- Exam 3: TODAY, 8:20pm to 10:20pm
- You must go to the following locations based on the 1st letter of your last name:

A to F	WEIL270 (Weil Hall)
G to M	WM 100 (Williamson Hall)
N to Z	FAB103/105 (Fine Arts B)

- Final Exam (cumulative): Tuesday December 14th, 12:30pm to 2:30pm.
- Room assignments: A to K in NPB1001 (in here) L to Z in Norman Hall 137
- Two more review sessions: Dec. 7 (Hill) and Dec. 9 (Woodard), 6:15 to 8:10pm in NPB1001 (HERE!)

Class 41 - Waves I/II
 Chapters 16 and 17 - Friday December 3rd

-QUICK review of wave interference

- Sample problems and HiTT
- Sound waves and speed of sound
- Sources of musical sound
- Course evaluations

Reading: pages 445 to 460 (chapter 17) in HRW Read and understand the sample problems
Assigned problems from chapter 17 (due Dec, 8thtl):

$$
82,14,17,30,36,42,46,47,52,64,78
$$

Review - Standing waves

If two sinusoidal waves of the same amplitude and wavelength travel in opposite directions along a stretched string, their interference with each other produces a standing wave.

$$
\begin{aligned}
y^{\prime}(x, t) & =y_{1}(x, t)+y_{2}(x, t) \\
& =y_{m} \sin (k x-\omega t)+y_{m} \sin (k x+\omega t+\phi) \\
& =2 y_{m} \sin \left(k x+\frac{1}{2} \phi\right) \cos \left(\omega t-\frac{1}{2} \phi\right)
\end{aligned}
$$

-This is clearly not a traveling wave, because it does not have the form f(kx - ωt).
-In fact, it is a stationary wave, with a sinusoidal varying amplitude $2 y_{m} \cos (\omega t)$.

Link 1
Link 2
Link 3

Standing waves and resonance

- At ordinary frequencies, waves travel backwards and forwards along the string.
- Each new reflected wave has a new phase.
- The interference is basically a mess, and no significant oscillations build up.

Standing waves and resonance

-Standing waves occur whenever the phase of the wave returning to the oscillating end of the string is precisely in phase with the forced oscillations.
-Thus, the trip along the string and back should be equal to an integral

$$
L=\lambda=\frac{2 \lambda}{2}
$$ number of wavelengths, i.e.

$2 L=n \lambda \quad$ or $\lambda=\frac{2 L}{n} \quad$ for $n=1,2,3 \ldots$

$$
f=\frac{v}{\lambda}=n \frac{v}{2 L}, \quad \text { for } n=1,2,3 \ldots
$$

- Each of the frequencies f_{1}, f_{1}, f_{1}, etc, are called harmonics, or a harmonic series; n is the harmonic number.

Standing waves and resonance

- Here is an example of a two-dimensional vibrating diaphragm.
- The dark powder shows the positions of the nodes in the vibration.

Sound waves

- Sound waves are longitudinal.
- They travel in a medium; either gas, liquid or solid.
- Sound waves radiate in all directions from a point source.
-Wavefronts are surfaces over which the phase (displacement or pressure) of the wave is constant.
- Rays are lines perpendicular to the wavefronts, and indicate the direction of travel of the wave.
-The wavefronts are spherical close to a point source.
- At large distances, the wavefronts are approximately planar.

The speed of sound

TABLE 18-1 The Speed of Sound ${ }^{a}$
Medium \quad Speed $(\mathrm{m} / \mathrm{s})$

Gases

Air $\left(0^{\circ} \mathrm{C}\right) \quad 331$

Air $\left(20^{\circ} \mathrm{C}\right) \quad 343$
Helium 965
Hydrogen 1284
Liquids
Water $\left(0^{\circ} \mathrm{C}\right) \quad 1402$
Water $\left(20^{\circ} \mathrm{C}\right) \quad 1482$
Seawater $^{\text {b }} 1522$
Solids
Aluminum 6420
Steel 5941
Granite 6000
${ }^{a} \mathrm{At} 0^{\circ} \mathrm{C}$ and 1 atm pressure, except where noted.
${ }^{b}$ At $20^{\circ} \mathrm{C}$ and 3.5% salinity.

- Recall the velocity of a wave on a string,

$$
v=\sqrt{\frac{\tau}{\mu}}=\sqrt{\frac{\text { elastic property }}{\text { inertial property }}}
$$

The speed of sound

TABLE 18-1 The Speed of Sound ${ }^{a}$

Medium	Speed $(\mathrm{m} / \mathrm{s})$
Gases	
Air $\left(0^{\circ} \mathrm{C}\right)$	331
Air $\left(20^{\circ} \mathrm{C}\right)$	343
Helium	965
Hydrogen	1284
Liquids	
Water $\left(0^{\circ} \mathrm{C}\right)$	1402
Water $\left(20^{\circ} \mathrm{C}\right)$	1482
Seawater ${ }^{b}$	1522
Solids	
Aluminum	6420
Steel	5941
Granite	6000
${ }^{a}$ At $0^{\circ} \mathrm{C}$ and 1 atm pressure, except	
where noted.	
${ }^{b}$ At $20^{\circ} \mathrm{C}$ and 3.5% salinity.	

-Thus, it should not surprise you that the speed of sound is given by a similar expression

$$
v=\sqrt{\frac{B}{\rho}}
$$

where B is the bulk modulus of the medium, as defined in chapter 12 (page 318), and ρ is the density or mass per unit volume.

Traveling sound waves

Longitudinal displacement: $s(x, t)=s_{m} \cos (k x-\omega t)$

Pressure variation:
$\Delta p(x, t)=\Delta p_{m} \sin (k x-\omega t)$

Pressure amplitude:

$$
\Delta p_{m}=(v \rho \omega) s_{m}
$$

Standing waves in air columns

- Simplest case:
- 2 open ends
- Antinode at each end
- 1 node in the middle
- Although the wave is longitudinal, we can represent it schematically by the solid and dashed green curves.

Standing waves in air columns

 A harmonic series$$
\begin{aligned}
& n=2 \longrightarrow \lambda_{2}=2 L / 2=L \\
& n=3 \\
& n=4
\end{aligned}
$$

$$
\lambda=\frac{2 L}{n}, \text { for } n=1,2,3, \ldots . \quad f=\frac{v}{\lambda}=\frac{n v}{2 L}, \quad \text { for } n=1,2,3, \ldots
$$

Standing waves and resonance

Same harmonic series

$$
f=\frac{v}{\lambda}=\frac{n v}{2 L}, \quad \text { for } n=1,2,3, \ldots
$$

$$
\lambda=\frac{2 L}{n}, \text { for } n=1,2,3, \ldots
$$

Standing waves in air columns

 A different harmonic series
$\lambda=\frac{4 L}{n}$, for $n=1,3,5, \ldots . \quad f=\frac{v}{\lambda}=\frac{n v}{4 L}, \quad$ for $n=1,3,5, \ldots$

