Lectures 21-23

Chap. 11

Properties of Materials

Classes of Materials:

Solids --- fixed shape can be crystals (simple geometrical shape) or amorphous (glasses, plastics)

Liquids -- can flow, fill shape of container BUT incompressible
Gases --- compressible otherwise like liquids

Solids

- Can stretch

■ $\Delta \mathrm{L}$ proportional to F up to elastic limit (Hooke's law)

Stress $=\mathrm{F} / \mathrm{A}(\mathrm{N} / \mathrm{m} 2$ OR Pascals abrrev. $=\mathrm{Pa})$

Strain =DL/L

Modulus of Elasticity $=$ Stress/strain

YOUNG's Modulus $\quad Y=\frac{F / A}{\Delta L / L} \quad$ typically a high number $\sim 100 \mathrm{GPa}$

BULK Modulus

Squeezing a 3D volume V

V to $V+\Delta V$

Stress $=P$
Strain $=-\Delta V / V$
BULK Modulus $B=\frac{P}{-\Delta V / V}$

SHEAR

Shear Modulus $B=\frac{F / A}{\Phi}$

SHEAR

Pressure at depth h in fluid

$$
\begin{aligned}
& P=\rho g h \\
& \rho=\text { density of fluid }
\end{aligned}
$$

Motion of fluids in pipes

Conservation of mass (fluid incompressible) and conservation of energy
$\frac{1}{2} \rho v_{1}^{2}+\rho g h_{1}+P_{1}=\frac{1}{2} \rho v_{2}{ }^{2}+\rho g h_{2}+P_{2}$
(Bernouillis's eq'n)

At point 1 height h1 above reference level
V_{1} is velocity and P_{1} is pressure

Buoyancy

Archimede's Principle
$\mathrm{F}_{\mathrm{B}}=$ weight of fluid displaced $=\mathrm{W}_{1}-\mathrm{W}_{2}$

MOMENTUM

Collision

```
Impulse I=Ft
F=ma=m( }\mp@subsup{V}{f}{\prime}-\mp@subsup{V}{l}{})/
```

Hence:

$$
I=m V_{f}-m V_{i}
$$

Momentum $\mathbf{P}=\mathbf{m V}$

NO impulse, no force, no collision NO CHANGE IN MOMENTUM
called conservation of momentum

Example:

Therefore, after jump $\mathbf{P}=0$
$\mathbf{P}_{\text {after }}=\mathbf{P}_{\text {Man }}+\mathbf{P}_{\text {boat }}$
Therefore $P_{\text {boat }}=-P_{\text {man }}=-400=M_{\text {boat }} V_{\text {boat }}=60 V_{\text {boat }}$
THUS $\mathrm{V}_{\text {boat }}=\mathbf{- 6 . 7} \mathrm{m} / \mathrm{s}$ (minus sign means goes backward)

ELASTIC COLLISIONS

Momentum initial = Momentum after

$\mathbf{M}_{1} \mathbf{V}_{\mathbf{1}}^{\text {Init }}+\mathbf{M}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}^{\text {Init }}=\mathbf{M}_{\mathbf{1}} \mathbf{V}_{\mathbf{1}}^{\text {after }}+\mathbf{M}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}^{\text {after }}$

No energy losses, therefore
$(1 / 2) M_{1}\left(V_{1}{ }^{\text {Init }}\right)^{\mathbf{2}}+(1 / 2) M_{2}\left(V_{2}^{\text {Init }}\right) \mathbf{2}=(1 / 2) M_{1}\left(V_{1}{ }^{\text {after }}\right)^{\mathbf{2}}+(1 / 2) M_{2}\left(V_{2}^{\text {after }}\right)^{\mathbf{2}}$

USE both equations can show;
$\mathbf{V}_{1}^{\text {Init }}+\mathbf{V}_{1}^{\text {after }}=\mathbf{V}_{2}^{\text {Init }}+\mathbf{V}_{2}^{\text {after }}$
USED often

Collisions in TWO Dimensions

P total in X direction is constant

AND
P total in Y direction is constant

Chapter 9

ANGULAR MEASUREMENTS

In time t
sweep out θ

$\theta=s / r$
θ is in RADIANS
1 Revolution = 360 degrees $=2 \pi$ radians

ANGULAR VELOCITY

$\omega=\theta / \mathrm{t}$
radians / sec.

TANGENTIAL VELOCITY

$V_{T}=r \omega$
r must be in radians /sec.
V_{T} is in m / s if r is in meters

CENTRIPETAL ACCELERATION

Tangential velocity is CONSTANT
in magnitude
BUT direction changes by ΔV
THEREFORE there is an
 acceleration toward the center

$$
a_{C}=V_{T}^{2} / r
$$

PLANETS

Constant angular speed (approximately)

Centripetal acceleration $=V_{T}{ }^{2} / r$
Provided by gravitational force
$\mathrm{F}=\mathrm{GMm} / \mathrm{r}^{2}$

HENCE

$$
V_{T}=\sqrt{ }(G M / r)
$$

PHY 2004 LECTURES 10-12

EQUILIBRIUM Chapter 8.

In figure below,

Equilibrium requires
For horizontal direction;

$$
\mathrm{T} 1=\mathrm{T} 2 \cos 53=0.6 \mathrm{~T} 2
$$

For vertical direction;

$$
\mathrm{T} 2 \sin 53=200, \quad \text { OR } \quad 0.8 \mathrm{~T} 2=200
$$

Solve T1= 150 N

Turning effect
Measure of turning or twisting (rotational or angular) motion

Torques must cancel

$$
\begin{aligned}
& \text { Torque } \\
& \begin{aligned}
\tau & =d * \text { perpendicular component of force to axis } d \\
& =d F
\end{aligned}
\end{aligned}
$$

Has a sense of rotation about P: clockwise (+) or anticlockwise (-)

Equilibrium:

Sum of all torques about ANY point in system must $=0$

E.g seesaw

a1
a2

W1

Sum of torques $=0$
W1 *a1 +W2*a2 =0

PHY 2004, Lectures 8-9

ENERGY, WORK
Work

$$
\begin{aligned}
& \mathrm{W}=\mathrm{FxD} . \\
& \mathrm{D}=\text { distance in the same direction as the force }
\end{aligned}
$$

Work by gravity
F=mg If move against gravity do positive work
W =mgh

This energy is stored, e.g placing a mass on a shelf at height h

Can recover this POTENTIAL energy
Knock mass off shelf. Object gains KINETIC energy
Use $V_{F}{ }^{2}=2 g h$
to show final kinetic energy $K=(1 / 2) \mathrm{mV}^{2}$

LECTURE 7 PHY 2004

FRICTION

Force of friction proportional to force NORMAL to motion

$\mu=$ coefficient of friction
$\mathrm{f}=\mu \mathrm{W}$

Rubber on concrete $\mu \approx 0.8$
Steel on steel 0.07
Skater on ice 0.02

Static versus sliding friction

Object does not move until
$F_{\text {applied }}$ overcomes static friction

Inclined plane

Force normal to plane
$\mathrm{F}=\mathrm{W} \cos \theta$

Friction
$\mathbf{f}=\mu \mathbf{W} \boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$

SLIDES when $W \sin \theta=f$

OR

$$
\tan \theta=\mu
$$

LECTURE 6 PHY 2004

Gravity

Force

$$
\begin{aligned}
F=\frac{G m_{1} m_{2}}{R^{2}} & \mathbf{G} \text { is universal constant } \\
& \text { (same everywhere) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Weight } \\
& F=m_{1} g=\frac{G m_{1} m_{2}}{R^{2}}
\end{aligned}
$$

Thus

$$
g=\frac{G m_{2}}{R^{2}}
$$

Problem 3.41
$g(\operatorname{moon})=1.6 \mathrm{~m} / \mathrm{s} 2$

Weight on moon $=1.6(4)=6.4 \mathrm{~N}$

Weight on Earth $=9.8(4) 39.2$ N

LECTURE 5 PHY 2004

Chap. 2 \#43

$\mathrm{Y}=\mathrm{V}_{\mathrm{i}} \mathrm{t}+(1 / 2) \mathrm{at}^{2}$
At end $Y=-30 \mathrm{~m}$ (below origin)
acceleration $\mathrm{a}=-\mathrm{g}=-9.8 \mathrm{~m} / \mathrm{s} 2$
Put in Eq'n (1)
$-30=V_{i} 3-(1 / 2)(9.8) 9$

$$
V_{i}=(4.9) 3=4.7 \mathrm{~m} / \mathrm{s}
$$

Chap 2. \# 35

Red speed constant $=\mathbf{9 0} \mathrm{km} / \mathrm{h}=\mathbf{2 5} \mathrm{m} / \mathrm{s}$
Blue does not start until 5 seconds after red passes, $D=(5)(250)=125 \mathrm{~m}$ Need to find t , then calculate distances

NOTE: $X_{\text {blue }}=X_{\text {red }}+\mathbf{1 2 5}$ Eq'n (1)

$$
\begin{aligned}
& X_{\text {red }}=25 t \\
& X_{\text {blue }}=(1 / 2) a t^{2}=(\mathbf{1} / 2) 5 t^{2}=2.5 t^{2}
\end{aligned}
$$

Use Eq'n (1)
$2.5 \mathrm{t}^{\mathbf{2}}=\mathbf{2 5 t + 1 2 5}$, or
$t^{2}=10 t+50$,
or $\mathrm{t}=5 \pm \sqrt{ }(75)$ (-ve sign non-physical) $=5+8.7=13.7 \mathrm{~s}$
$X_{\text {red }}=25 \mathrm{t}=341.5 \mathrm{~m}$
$X_{\text {blue }}=466.5 \mathrm{~m}$

LECTURE 3 PHY 2004

Gravity constant at Earth's surface (always "down")

Typical problem

Throw ball up at $20 \mathrm{~m} / \mathrm{s}$. How high will it go?
$V_{F}{ }^{2}=V_{i}^{2}+2 a H$
$a=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ (gravity DOWN deceleration)
$V_{F}=0$

$$
\begin{gathered}
0=202-2(9.8) \mathrm{H} \\
H=400 / 19.6=20.4 \mathrm{~m}
\end{gathered}
$$

Projectile Motion

Initial velocity V at angle θ to horizontal

Calculate R

Calculate θ

LECTURE 4 PHY 2004

Continuing the above problem from lecture 3.

Key point to remember, the \mathbf{x} and y motions are independent.
Resolve V into x and y motions
$\mathrm{V}_{\mathrm{x}}=\mathrm{V}_{0} \cos \theta$
$\mathrm{V}_{\mathrm{Y}}=\mathrm{V}_{0} \sin \theta$

Consider vertical motion. $\mathrm{V}_{\mathrm{y}}=\mathbf{0}$ at top where $\mathrm{y}=\mathrm{H}$

$$
\mathrm{V}_{\mathrm{avg}}(\mathrm{y} \text {-direction })=(1 / 2) \mathrm{V}_{0} \sin \theta
$$

At top use $\mathrm{V}_{\mathrm{F}}=\mathrm{V}_{\mathrm{i}}+$ at, or $0=\mathrm{V}_{0} \sin \theta-\mathrm{gt}$ which gives $\mathrm{t}=\left(\mathrm{V}_{0} \sin \theta\right) / \mathrm{g}$
$\mathrm{H}=\mathrm{V}_{\mathrm{avg}} . \mathrm{t}=(1 / 2) \mathrm{V}_{0} \sin \theta .\left(\mathrm{V}_{0} \sin \theta / \mathrm{g}\right) \quad$ No need to memorize this formulae, just remember simple red equations
$R=($ total time $) V_{x}=2 t V_{0} \cos \theta$

PHY 2004: Applied Physics in our world today

Neil S. Sullivan 7 all 2010

NPB Rm 2235
Textbook:
Email: sullivan@phys.ufl.edu
Tel. 352-846-3137
Class meets: M W F (Period 8) 3:00-3:50 PM
NPB 1001
Office Hours: M W F (Period 4) 10:40 - 11:30 AM NPB 2235

F. Bueche \& D. Wallach (4 ${ }^{\text {th }}$ ed., J. Wiley \& Sons, 1994)

PHY 2004

GENERAL POINTS

Reference materials, important dates: CHECK course web site

Course Goals

General introduction to use of physics in everyday life
Simple applications, useful in professional careers
Emphasis on principles (not lengthy calculations)

Exams:

Some problems in exams will be from problems
discussed in class and in in-class quizzes (clicker responses)
Make-up exams (date TBD) Need SIGNED documentation from Dr. coach teacher etc.

HITT:

Have remotes by September 7 (to have in-class quizzes recorded)

PHY 2004 Exams Fall 2010

All here in NPB 1001

Mid-term: Best two 30 points each

1. Sept. $20 \quad$ Pd 8 (3-3:50 PM)
2. Oct. 20 Pd 8 (3-3:50 PM)
3. Nov. 19 Pd 8 (3-3:50 PM)
4.

Final
Dec. 13 (3-5 PM) 40 points
unless third midterm better than final in which case final $=30$ points and other mid-term=10 points)

In class questions = bonus of 5 \%

LECTURE 2 PHY 2004

MOTION

Speed (scalar) distance per unit time meters/sec

Velocity (vector) speed + direction

Direction different at different points

Average velocity = displacement vector $A B /$ time

Acceleration (vector)

Rate of change of velocity

$a=\left(V_{F}-V_{1}\right) / t \quad$ OR $\quad V_{F}=V_{1}+a t$

Uniform acceleration (typical in this class)
e.g. gravity, rockets
$\mathrm{X}=\mathrm{V}_{\text {avg }} \mathrm{t}$ where $\mathrm{V}_{\text {avg }}$ is average velocity $\mathrm{V}_{\text {avg }}=\left(\mathrm{V}_{\mathrm{I}}+\mathrm{V}_{\mathrm{F}}\right) / \mathbf{2}$

THUS $X=\left(V_{F}{ }^{2}-V_{1}{ }^{2} / 2 a\right) \quad$ OR $\quad V_{F}{ }^{2}=V_{1}{ }^{2}+2 a X$

ALSO $X=V_{\text {avg }} t \quad$ OR $\quad X=V_{i} t+(1 / 2) a t^{2}$

LECTURE 3 PHY 2004

Gravity constant at Earth's surface (always "down")

Typical problem

Throw ball up at $20 \mathrm{~m} / \mathrm{s}$. How high will it go?
$V_{F}{ }^{2}=V_{i}^{2}+2 a H$
$a=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ (gravity DOWN deceleration)
$V_{F}=0$

$$
\begin{gathered}
0=202-2(9.8) \mathrm{H} \\
H=400 / 19.6=20.4 \mathrm{~m}
\end{gathered}
$$

Projectile Motion

Initial velocity V at angle θ to horizontal

Calculate R

Calculate θ

LECTURE 4 PHY 2004

Continuing the above problem from lecture 3.

Key point to remember, the \mathbf{x} and y motions are independent.
Resolve V into x and y motions
$\mathrm{V}_{\mathrm{x}}=\mathrm{V}_{0} \cos \theta$
$\mathrm{V}_{\mathrm{Y}}=\mathrm{V}_{0} \sin \theta$

Consider vertical motion. $\mathrm{V}_{\mathrm{y}}=\mathbf{0}$ at top where $\mathrm{y}=\mathrm{H}$

$$
\mathrm{V}_{\mathrm{avg}}(\mathrm{y} \text {-direction })=(1 / 2) \mathrm{V}_{0} \sin \theta
$$

At top use $\mathrm{V}_{\mathrm{F}}=\mathrm{V}_{\mathrm{i}}+$ at, or $0=\mathrm{V}_{0} \sin \theta-\mathrm{gt}$ which gives $\mathrm{t}=\left(\mathrm{V}_{0} \sin \theta\right) / \mathrm{g}$
$\mathrm{H}=\mathrm{V}_{\mathrm{avg}} . \mathrm{t}=(1 / 2) \mathrm{V}_{0} \sin \theta .\left(\mathrm{V}_{0} \sin \theta / \mathrm{g}\right) \quad$ No need to memorize this formulae, just remember simple red equations
$R=($ total time $) V_{x}=2 t V_{0} \cos \theta$

