77777

Instructor(s): Detweiler

PHY 2020		PHYSICS DE Test			October 5, 20	15
Name (print, last f	first):		Sign	ature:		
	On my honor, I have n	neither given nor rece	ived unauthor	rized aid on this	examination.	
 Code your to Code your nat answer sheet. Print your nat (3) Do all scratch test, this exan (4) Blacken the make any stra (5) The answers believe that 	me on your answer sheet me on this sheet and sig work anywhere on this in printout is to be turn circle of your inten- by marks or some answer	gn it also. exam that you like. ed in. No credit will ded answer complers may be counted as Choose the closest	Circle your be given with etely, using incorrect.	answers on the answer a #2 pencil of	neet for the 5-digit number ode your UFID number on you e test form. At the end of t	he ot
and your UF		you print and sign	your name at	the top of your	, and also bubble in your nartest, and will you hand in t is "Yes".	
(1) Yes	(2) No	(3) X		(4) X	(5) X	
	ng in a car at a steady is				ad, but just as Alice passes h Alice?	ım
(1) 4 s	(2) 2 s	(3) 8s		(4) 6 s	(5) 12 s	
3. How fast is Bo (1) 20 m/s	ob moving when he pas $(2) 10 \mathrm{m/s}$		S	(4) 5 m/s	$(5) 40 \mathrm{m/s}$	
4. How fast is Al	lice moving when bob p	passes her?				
$(1)~10\mathrm{m/s}$	$(2)~20\mathrm{m/s}$	$(3) 30 \mathrm{m/s}$	5	$(4) 5 \mathrm{m/s}$	$(5) 40 \mathrm{m/s}$	
5. A 5 N force pu	ishes a book a horizont	al distance of 4 m. H	Iow much wo	rk does the force	do?	
(1) 20 J	(2) 0 J	$(3)\ 10\mathrm{J}$	(4) 5 J	(5) Can	not be determined.	
6. The weight of	a book is 4 N. How m	uch work is required	to lift the bo	ok $5\mathrm{m}$ into the a	ir?	
$(1)~20\mathrm{J}$	(2) 0 J	$(3)\ 10\mathrm{J}$	(4) 5 J	(5) Can	not be determined.	
	the top of a 20 m high to hit the ground?	cliff and kicks a soc	cer ball horize	ontally with a sp	eed of 10 m/s. How long will	it
(1) 2 s	$(2) \ 3 \mathrm{s}$	(3) 0.5 s	(4	4) $\sqrt{2}$ s	$(5) \sqrt{3} s$	
8. How far from	the base of the cliff wil	l the ball land?				
$(1) 20 \mathrm{m}$	$(2)\ 10\mathrm{m}$	$(3) 25 \mathrm{m}$		(4) 4 m	(5) 30 m	

9.	Two carts, one of mass $2\mathrm{kg}$ and the other a mass $4\mathrm{kg}$, are held on a frictionless track with a spring compressed between them. When the two carts are simultaneously released, the $2\mathrm{kg}$ mass moves with a speed of $2\mathrm{m/s}$. How fast is the $4\mathrm{kg}$ mass moving in the opposite direction?							
	$(1) 1 \mathrm{m/s}$	$(2) 2 \mathrm{m/s}$	$(3) 3 \mathrm{m/s}$	$(4) 4 \mathrm{m/s}$	$(5) 5 \mathrm{m/s}$			
10.	them. When the two ca	wo carts, one of mass 4kg and the other mass 2kg , are held on a frictionless track with a spring compressed between em. When the two carts are simultaneously released, the 4kg mass moves with a speed of 1m/s . How fast is the 2kg ass moving in the opposite direction?						
	$(1) 2 \mathrm{m/s}$	$(2) 1 \mathrm{m/s}$	$(3) 3 \mathrm{m/s}$	$(4) 4 \mathrm{m/s}$	$(5) 5 \mathrm{m/s}$			
11.	A 2 kg block is sliding (on a frictionless surface) with a speed of 9 m/s when it collides with a second block of mass 4kg which is initially at rest. The two blocks stick together in the collision. What is the speed of the combined blocks after the collision?							
	$(1) 3 \mathrm{m/s}$	$(2) 2 \mathrm{m/s}$	$(3) 0.5 \mathrm{m/s}$	$(4) 4 \mathrm{m/s}$	$(5) 6 \mathrm{m/s}$			
12.	After the collision, how	v much kinetic energy d	id the combined object	have?				
	(1) 27 J	(2) 81 J	(3) 36 J	(4) 18 J	(5) 45 J			
13.	8. How much work do you do if you lift an object of mass $10\mathrm{kg}$ off the ground to a height of $2\mathrm{m}$?							
	(1) 200 J	$(2)\ 100\mathrm{J}$	(3) 400 J	(4) 20 J	(5) None			
14.	14. How much work do you do if you very slowly carry this mass at the same height (2 m) to a new location 20 m away?							
	(1) None	$(2)\ 100\mathrm{J}$	(3) 400 J	(4) 20 J	$(5)\ 200\mathrm{J}$			
15.	15. If you then drop the object and it falls to the ground, how fast will it be moving just before it hits the gound?							
	$(1) 2\sqrt{10}\mathrm{m/s}$	$(2) \ 2\sqrt{3} \mathrm{m/s}$	$(3) 10\sqrt{3}\mathrm{m/s}$	$(4) \ 3\sqrt{2} \mathrm{m/s}$	$(5) 10 \mathrm{m/s}$			
16.					e has a mass of 1 kg and it is the speed of the 2 kg			
	$(1)~20\mathrm{m/s}$	$(2) 10 \mathrm{m/s}$	$(3)~40\mathrm{m/s}$	$(4) 30 \mathrm{m/s}$	(5) 50 m/s			
17.	What is the kinetic ene	ergy of the 1 kg mass af	ter the explosion?					
	(1) 800 J	(2) 400 J	(3) 200 J	(4) 1600 J	(5) 600 J			
18.	What is the kinetic end	ergy of the 2 kg mass af	ter the explosion?					
	(1) 400 J	$(2)~800\mathrm{J}$	(3) 200 J	$(4)\ 1600\mathrm{J}$	(5) 600 J			

19. A 10 kg block is held at the top of a frictionless slide	. The top of the slide is $5\mathrm{m}$ above the ground. The length of the
slide is 8 m. After the block is released, how fast will	it be moving when it reaches the bottom of the slide?

 $(1) 10 \,\mathrm{m/s}$

 $(2) 5 \,\mathrm{m/s}$

 $(3) 2 \,\mathrm{m/s}$

 $(4) 20 \,\mathrm{m/s}$

 $(5) 15 \,\mathrm{m/s}$

20. When the block was only halfway down the slide, how fast was it moving? Choose the number closest to the actual value!

 $(1) 7 \, \text{m/s}$

 $(2) 3 \,\mathrm{m/s}$

 $(3) 5 \,\mathrm{m/s}$

 $(4) 2 \,\mathrm{m/s}$

 $(5) 9 \, \text{m/s}$

THE FOLLOWING QUESTIONS, NUMBERED IN THE ORDER OF THEIR APPEARANCE ON THE ABOVE LIST, HAVE BEEN FLAGGED AS CONTINUATION QUESTIONS: 3 4 6 8 12 14 15 17 18 20 FOLLOWING GROUPS OF QUESTIONS WILL BE SELECTED AS ONE GROUP FROM EACH TYPE TYPE 1

Q# S 9 Q# S 10