Value of a kilowatt-hour of electricity

"Power" is a technical word in physics that refers to the rate at which energy is used. A common unit of power is a "Watt" which is defined as

$$
1 \text { Watt }=1 \mathrm{Joule} / \mathrm{sec}
$$

Leaving a 100 Watt light bulb burning for one hour uses up 100 Watt-hours of electrical energy, and

$$
100 \text { Watt-hr }=100 \times 3,600 \mathrm{sec} \times 1 \text { Joule } / \mathrm{sec}=360,000 \text { Joule } .
$$

Also, 1,000 Watt-hours is 1 Kilowatt-hour $=1 \mathrm{kwh}$ of electrical energy.
If I were given the task of lifting $360,0001 \mathrm{~kg}$ blocks from the floor to the top of a table 1 m above the floor (perhaps in one hour), then this task would require precisely $3.6 \times 10^{6} \mathrm{~J}$ which is equivalent to 1 kwh of energy.

As the cost of 1 kwh is between 10 and 20 cents, I would make a sincere effort to find some method to use electrical energy to do the work for me.

