Chap. 15

Heat Transfer

Conduction

Rate of transfer of heat (Joules/second or Watts)

Q/t = kA Δ T/L, A is the cross-sectional area Δ T is the change on temperature form one end to the other, and L is the length in m

k is the thermal conductivity of the material (units are J/m.K)

Convection

Surface of area A separates two regions that differ in temperature by ΔT

Rate of heat transfer (in Watts) $Q/t = hA\Delta T$ h is the convective surface coefficient

Radiation

Surface radiates heat by radiation (only process for vacuum or outer space)

Q/t= $e\sigma AT^4$ σ is the Stefan-Boltzmann constant = 5.67 * 10⁻⁸ (W/m².K⁴)

A is the area in m²

e is the emissivity of the surface e=1 for perfect heat emitter

Chap 14.

Thermodynamics

Conservation of energy

Heat into a system

 $\Delta Q = \Delta U + W$ where ΔU is change in internal energy (only a function of temperature) and W is work on the OUTSIDE

Expansion at constant pressure, Work W= $P\Delta V$

Isochoric process V=constant $\Delta Q = \Delta U$

Isothermal process T = constant $\Delta U = 0$, $\Delta Q = W$

Adiabatic process (no heat change) $\Delta Q=0$, $\Delta U=-W$, e.g adiabatic expansion leads to cooling (ΔU is negative)

Heat engine

Efficiency = $W/\Delta Q_{IN}$ where ΔQ_{IN} is the heat input and W is the work done by the machine on the outside

For an ideal system W = ΔQ_{IN} - ΔQ_{out} and the efficiency = 1- $\Delta Q_{out}/\Delta Q_{IN}$

For a Carnot cycle, the efficiency = $1 - T_{cold}/T_{hot}$

Chap 13.

Heat Energy

Specific heat C = heat to raise mass m by temperature change ΔT .

 $C = (\Delta Q)/(m\Delta T)$ or $\Delta Q = mC\Delta T$

Units of C are J/kg K

Latent heats

Heat to melt a solid of mass m

 $\Delta Q = mL_M$ L_M is latent heat of melting (J/kg)

Heat to evaporate a liquid of mass m

 $\Delta Q=mL_F$ L_F is latent heat of evaporation

Chap. 12

Temperature and Matter

Absolute temperature scale, Kelvin = Celsius + 273

Ideal Gas Law

$$PV = nRT$$

P in Pascals, V in m³, T in Kelvin

n= number of kilomoles R= gas constant =8314 J/kmole/K

ALSO PV = (m/M) RT m= mass of gas, M=molecular weight (kmole)

Kinetic theory of gases

(1/2) mV² = (3/2) kT v = mean sped of a molecule of mass m
$$k= Boltzmann's \ constant = 1.38 * 10^{-27} \ J/\ K$$

Thermal expansion

Change in length for change in temperature $\Delta \mathsf{T}$

 $\Delta L = \alpha L \Delta T$ α is coefficient of linear expansion