77777 | Instructor(s): S. Obukho | v | | | | | |--|--|--|---|---|--| | PHY 2004 | | PHYSICS DEP
FINAL I | | | December 14, 2016 | | Name (print, last first): | | | | | | | On m | y honor, I have neith | er given nor recei | ved unauthorized as | id on this examination | b. | | Code your test nu Code your name on answer sheet. Print your name on Do all scratch work test, this exam print Blacken the circle make any stray mar The answers are | this sheet and sign it
anywhere on this exa-
tout is to be turned in
e of your intended
ks or some answers in
rounded off. Chosted answer is corn | te also. In that you like. On. No credit will be answer completed as the closest. | circle your answer given without be tely, using a #2 incorrect. | ers on the test form
oth answer sheet and p
2 pencil or blue or | e 5-digit number). TD number on your n. At the end of the printout. black ink. Do not | | Specific he | eat of water: $c = 10$ | cal/g·°C g | $= 9.80 \text{ m/s}^2$ | $G = 6.67 \times 10^{-11} \text{m}^3$ | $/\mathrm{kg}\cdot\mathrm{s}^2$ | | v | | - ' | of air 1.20 kg/m^3 | | | | Heat of fusi | ů . | , - | | water: $H_v = 539 \text{ ca}$ | al/g | | | Univers | sal gas constant: | R = 8.314 J/mole | e K | | | 2. Two charges that ar | te separated by one numeters, the force on (2) 1 N | neter exert 1-N for | ces on each other. | | - | | 3. Superconductors are (1) absence of electric (2) high electric resi | ic resistance. | | | | | | (3) low electric resis(4) bright colors.(5) low cost. | tance. | | | | | | 4. An uncharged pith l | oall is suspended by a | nylon fiber. Whe | n a positively-charg | ged rubber rod is brou | ght nearby, the pith | | (1) moves toward th | e rod. (2) moves | away from the roo | d. (3) is unaffect | cted. (4) none of the | nese. (5) — | | 5. Electric potential, n | neasured in volts, is t | he ratio of electric | energy to the amo | ount of electric | | | (1) charge. | (2) current. | (3) voltage. | (4) resistan | ce. (5) none | of these. | 6. If two copper wires of the same length have different thickness, then the thicker wire has $(1) \ {\rm less \ resistance}. \qquad \qquad (2) \ {\rm more \ resistance}. \qquad \qquad (3) \ {\rm both \ the \ same} \qquad \qquad (4) \ -- \qquad \qquad (5) \ --$ 7. One kilowatt-hour is a unit of | | (1) energy. | (2) voltage. | (3) resistance. | (4) power. | (5) current. | | | |-----|--|---|----------------------------|----------------------|---------------------------|-------------|--| | 8. | 8. A 60-W and a 100-W light bulb are connected in series to a 120-V outlet. Which bulb draws more current? | | | | | | | | | (1) both the same | e (2) 100-W k | oulb (3) 60-V | V bulb (4 | 4) — (5) — | | | | 9. | A heater draws 2 running the heater | | 110-V line. If the elect | ric power costs 20 c | ents per kilowatt hour, t | the cost of | | | | (1) \$4.40. | (2) \$11.00. | (3) \$0.44. | (4) \$1.10. | (5) none of these | | | | 10. | As more lamps as | re connected in a series of | circuit, the overall curre | nt in the power sour | rce | | | | | (1) decreases. | (2) increases. | (3) stays the s | same. (4 |) — (5) — | | | | 11. | (1) none of these | esistance of any series of
an the resistance of the local part and | | | | | | | 12. | (4) usually half the value of the lowest resistor. (5) — 2. Magnetic field lines about a current-carrying wire A. circle the wire in closed loops. B. extend radially from the wire. | | | | | | | | | (1) A only | (2) B only | (3) both A and B | (4) — | (5) neither of these | | | | | 13. The direction of the force exerted on a moving charge in a magnetic field is (1) at right angles to the direction of the motion. (2) in the direction of the motion. (3) opposite its motion. (4) — (5) — | | | | | | | | 14. | If a compass is a direction | moved from the Norther | n Hemisphere to the S | outhern Hemispher | e, its magnetic needle w | rill change | | | | (1) hardly at all. | (2) by 90 degrees. | (3) by 180 degree | s. (4) random | aly and rapidly. (5) | _ | | | 15. | When a magnet induced is | is moved to and fro in a | wire coil, voltage is ind | uced. If the coil ha | s twice as many loops, t | he voltage | | | | (1) half. | (2) four times as much. | (3) the same. | (4) twice. | (5) none of these | | | | 16. | An efficient step-u | ip transformer boosts | | | | | | | |-----|--|--|---------------|---------------------------------|---------------|----------------|---------------|-------------| | | | A. voltage. | | B. power. | | C. energy | | | | | (1) A only | (2) B only | (3) C onl | у | (4) A, B, | and C | (5) non | e of these | | 17. | A step-up transfor | rmer steps up voltage l | by ten times | . If voltage | e input is 12 | 20 volts, volt | age output i | S | | | (1) 1200 V. | (2) 120 V. | (3) 60 | V. | (4) 1200 | 0 V. | (5) none | of these. | | 18. | If you drop a bar | If you drop a bar magnet in a vertical copper pipe it will fall slowly because | | | | | | | | | (2) of air resistance | a good conductor of bo | | | | et. | | | | 19. | A hockey puck slie | ding across the ice fina | lly comes to | rest becau | use | | | | | | (1) of friction. | (2) it seeks its proper | and natura | l state. | (3) that's | just the way | it is. (4 | 1) — (5) — | | 20. | A sheet of paper of | can be quickly jerked b | eneath a co | ntainer of | milk withou | it toppling, v | which best de | emonstrates | | | (1) inertia. | (2) net force. | (3) the diffe | rence betw | reen force a | nd mass. | (4) — | (5) — | | 21. | Which of the following is a vector quantity? | | | | | | | | | | (1) none of these | (2) volum | e | (3) area | A | (4) mass | | (5) — | | 22. | A vehicle undergoes acceleration when it | | | | | | | | | | A. changes its direction. | | tion. | B. loses speed. C. loses speed. | | s speed. | | | | | (1) A, B, and C | (2) A only | | (3) B only | 7 | (4) C only | | (5) — | | 23. | A freely-falling wa | atermelon falls with con | nstant | | | | | | | | (1) acceleration. | (2) speed. | (3) velocity | y. (4 | 1) distances | each success | ive second. | (5) — | | 24. | A 1-kg mass at th | e Earth's surface weigh | hs | | | | | | | | (1) 10 N. | (2) 1 N. | (3) 12 N | 1. | (4) 5 N | Г. | (5) none o | of these | | 25. | The speed of a 4-l | kg ball with a moment | um of 12 kg | m/s is | | | | | | | (1) 3 m/s. | (2) 4 m/s. | (3) 48 m | n/s. | (4) 12 | m/s. | (5) none | e of these | | 26. | A bungee jumper attacoming to a halt, the | ains a speed of 30 m _/
jumper's average de | s just as the bungee concepted | ord begins to stretch. | If the period of stretch | is 2 s while | | | |-----|---|--|--|-------------------------|---------------------------|--------------|--|--| | | $(1) \ 1.5 g$ | (2) $0.5 g$ | (3) 2g | (4) g | (5) — | | | | | 27. | 7. The work done in pushing a TV set a distance of 2 m with an average force of 20 N is | | | | | | | | | | (1) 40 J. | (2) 800 J. | (3) 2 J. | (4) 20 J. | (5) 10 J. | | | | | 28. | A 2-kg ball is held 4 | m above the ground | . Relative to the groun | nd its potential energ | y is | | | | | | (1) 80 J. | (2) 8 J. | (3) 32 J. | (4) 6 J. | (5) more than 80 J. | | | | | 29. | A motorcycle moving at 150 km/h? | at 50 km/h skids 10 |) m with locked brakes | s. How far will it skid | with locked brakes whe | en traveling | | | | | (1) 90 m | (2) 30 m | (3) 50 m | (4) 10 m | (5) — | | | | | 30. | The circumference of | a bicycle wheel is 2 | meters. If it rotates a | t 1 revolution per sec | ond, then its linear spee | ed is | | | | | (1) 2 m/s. | (2) 6.28 m/s. | (3) 3.14 m/s. | (4) 1 m/s. | (5) 3 m/s. | | | | | 31. | A ring and a disk bot (1) ring (2) depen | th at rest roll down a | | rolls slower? | l (5) need more infor | mation | | | | 32. | 2. The force of Earth's gravity on a capsule in space increases as it comes closer. When the capsule moves to half its distance, the force toward Earth is then | | | | | | | | | | (1) four times greater | c. (2) twice. | (3) three times | greater. (4) n | one of these. (5) | _ | | | | 33. | 33. If you throw a stone horizontally from the top of a cliff, one second after leaving your hand its vertical distance below the top of the cliff is | | | | | | | | | | (1) 5 m. | (2) 10 m. | (3) 15 m. | (4) — | (5) — | | | | | 34. | If an elephant grows | proportionally to tw | ice its height, the area | of its ears would be | about | | | | | | (1) four times more. | (2) six times m | nore. (3) twice. | (4) eight times n | nore. (5) none of the | nese. | | | | 35. | A completely submer | · · · · · · · · · · · · · · · · · · · | splaces its own B. volume of flu | id C donor | ty of fluid. | | | | | | | weight of fluid. 2) A (3 | | all of these | (5) none of these | | | | | | (1) B (2) | 2) A (3 |) C (4) a | all of these | (5) none of these | | | | | | • • | | | | | | |--|---|---|--|---|-------------------------|----------| | 36. | If a weighted a | air-filled balloon s | sinks in deep water, it will | | | | | | (1) be acted of
(2) likely burs
(3) likely sink
(4) none of the
(5) — | t if water pressur
to an equilibrium | sly decreasing buoyant force
e is great enough.
I level before reaching bott | ce.
com. | | | | 37. | When a suction | on cup sticks to a | wall it is | | | | | | A | . pulled to the wa | all by the vacuum. | B. pushed to the wall by the atmosphere. | | | | | (1) B | (2) A | (3) both A and B | (4) neither of the | se (5) — | | | 38. | | of wood and a sn
has the greater | | ghing scales both register 1 | ton. Taking buoyancy of | air into | | | (1) wood | (2) iron | (3) both have the same r | mass. (4) need more | information (5) — | | | 39. | A substance th | nat heats up relat | cively slowly has a | | | | | A. low specific heat capacity. B. high specific heat capacity. | | | | | | | | | (1) B | (2) A | (3) either of these | (4) neither of the | se (5) — | | | 40. | The ideal effic | iency for a heat e | ngine operating between t | he temperatures 2700 K and | l 300 K is | | | | (1) 80%. | (2) 24%. | (3) 89%. | (4) 10%. | (5) none of these |