e Exam 3: Friday December 3rd, 8:20pm to 10:20pm
 You must go to the following locations based on the 1st
letter of your last name:

AtoF WEIL270 (Weil Hall)
GtoM WM 100 (Williamson Hall)

N toZ FAB103/105 (Fine Arts B)

e Review sessions: Tuesday Nov. 30 (Hill) and Thurs. Dec.
2 (Woodard), 6:15 to 8:10pm in NPB 1001 (HERE!)

 Final Exam (cumulative): Tuesday December 14th,
12:30pm to 2:30pm.

 Room assignments: A to K in NPB1001 (in here);
L to Z in Norman Hall 137.

e Two more review sessions: Dec. 7 and Dec. 9, 6:15 to
8:10pm in NPB1001 (HERE!)



Class 38 - Waves I
Chapter 16 - Monday November 29th

*QUICK review of traveling waves
‘Wave speed and the wave equation
‘HiTT problem(s)

‘Energy in traveling waves
*Introduction to wave interference

Reading: pages 413/ to 457 (chapter' 16) in HRW

Assigned| problems from chapiter 16 (due Dec. 2nd!):
6, 20, 22, 24, 30, 34, 42, 44, 66, 70, 78, 82




Transverse wave

Review - wavelength and frequency
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angular wavenumber Phase
angular frequency shift

K = 2_7z k is the angular wavenumber.
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Traveling waves on a stretched string

Dimensional analysis

Am = uAl

4 is the string's linear density, or
force per unit length.

*Tension rpr'ovide_s_’-rhe restoring force (kg.m.s?) in the string.
Without tension, the wave could not propagate.

*The mass per unit length u (kg.m™!) determines the response of the
string to the restoring force (tension), through Newtorn's 2nd law.

‘Look for combinations of 7z and u that give dimensions of speed

(m.s™).
v=_C \/Z
Y7



The wave equation

2 2
T O y O y Derivation on page 425 of HRW
H 5X 81:2 Or in class notes from Nov. 24th

General solution:

y(x,t) = y,sin(kxtawt) or y(xt)=y,f(kxtaot)

82 82
a_lez—kzy(x,t) aTXZ—wa(x,t)
2
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Energy in traveling waves

y(x,t) =y, sin(kx—at)

Similar expression for
elastic potential energy
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Kinetic energy: dK =1/,dm %

v, = ?t/ —wY,, cos(kx — wt)

dK =3 (udx)(-wy, )2 cos’ (kx — wt)

Divide both sides by dt, where dx/dt = v,

(Z—If =3 v w’y’ cos’ (kx — wt)
C:j—LtJ =1 v o°y’ cos’ (kx — wt)
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=2xLi ww’y? <C032(kx—a)t)> =
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Energy Is pumped in an oscillatory fashion down the string
Note: | dropped the subscript on v since it represents the wave speed



The principle of superposition for waves

It often happens that waves travel simultaneously through the
same region, e.g.

»Radio waves from many broadcasters
» Sound waves from many musical instruments
»Different colored light from many locations from your TV

‘Nature is such that all of these waves can exist without altering
each others' motion

*Their effects simply add

*This is a result of the principle of superposition, which applies to all
harmonic waves, /.e. waves that obey the linear wave equation

V2 0’y _ 0’y
ox*  ot’
+And have solutions: Y(X,t)=Yy_f (kXia)t) or y._ sin(ka_r a)'[)




The principle of superposition for waves

-If two waves travel simultaneously along the same stretched string,
the resultant displacement y' of the string is simply given by the

summation
y'(%1)=y,(X1)+y,(xt)

where y, and y, would have been the displacements had the waves
traveled alone.

*This is the principle of superposition.

Overlapping waves algebraically add o produc

(or: ).

Ov/rJrr)rmJ waves doi hoil* In any:way:alter the fir
eachi offner

Link 3



Interference of waves

Suppose two sinusoidal waves with the same frequency and
amplitude travel in the same direction along a string, such that

Y, = Y, Sin(kx — awt)

Y, = Y SIN(kx — ot + ¢)

*The waves will add.
*If they are in phase (/.e. $=0), they combine to double the
displacement of either wave acting alone.

If they are out of phase (/.e. ¢ =), they combine to cancel
everywhere, since sin(a) = —sin(a + n).

*This phenomenon is called interference.
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Interference of waves
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Interference of waves
*Mathematical proof:

Y, = ¥, Sin(kx — ot)
Y, = Y SIN(kx — ot + ¢)

y'(xt) =y (%t)+ Y, (xt)

=y sin(kx—a)t)+ Y. Sin(kx—a)t+¢)

Then:

But: sina +sin 8 =2sin4(a + B)cosi(a - f)

/Ph_ase
So: y'(x,t)=[2y, cosig]sin(kx—at+1g) M

Amplitude Wave part



Interference of waves
y'(x.t)=[2y, cosig|sin(kx—wt+19)

L7 twoi sinusoidal waves Or iine same amplifude and
'rr’f/fj-J/ff/ tiravel iniine 2 direction along a streiiched

stiring, they intiertere to r)r*orUc a resulfanit sinusoraal
yave firaveling in'tine same direction.

‘If $=0, the waves interfere constructively, cos’2¢ =1 and the wave
amplitude is 2y,

If ¢=mn, the waves interfere destructively, cos(n/2) = 0 and the wave
amplitude is 0, Z.e. no wave at all.

*All other cases are infermediate between an amplitude of 0 and 2y,

‘Note that the phase of the resultant wave also depends on the
phase difference.



