Asia - AFP Typhoon Ma-on leaves Japan, leaves six dead, three missing

Sun Oct 10, 3:07 AM ET

Asia - AFP

TOKYO (AFP) - The most powerful typhoon to hit eastern Japan in a decade fizzled out after causing a trail of destruction which left six people dead and three others missing, police and weather officials said.

Typhoon Ma-on slammed into the Tokyo metropolitan area on Saturday, causing floods and mudslides while paralyzing transport systems in the Japanese capital and surrounding areas.

World - AP Asia Strong Earthquake Rattles App Associated Eastern Japan

Wed Oct 6, 2:10 PM ET

💽 MY YI World - AP Asia

By KENJI HALL, Associated Press Writer

TOKYO - An earthquake struck eastern Japan late Wednesday, shaking buildings in Tokyo and other nearby areas, but there were no immediate reports of damage or injuries.

The 5.8-magnitude quake hit at 11:40 p.m. and was centered some 40 miles beneath the earth's surface in Ibaraki state, northeast of the capital, the Meteorological Agency said.

A magnitude-5 earthquake can cause damage to homes if it occurs in a residential area. But the depth of the temblor dampened much of its potentially destructive power.

The temblor, which lasted more than 30 seconds, <u>was most</u> strongly felt in Tsukuba city, in Ibaraki state, and Miyashiro town, in

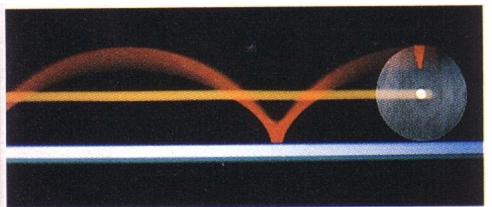
Class 24 - Rotation Chapter 10 - Wednesday October 20th

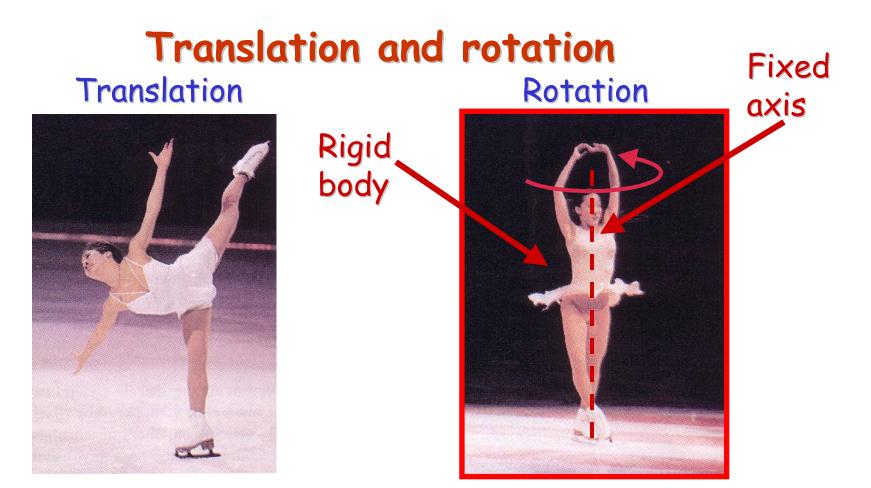
- Definitions
 - Angular displacement, velocity and acceleration
- Vector representation for angular quantities
- Rotation with constant angular acceleration
- •Relating linear and angular variables
- •Kinetic energy of rotation and rotational inertia

Reading: pages 241 thru 255 (chapter 10) in HRW <u>Read and understand the sample problems</u> Assigned problems for Wednesday from chapter 10 (due Sunday October 31st at 11pm): 2, 10, 28, 30, 36, 44, 48, 54, 58, 64, 78, 124

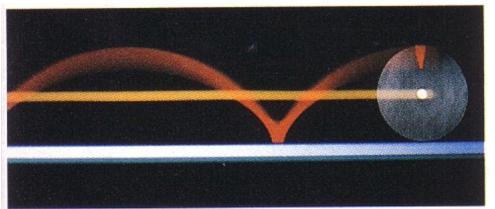
Translation and rotation Translation Rotation

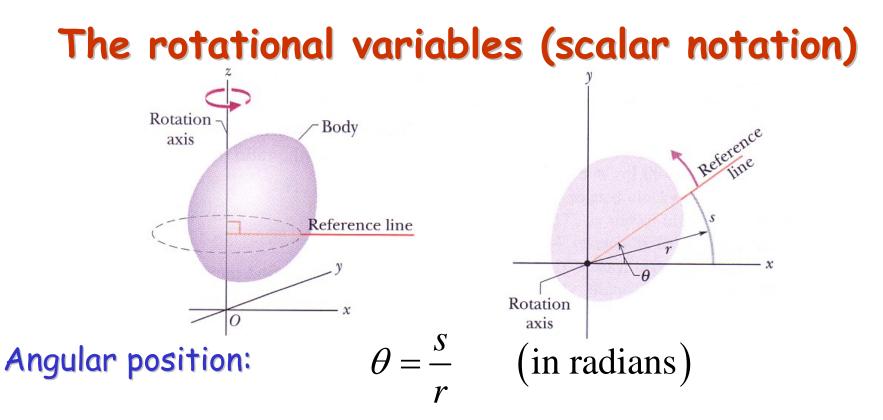
Translation + rotation (Ch. 11)





Translation + rotation (Ch. 12)

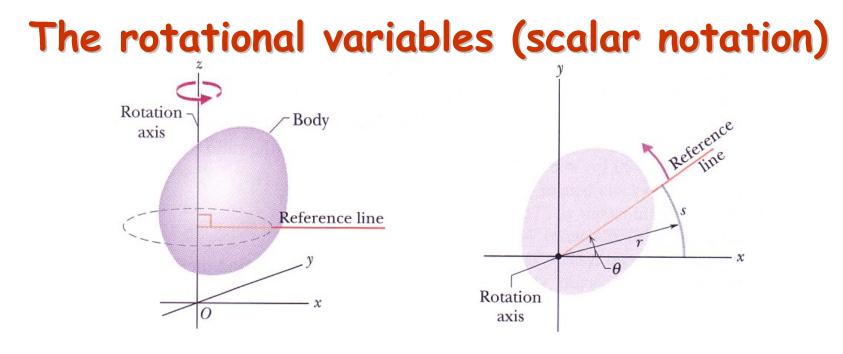




• s is the length of the arc from a reference ($\theta = 0$ rad) line, to the angle θ , at constant radius r.

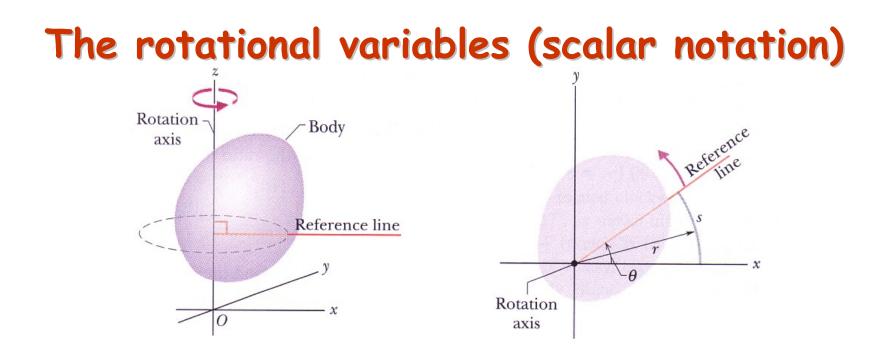
• The angle θ is measured in radians (rad), which is a ratio of arc length to radius; it is, therefore, a dimensionless quantity.

1 revolution =
$$360^{\circ} = \frac{2\pi r}{r} = 2\pi$$
 rad
1 rad = $\frac{360^{\circ}}{2\pi} = 57.3^{\circ} = 0.159$ revolutions



Angular displacement: $\Delta \theta = \theta_2 - \theta_1$

An Angular displacement in the counterclockwise direction about an axis (usually the *z*-axis) is positive, and one in the clockwise direction is negative.

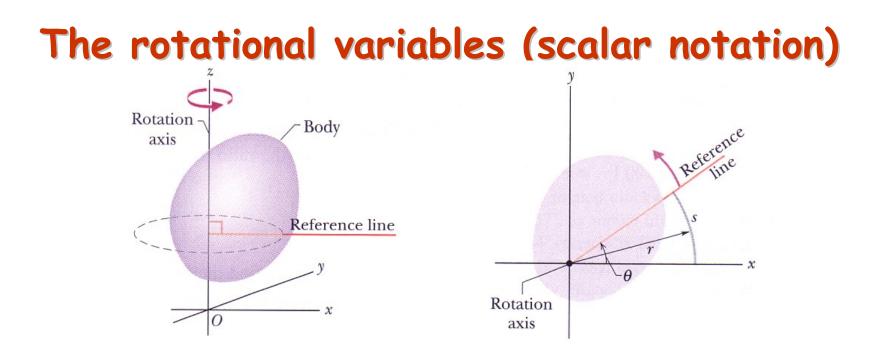


Average angular velocity:

$$\omega_{avg} = \frac{\theta_2 - \theta_1}{t_2 - t_1} = \frac{\Delta \theta}{\Delta t}$$

Instantaneous angular velocity:

$$\omega_{avg} = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}$$



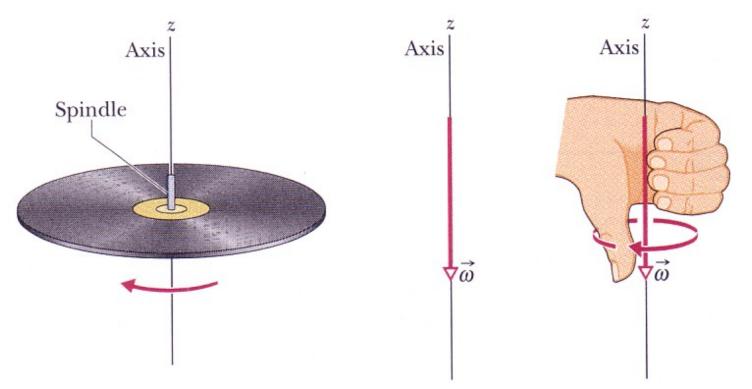
Average angular acceleration:

$$\alpha_{avg} = \frac{\omega_2 - \omega_1}{t_2 - t_1} = \frac{\Delta\omega}{\Delta t}$$

Instantaneous angular acceleration:

$$\alpha_{avg} = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} = \frac{d\omega}{dt}$$

Vector representation of angular quantities



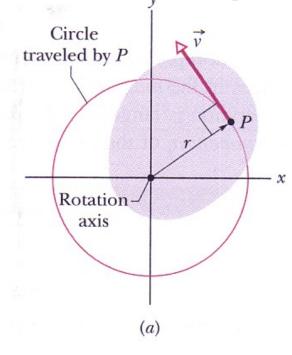
- Angular velocity and acceleration are vector quantities.
- •Angular displacement is not (see section 10-3 in HRW).
- •Right hand rule determines the direction of the vector, and the magnitude is given by ω for velocity, and by α for acceleration.
- •Although displacement does not obey the rules for vectors, one must still specify an axis when giving an angular displacement.

Rotation at constant angular acceleration

TABLE 11-1 Equations of Motion for Constant Linear Acceleration and for Constant Angular Acceleration

Equation Number	Linear Equation		sing iable	Angular Equation $\omega = \omega_0 + \alpha t$	Equation Number (11-12)
(2-11)	$v = v_0 + at$	$x - x_0$	$\theta - \theta_0$		
(2-15)	$x - x_0 = v_0 t + \frac{1}{2}at^2$	ν	ω	$\theta - \theta_0 = \omega_0 t + \frac{1}{2} \alpha t^2$	(11-13)
(2-16)	$v^2 = v_0^2 + 2a(x - x_0)$	t	t	$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$) (11-14)
(2-17)	$x - x_0 = \frac{1}{2}(v_0 + v)t$	а	α	$\theta - \theta_0 = \frac{1}{2}(\omega_0 + \omega)t$	(11-15)
(2-18)	$x - x_0 = vt - \frac{1}{2}at^2$	v ₀	ω_0	$\theta - \theta_0 = \omega t - \frac{1}{2}\alpha t^2$	(11-16)
	Missing variable	Angular Equation $\omega = \omega_0 + \alpha t$			Equation Number (11-12)
	$\theta - \theta_0$				
	ω	$\theta - \theta_0 = \omega_0 t + \frac{1}{2} \alpha t^2$		-2	(11-13)
	t	$\omega^2 = \omega$	$w_0^2 + 2\alpha($	$\theta - \theta_0$)	(11-14)
	α	$\theta - \theta_0 = \frac{1}{2}(\omega_0 + \omega)t$)t	(11-15)
	ω_0	$\theta - \theta_0 = a$	$ot - \frac{1}{2}\alpha t^2$		(11-16)

Relating linear and angular variables



The position: $s = \theta r$ (θ in radians) The speed (differentiate the above): $\frac{ds}{dt} = \frac{d\theta}{dt}r$

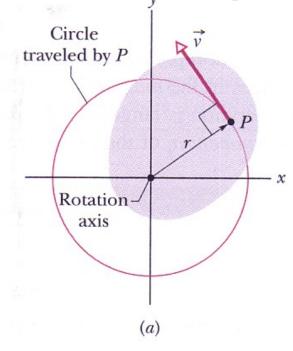
But, ds/dt is the instantaneous speed v.

$$v = \frac{d\theta}{dt}r = \omega r$$

All points on a rigid body have the same ω , so points with greater radius r have greater speed v; the directions are not the same for different points on a rigid body - in fact

$$\vec{v} = \vec{\omega} \times \vec{r}$$

Relating linear and angular variables



The position: $s = \theta r$ (θ in radians) The speed (differentiate the above): $\frac{ds}{dt} = \frac{d\theta}{dt}r$

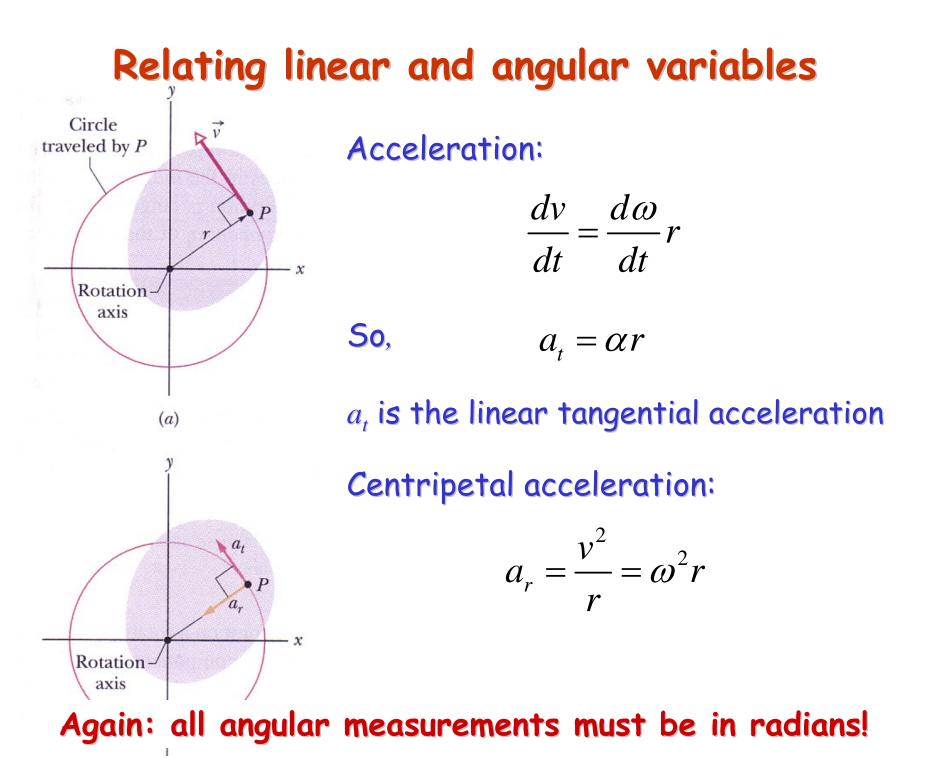
But, ds/dt is the instantaneous speed v.

$$v = \frac{d\theta}{dt}r = \omega r$$

The time period for rotation is:

 $T = \frac{\text{circumference}}{\text{velocity}} = \frac{2\pi r}{v} = \frac{2\pi}{\omega}$ Note: *T* is independent of *r*.

Important: all angular measurements must be in radians!



Kinetic energy of rotation

$$K = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 + \frac{1}{2}m_3v_3^2 + \dots$$
$$= \sum \frac{1}{2}m_iv_i^2$$

where m_i is the mass of the *i*th particle and v_i is its speed. Re-writing this:

$$K = \sum \frac{1}{2} m_i \left(\omega r_i\right)^2 = \frac{1}{2} \left(\sum m_i r_i^2\right) \omega^2$$

The quantity in parentheses tells us how mass is distributed about the axis of rotation. We call this quantity the rotational inertia (or moment of inertia) *I* of the body with respect to the axis of rotation.

$$I = \sum m_i r_i^2 \qquad \qquad K = \frac{1}{2} I \omega^2$$