F = W\cos\theta$

Friction

$$f = \mu W cos \theta$$

SLIDES when

 $Wsin\theta = f$

OR

$$tan\theta = \mu$$

LECTURE 6 PHY 2004

Gravity

Force

$$F = \frac{Gm_1m_2}{R^2}$$
 G is universal constant (same everywhere)

Atwood's machine

Find acceleration a in terms of m1, m2 and g.

m1 and m2 tied together m1=m2=0.7 kg m2 is pulled with a force of 3N

Assume there is negligible friction

Find the acceleration and the value of T2?

m1 and m2 tied together m1=m2=4 kg m2 is pulled with a force P inclined at 37 deg.

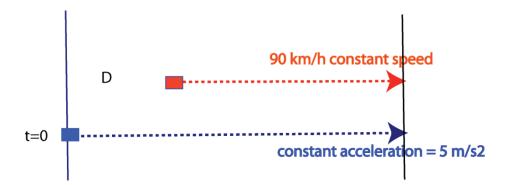
The horizontal force of friction at each wheel is 10 N.

Find the acceleration and the values of P and T2.

LECTURE 5 PHY 2004

Chap. 2 #43

$$Y = V_i t + (1/2)at^2$$
(1)


At end Y = -30 m (below origin)

acceleration a = -g = -9.8 m/s 2

Put in Eq'n (1)

$$V_i = (4.9)3 = 4.7 \text{ m/s}$$

Chap 2. # 35

Red speed constant = 90 km/h = 25 m/s

Blue does not start until 5 seconds after red passes, D=(5)(250)=125 m

Need to find t, then calculate distances

NOTE:
$$X_{blue} = X_{red} + 125$$
Eq'n (1)

$$X_{red} = 25 t$$

$$X_{\text{blue}} = (1/2) \text{ at}^2 = (1/2)5t^2 = 2.5t^2$$

Use Eq'n (1)

$$2.5 t^2 = 25t + 125$$
, or

$$t^2 = 10t + 50$$
,

or t=5 $\pm \sqrt{(75)}$ (-ve sign non-physical)=5 +8.7 = 13.7s

$$X_{red} = 25 t = 341.5 m$$

$$X_{blue} = 466.5 \text{ m}$$

LECTURE 3 PHY 2004

Gravity constant at Earth's surface (always "down")

Typical problem

Throw ball up at 20 m/s. How high will it go?

$$V_F^2 = V_i^2 + 2aH$$

$$a = -9.8 \text{ m/s}^2 \text{ (gravity DOWN deceleration)}$$

$$V_F = 0$$

$$0 = 202 - 2(9.8)H$$

$$H = 400/19.6 = 20.4 \text{ m}$$

Projectile Motion

Initial velocity V at angle $\boldsymbol{\theta}$ to horizontal

Calculate R

Calculate θ

LECTURE 4 PHY 2004

Continuing the above problem from lecture 3.

Key point to remember, the x and y motions are independent.

Resolve V into x and y motions

$$V_X = V_0 \cos\theta$$

$$V_Y = V_0 \sin\theta$$

Consider vertical motion. $V_y = 0$ at top where y =H

$$V_{avg}$$
 (y-direction) = (1/2) $V_0 \sin\theta$

At top use $V_F = V_i + at$, or $0 = V_0 \sin\theta$ - gt which gives $t = (V_0 \sin\theta)/g$

 $H=V_{avg}.t=(1/2)V_0 \sin\theta.(V_0\sin\theta/g)$ No need to memorize this formulae,

just remember simple red equations

R= (total time) $V_x = 2t V_0 \cos\theta$

PHY 2004

MOTION

Speed (scalar) distance per unit time meters/sec

Velocity (vector) speed + direction

Direction different at different points

Average velocity = displacement vector AB/time

Acceleration (vector)

Rate of change of velocity

$$a = (V_F - V_I)/t$$
 OR $V_F = V_I + at$

Uniform acceleration (typical in this class)

e.g. gravity, rockets

$$X = V_{avg} t$$
 where V_{avg} is average velocity $V_{avg} = (V_1 + V_F)/2$

THUS
$$X = (V_F^2 - V_I^2/2a)$$
 OR $V_F^2 = V_I^2 + 2aX$

ALSO
$$X = V_{avg} t$$
 OR $X = V_{l}t + (1/2)at^2$

LECTURE 3 PHY 2004

Gravity constant at Earth's surface (always "down")

Typical problem

Throw ball up at 20 m/s. How high will it go?

$$V_F^2 = V_i^2 + 2aH$$

$$a = -9.8 \text{ m/s}^2 \text{ (gravity DOWN deceleration)}$$

$$V_F = 0$$

$$0 = 202 - 2(9.8)H$$

$$H = 400/19.6 = 20.4 \text{ m}$$