- Exam 3: Friday December 3rd, 8:20pm to 10:20pm
- You must go to the following locations based on the 1st letter of your last name:

A to F	WEIL270 (Weil Hall)
G to M	WM 100 (Williamson Hall)
N to Z	FAB103/105 (Fine Arts B)

- Review sessions: Tuesday Nov. 30 (Hill) and Thurs. Dec. 2 (Woodard), 6:15 to 8:10pm in NPB 1001 (HERE!)
- Final Exam (cumulative): Tuesday December 14th, 12:30pm to 2:30pm.
- Room assignments: A to K in NPB1001 (in here); L to Z in Norman Hall 137.
- Two more review sessions: Dec. 7 and Dec. 9, 6:15 to 8:10pm in NPB1001 (HERE!)

Class 38 - Waves I
Chapter 16 - Monday November 29th
-QUICK review of traveling waves

- Wave speed and the wave equation
- HiTT problem(s)
- Energy in traveling waves
-Introduction to wave interference

Reading: pages 413 to 437 (chapter 16) in HRW
Read and understand the sample problems
Assigned problems from chapter 16 (due Dec. 2 ndl):

$$
6,20,22,24,30,34,42,44,66,70,78,82
$$

Review - wavelength and frequency

Traveling waves on a stretched string

Dimensional analysis

$$
\Delta m=\mu \Delta l
$$

- Tension τ provides the restoring force (kg.m.s. ${ }^{-2}$) in the string. Without tension, the wave could not propagate.
-The mass per unit length $\mu\left(\mathrm{kg} . \mathrm{m}^{-1}\right)$ determines the response of the string to the restoring force (tension), through Newtorn's 2nd law.
-Look for combinations of τ and μ that give dimensions of speed (m. s^{-1}).

$$
v=C \sqrt{\frac{\tau}{\mu}}
$$

The wave equation

$$
\frac{\tau}{\mu} \frac{\partial^{2} y}{\partial x^{2}}=\frac{\partial^{2} y}{\partial t^{2}} \quad \begin{aligned}
& \text { Derivation on page } 425 \text { of HRW } \\
& \text { Or in class notes from Nov. 24th }
\end{aligned}
$$

-General solution:

$$
\begin{gathered}
y(x, t)=y_{m} \sin (k x \pm \omega t) \quad \text { or } \quad y(x, t)=y_{m} f(k x \pm \omega t) \\
\frac{\partial^{2} y}{\partial x^{2}}=-k^{2} y(x, t) \quad \frac{\partial^{2} y}{\partial t^{2}}=-\omega^{2} y(x, t) \\
\Rightarrow \quad-\frac{\tau}{\mu} k^{2}=-\omega^{2} \quad \text { or } \quad \frac{\omega^{2}}{k^{2}}=v^{2}=\frac{\tau}{\mu} \\
\text { i.e. } \quad v=\sqrt{\frac{\tau}{\mu}}
\end{gathered}
$$

Energy in traveling waves

$$
y(x, t)=y_{m} \sin (k x-\omega t)
$$

Kinetic energy: $\quad d K=1 / 2 d m v_{y}{ }^{2}$

$$
\begin{gathered}
v_{y}=\frac{\partial y}{\partial t}=-\omega y_{m} \cos (k x-\omega t) \\
d K=\frac{1}{2}(\mu d x)\left(-\omega y_{m}\right)^{2} \cos ^{2}(k x-\omega t)
\end{gathered}
$$

Divide both sides by $d t$, where $d x / d t=v_{x}$

$$
\frac{d K}{d t}=\frac{1}{2} \mu v_{\chi} \omega^{2} y_{m}^{2} \cos ^{2}(k x-\omega t)
$$

Similar expression for elastic potential energy

$$
P_{\text {avg }}=2 \times \frac{1}{2} \mu v \omega^{2} y_{m}^{2}\left\langle\cos ^{2}(k x-\omega t)\right\rangle=2 \times \frac{1}{2} \mu v \omega^{2} y_{m}^{2} \times \frac{1}{2}=\frac{1}{2} \mu v \omega^{2} y_{m}^{2}
$$

Energy is pumped in an oscillatory fashion down the string
Note: I dropped the subscript on v since it represents the wave speed

The principle of superposition for waves

-It often happens that waves travel simultaneously through the same region, e.g.
$>$ Radio waves from many broadcasters
>Sound waves from many musical instruments
>Different colored light from many locations from your TV

- Nature is such that all of these waves can exist without altering each others' motion
-Their effects simply add
-This is a result of the principle of superposition, which applies to all harmonic waves, i.e. waves that obey the linear wave equation

$$
v^{2} \frac{\partial^{2} y}{\partial x^{2}}=\frac{\partial^{2} y}{\partial t^{2}}
$$

- And have solutions: $y(x, t)=y_{m} f(k x \pm \omega t) \quad$ or $\quad y_{m} \sin (k x \pm \omega t)$

The principle of superposition for waves

-If two waves travel simultaneously along the same stretched string, the resultant displacement y^{\prime} of the string is simply given by the summation

$$
y^{\prime}(x, t)=y_{1}(x, t)+y_{2}(x, t)
$$

where y_{1} and y_{2} would have been the displacements had the waves traveled alone.
-This is the principle of superposition.
Overlapping waves algebraically add to produce a resultant wave (or net wave).

Overlapping waves do not in any way alter the travel of each other

Link 3

Interference of waves

- Suppose two sinusoidal waves with the same frequency and amplitude travel in the same direction along a string, such that

$$
\begin{aligned}
& y_{1}=y_{m} \sin (k x-\omega t) \\
& y_{2}=y_{m} \sin (k x-\omega t+\phi)
\end{aligned}
$$

-The waves will add.

- If they are in phase (i.e. $\phi=0$), they combine to double the displacement of either wave acting alone.
-If they are out of phase (i.e. $\phi=\pi$), they combine to cancel everywhere, since $\sin (\alpha)=-\sin (\alpha+\pi)$.
-This phenomenon is called interference.

Interference of waves

Interference of waves

-Mathematical proof:

$$
\begin{aligned}
& y_{1}=y_{m} \sin (k x-\omega t) \\
& y_{2}=y_{m} \sin (k x-\omega t+\phi)
\end{aligned}
$$

Then:

$$
\begin{aligned}
y^{\prime}(x, t) & =y_{1}(x, t)+y_{2}(x, t) \\
& =y_{m} \sin (k x-\omega t)+y_{m} \sin (k x-\omega t+\phi)
\end{aligned}
$$

But: $\quad \sin \alpha+\sin \beta=2 \sin \frac{1}{2}(\alpha+\beta) \cos \frac{1}{2}(\alpha-\beta)$

So:

$$
y^{\prime}(x, t)=\frac{\left[2 y_{m} \cos \frac{1}{2} \phi\right]}{\text { Amplitude }} \frac{\sin \left(k x-\omega t+\frac{1}{2} \phi\right)}{\text { Wave part }} \text { shift }
$$

Interference of waves

$$
y^{\prime}(x, t)=\left[2 y_{m} \cos \frac{1}{2} \phi\right] \sin \left(k x-\omega t+\frac{1}{2} \phi\right)
$$

If two sinusoidal waves of the same amplitude and frequency travel in the same direction along a stretched string, they interfere to produce a resultant sinusoidal wave traveling in the same direction.

- If $\phi=0$, the waves interfere constructively, $\cos ^{1} / 2 \phi=1$ and the wave amplitude is $2 y_{m}$.
-If $\phi=\pi$, the waves interfere destructively, $\cos (\pi / 2)=0$ and the wave amplitude is 0 , i.e. no wave at all.
- All other cases are intermediate between an amplitude of 0 and $2 y_{m}$.
- Note that the phase of the resultant wave also depends on the phase difference.

