Class 27 - Rolling, Torque and Angular Momentum

 Chapter 11 - Wednesday October 27th-Rolling motion as translation plus rotation
-Rolling motion as pure rotation
-The kinetic energy of rolling
-The forces of rolling motion
-Examples of rolling motion
Reading: pages 275 thru 281 (chapter 11) in HRW
Read and understand the sample problems
Assigned problems from chapter 11:
$2,6,8,12,22,24,32,38,40,50,54,64$

Rolling motion as rotation and translation

$s=\theta R$

The wheel moves with speed $d s / d t$

$$
\Rightarrow V_{\text {сот }}=\omega R
$$

Another way to visualize the motion:

Rolling motion as rotation and translation

$s=\theta R$

The wheel moves with speed $d s / d t$

$$
\Rightarrow V_{\text {com }}=\omega R
$$

Another way to visualize the motion:

Rolling motion as pure rotation

(c) Rolling motion

$$
\begin{aligned}
& v_{\text {top }}=(\omega)(2 R) \\
& =2(\omega R)=2 v_{\text {com }}
\end{aligned}
$$

The kinetic energy of rolling

$$
\begin{aligned}
& K=\frac{1}{2} I_{P} \omega^{2} \quad I_{P}=I_{c o m}+M R^{2} \\
& K=\frac{1}{2} I_{c o m} \omega^{2}+\frac{1}{2} M R^{2} \omega^{2} \\
& K=\frac{1}{2} I_{c o m} \omega^{2}+\frac{1}{2} M v_{c o m}^{2}=K_{r}+K_{t}
\end{aligned}
$$

The forces of rolling (role of friction)

-If the c.o.m. moves with constant velocity, and the wheel rotates with constant angular speed $\omega=v_{\text {com }} / R$, then there are no net forces on the wheel.

- If however, the wheel has an angular acceleration, then there must be a frictional force at P in order for the wheel to move.
-If the driving mechanism is a linear force, e.g. someone pushing the wheel through its center of mass, then the frictional force opposes the pushing force.
-The sum of the two forces provide the linear acceleration.
- Meanwhile, the friction force has a moment arm about the c.o.m., i.e. it provides a torque which, in part, causes the angular acceleration.

The forces of rolling (role of friction)

-If the c.o.m. moves with constant
 velocity, and the wheel rotates with constant angular speed $\omega=v_{\text {com }} / R$, then there are no net forces on the wheel.

- If however, the wheel has an angular acceleration, then there must be a frictional force at P in order for the wheel to move.
-If the driving mechanism is a linear force, e.g. someone pushing the wheel through its center of mass, then the frictional force opposes the pushing force.
-The sum of the two forces provide the linear acceleration.
- One can also attribute the angular acceleration to the fact that $F_{\text {push }}$ has a moment arm about the point where the wheel makes contact with the road.

The forces of rolling (role of friction)

-If the c.o.m. moves with constant velocity, and the wheel rotates with constant angular speed $\omega=v_{\text {com }} / R$, then there are no net forces on the wheel.

- If however, the wheel has an angular acceleration, then there must be a frictional force at P in order for the wheel to move.
-If, on the other hand, the driving mechanism is rotational, i.e. due to the torque of a motor, then the frictional force is in the opposite direction, and it causes the linear acceleration.

Rolling down a ramp

-The frictional force is essential for the rolling motion.
-If one analyzes the motion about the center of the disk, f_{s} is the only force with a moment arm.

Rolling down a ramp

-However, we do not really have to compute f_{s} (see section 12-3).

- We can, instead, analyze the motion about P, in which case, $F_{g} \sin \theta$ is the only force component with a moment arm about P.

Use: torque $=I \alpha$

$$
\begin{gathered}
R \times F_{g} \sin \theta=I_{P} \alpha \\
a_{\text {com }}=-\alpha R
\end{gathered}
$$

Thus:

$$
M R^{2} g \sin \theta=-I_{P} a_{c o m}
$$

$$
I_{P}=I_{c o m}+M R^{2}
$$

$$
a_{c o m}=-\frac{g \sin \theta}{1+I_{c o m} / M R^{2}}
$$

Some rotational inertia

More on rolling

$$
a_{\text {com }}=-\frac{g \sin \theta}{1+I_{\text {com }} / M R^{2}}
$$

This is the same as for the frictionless incline $\left(a_{c o m}=g \sin \theta\right)$ with the additional $I_{\text {com }} / M R^{2}$ term in the denominator.

- Mechanical energy is NOT lost as a result of frictional forces.
-It is, instead, converted to rotational kinetic energy.
-This rotational kinetic is mechanical, so it may be converted back to translational kinetic energy, or gravitational potential energy.

More on rolling

$$
a_{c o m}=-\frac{g \sin \theta}{1+I_{\text {com }} / M R^{2}}
$$

-The Yo-yo is essentially the same as the disc rolling down the incline, except that the string plays the role of the slope and the

$$
I_{\text {com }} \approx \gamma M R^{2}
$$ tension in the string plays the role of the friction.

-Thus, $\theta=90^{\circ}$, and the relevant radius is R_{0}.
-However, one should use R when calculating $I_{\text {com }}$.
$\Rightarrow \quad a_{c o m}=-\frac{g}{1+I_{c o m} / M R_{o}^{2}}=-\frac{g}{1+\gamma R^{2} / R_{o}^{2}}$

