Inst	ructor(s)	: S. Obukho	v				
РΗ	Y 2004				EPARTMEN' m Exam 3	Τ	March 30, 2016
Nan	ne (print	, last first):			Sig	gnature:	
		$On m_2$	y honor, I have n	either given nor re	ceived unauth	orized aid on this ex	camination.
(2) (3) (4) (5)	Code ye answer s Print ye Do all s test, thi Blacker make an The an believe	our test nu our name on sheet. our name on cratch work s exam print n the circle by stray mark aswers are that no lis	mber on your and your answer sheet and signanywhere on this tout is to be turned the of your intended of your answer rounded off. O	nswer sheet (use t. DARKEN CI in it also. exam that you like ed in. No credit will ded answer comp rs may be counted	lines 76–80 RCLES CO c. Circle you ll be given wi pletely, usin as incorrect. st to exact.	MPLETELY. Cod ir answers on the thout both answer s ag a #2 pencil or There is no per	et for the 5-digit number) e your UFID number on your test form. At the end of the
		Specific heat of water: $c = 1 \text{cal/g} \cdot ^{\circ}\text{C}$			$g = 9.81 \text{ m/s}^2$		
		Density of water: $\rho_w = 1 \text{ g/cm}^3$			Density of air 1.20 kg/m^3		
		Universal gas constant: $R = 8.314 \text{ J/mol}$					
		Heat of f	usion for water:	$H_f = 80 \text{ cal/g}$	Heat of vapo	orization for water:	$H_v = 539 \text{ cal/g}$
1.		tank of propane gas has an absolute pressure of 200 kPa at a temperature of 27°C. What is the mass of gas nk if 1 kmole of propane weighs 44 kg? $R=8314\mathrm{J/kmole~K}$.					
	(1) 70.6	kg	$(2)~642~\mathrm{kg}$	(3) 192 k	g	(4) 24.2 kg	(5) 8.65 kg
	The weight of a piece of metal in air is 24 N. If the weight of the same piece when fully immersed in oil (of density 800 kg/m^3) is 18 N , what is the density of the metal? (1) 3200 kg/m^3 (2) 4640 kg/m^3 (3) 1250 kg/m^3 (4) 6440 kg/m^3 (5) 5240 kg/m^3						
	(1) 3200	0 kg/m^3	(2) 4640 kg/m	1^3 (3) 1250	kg/m³	$(4) 6440 \text{ kg/m}^3$	$(5) 5240 \text{ kg/m}^3$
3.	A 5 m length of strong steel with a cross-sectional area of 20 cm ² is compressed with a force of 20,000 N. If the Young's modulus for this steel is 200 GPa, what is the change in length of the steel?						
	(1) 0.25	mm	$(2)~25~\mathrm{mm}$	(3) 0.11	em	$(4)\ 12.5\ \mathrm{mm}$	(5) 5.5 mm
4.				$5.0 \text{ kg m}^2 \text{ about post to 5 rev/s in 60}$		late the torque need	ed to accelerate the rotational
	(1) 2.62	N m	$(2)~0.42~\mathrm{N~m}$	(3) 1.34	N m	(4) 5.14 N m	$(5)~0.13~\mathrm{N~m}$
5.	What w	ill be the fina	al water temperat	ure when 3 kg of ic	e at 0°C and	6 kg of water at 20°	C are mixed together (in °C)?
	(1) 0	(2) 10	(3) 13.4	4 (4) 20	(5) N	Not enough informat	ion given to answer.
6.				height of 130 km, t tal acceleration (in		rcular path with $r =$	6500 km. It takes 86 minutes
	(1) 9.6		(2) 9.8	(3) 9.4		(4) 10.0	(5) 3.0
7.		f water is he ted (in gram		ooiling point. Afte	r that, 300 c	alories of heat is ac	lded. What amount of water
	(1) 0.55		$(2) \ 30$	$(3) \ 3$		(4) 14	(5) 200