Chapter 1

Changing units

Chain-link conversion - an example:
1 minute $=60$ seconds
therefore $\quad \frac{1 \mathrm{~min}}{60 \mathrm{sec}}=1 \quad$ or $\quad \frac{60 \mathrm{sec}}{1 \mathrm{~min}}=1$

Note: this does not imply $60=1$, or $1 / 60=1$!
$2 \mathrm{~min}=(2 \mathrm{~min}) \times(1)=(2 \mathrm{~min}) \times\left(\frac{60 \mathrm{~s}}{1 \mathrm{~min}}\right)=120 \mathrm{~s}$

Chapter 2

Average velocity and speed

$$
v_{\text {avg }}=\frac{\Delta x}{\Delta t}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}
$$

- Like displacement, $v_{\text {avg }}$ is a vector

Average speed $s_{\text {avg }}$:

$$
s_{\text {avg }}=\frac{\text { total distance }}{\Delta t}
$$

- $s_{\text {avg }}$ is not a vector - it lacks an algebraic sign
- How do $v_{\text {avg }}$ and $s_{\text {avg }}$ differ?

Instantaneous velocity and speed

Acceleration

- An object is accelerating if its velocity is changing

Average acceleration $a_{\text {avg }}$:

$$
a_{a v g}=\frac{\Delta v}{\Delta t}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}
$$

Instantaneous acceleration a:

$$
a=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}=\frac{d v}{d t}=\frac{d}{d t}\left(\frac{d x}{d t}\right)=\frac{d^{2} x}{d t^{2}}
$$

-This is the second derivative of the x vs. t graph

- Like x and v, acceleration is a vector
- Note: direction of a need not be the same as v

Constant acceleration: a special case

For non-calculus derivation, see section 2-6 in HRW

$$
\begin{array}{lll}
a=\frac{d v}{d t} & \Rightarrow & d v=a d t \\
\int d v=a \int d t & \Rightarrow & v=a t+C
\end{array}
$$

- To evaluate the constant of integration C, we let $v=v_{o}$ at time $t=0$, i.e. v_{o} represents the initial velocity.

$$
\Rightarrow \quad v=v_{o}+a t
$$

-Taking the derivative of Eq. 2-11 (v_{o} and a are constants), we recover:

$$
a=\frac{d v}{d t}
$$

Further integration

$$
\begin{array}{rlrl}
v= & \frac{d x}{d t} & & \Rightarrow \quad d x= \\
& \Rightarrow \quad \int d x=\int v(t) d t
\end{array}
$$

- Note - in general, v depends on t. However, we can substitute v from Eq. 2-11:

$$
\int d x=\int\left(v_{o}+a t\right) d t \quad \Rightarrow \quad x=v_{o} t+\frac{1}{2} a t^{2}+C^{\prime}
$$

- To evaluate the constant of integration C^{\prime}, we let $x=x_{o}$ at time $t=0$, i.e, x_{o} represents the initial position.

$$
\Rightarrow \quad x-x_{o}=v_{o} t+\frac{1}{2} a t^{2} \quad(2-15)
$$

Constant acceleration formulae

TABLE 2-1 Equations for Motion with Constant Acceleration ${ }^{\text {a }}$

Equation Number	Equation	Missing Quantity
$2-11$	$v=v_{0}+a t$	$x-x_{0}$
$2-15$	$x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}$	v
$2-16$	$v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$	t
$2-17$	$x-x_{0}=\frac{1}{2}\left(v_{0}+v\right) t$	a
$2-18$	$x-x_{0}=v t-\frac{1}{2} a t^{2}$	v_{0}

${ }^{a}$ Make sure that the acceleration is indeed constant before using the equations in this table.

Chapter 3

Components of vectors

(a)

Unit vectors

\hat{i}, \hat{j} and \hat{k} are unit vectors
They have length equal to unity, and they point respectively along the x, y and z axes of a right handed orthogonal coordinate system

$$
\begin{aligned}
& \vec{a}=a_{x} \hat{\mathrm{i}}+a_{y} \hat{\mathrm{j}} \\
& \vec{b}=b_{x} \hat{\mathrm{i}}+b_{y} \hat{\mathrm{j}}
\end{aligned}
$$

Note: θ is always measured in a right handed sense around the z-axis.

The scalar product, or dot product

$$
\vec{a} \cdot \vec{b}=a b \cos \phi
$$

$$
\begin{aligned}
& (a)(b \cos \phi)=(a \cos \phi)(b) \\
& \cos \phi=\cos (-\phi) \\
& \Rightarrow \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}
\end{aligned}
$$

-They scalar product represents the product of the magnitude of one vector and the component of the second vector along the direction of the first

$$
\begin{aligned}
& \text { If } \phi=0^{\circ} \text {, then } \vec{a} \cdot \vec{b}=a b \\
& \text { If } \phi=90^{\circ} \text {, then } \vec{a} \cdot \vec{b}=0
\end{aligned}
$$

The scalar product in component form

$$
\begin{gathered}
\vec{a} \cdot \vec{b}=\left(a_{x} \hat{\mathrm{i}}+a_{y} \hat{\mathrm{j}}+a_{z} \hat{\mathrm{k}}\right) \cdot\left(b_{x} \hat{\mathrm{i}}+b_{y} \hat{\mathrm{j}}+b_{z} \hat{\mathrm{k}}\right) \\
\vec{a} \cdot \vec{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}
\end{gathered}
$$

Because:

$$
\begin{aligned}
& \hat{\mathrm{i}} \cdot \hat{\mathrm{i}}=\hat{\mathrm{j}} \cdot \hat{\mathrm{j}}=\hat{\mathrm{k}} \cdot \hat{\mathrm{k}}=1 \\
& \hat{\mathrm{i}} \cdot \hat{\mathrm{j}}=\hat{\mathrm{j}} \cdot \hat{\mathrm{k}}=\hat{\mathrm{k}} \cdot \hat{\mathrm{i}}=0
\end{aligned}
$$

This is the property of orthogonality

The vector product, or cross product

 (a)

$\vec{a} \times \vec{b}=\vec{c}$, where $c=a b \sin \phi$

$$
\vec{a} \times \vec{b}=-(\vec{b} \times \vec{a})
$$

Direction of $\vec{c} \perp$ to both \vec{a} and \vec{b}

$$
\begin{array}{ll}
\hat{\mathbf{i}} \times \hat{i}=\hat{j} \times \hat{j}=\hat{k} \times \hat{k}=0 \\
\hat{i} \times \hat{j}=\hat{k} & \hat{j} \times \hat{i}=-\hat{k} \\
\hat{j} \times \hat{k}=\hat{i} & \hat{k} \times \hat{j}=-\hat{i} \\
\hat{k} \times \hat{i}=\hat{j} & \hat{i} \times \hat{k}=-\hat{j}
\end{array}
$$

$$
\vec{a} \times \vec{b}=\left(a_{x} \hat{\mathrm{i}}+a_{y} \hat{\mathrm{j}}+a_{z} \hat{\mathrm{k}}\right) \times\left(b_{x} \hat{\mathrm{i}}+b_{y} \hat{\mathrm{j}}+b_{z} \hat{\mathrm{k}}\right)
$$

$$
a_{x} \hat{\mathrm{i}} \times b_{y} \hat{\mathrm{j}}=a_{x} b_{y}(\hat{\mathrm{i}} \times \hat{\mathrm{j}})=a_{x} b_{y} \hat{\mathrm{k}}
$$

$\vec{a} \times \vec{b}=\left(a_{y} b_{z}-b_{y} a_{z}\right) \hat{\mathrm{i}}+\left(a_{z} b_{x}-b_{z} a_{x}\right) \hat{\mathrm{j}}+\left(a_{x} b_{y}-a_{y} b_{x}\right) \hat{\mathrm{k}}$

Chapter 4

Projectile equations of motion

$$
\begin{array}{ll}
x-x_{0}=\left(v_{0} \cos \theta_{0}\right) t & 4-21 \\
v_{x}=v_{0} \cos \theta_{0} & 4-22 \\
y-y_{0}=\left(v_{0} \sin \theta_{0}\right) t-\frac{1}{2} g t^{2} & 4-23 \\
v_{y}=v_{0} \sin \theta_{0}-g t & 4-24 \\
v_{y}^{2}=\left(v_{0} \sin \theta_{0}\right)^{2}-2 g\left(y-y_{0}\right) & 4
\end{array}
$$

Uniform circular motion

- Although v does not change, the direction of the motion does, i.e. the velocity (a vector) changes.
- Thus, there is an acceleration associated with the motion.
- We call this a centripetal acceleration.

Acceleration: $\quad a=\frac{v^{2}}{r} \quad$ Period: $\quad T=\frac{2 \pi r}{v}$

- Since v does not change, the acceleration must be perpendicular to the velocity.

Analyzing the motion

$$
\begin{aligned}
& x_{p}=r \cos \theta \quad y_{p}=r \sin \theta \\
& \vec{r}=x_{p} \hat{\mathrm{i}}+y_{p} \hat{\mathrm{j}}
\end{aligned}
$$

Acceleration

$$
\left[\vec{v}=v_{x} \hat{\mathrm{i}}+v_{y} \hat{\mathrm{j}}=\left(-\frac{v y_{p}}{r}\right) \hat{\mathrm{i}}+\left(\frac{v x_{p}}{r}\right) \hat{\mathrm{j}} ; \quad v_{x}=-v \sin \theta \quad v_{y}=v \cos \theta\right]
$$

$$
\begin{aligned}
\vec{a}=\frac{d \vec{v}}{d t} & =\left(-\frac{v}{r} \frac{d y_{p}}{d t}\right) \hat{\mathrm{i}}+\left(\frac{v}{r} \frac{d x_{p}}{d t}\right) \hat{\mathrm{j}} \\
& =\left(-\frac{v}{r} v_{y}\right) \hat{\mathrm{i}}+\left(\frac{v}{r} v_{x}\right) \hat{\mathrm{j}} \\
& =\left(-\frac{v^{2}}{r} \cos \theta\right) \hat{\mathrm{i}}+\left(-\frac{v^{2}}{r} \sin \theta\right) \hat{\mathrm{j}}
\end{aligned}
$$

$$
a=\sqrt{a_{x}^{2}+a_{y}^{2}}=\frac{v^{2}}{r} \sqrt{(\cos \theta)^{2}+(\sin \theta)^{2}}=\frac{v^{2}}{r}
$$

Relative motion

Position:

$$
\vec{r}_{P A}=\vec{r}_{P B}+\vec{r}_{B A}
$$

Frame A
Velocity:

$$
\vec{v}_{P A}=\frac{d \vec{r}_{P A}}{d t}=\frac{d \vec{r}_{P B}}{d t}+\frac{d \vec{r}_{B A}}{d t}=\vec{v}_{P B}+\vec{v}_{B A}
$$

Acceleration:

$$
\vec{a}_{P A}=\frac{d \vec{v}_{P A}}{d t}=\frac{d \vec{v}_{P B}}{d t}+\frac{d \vec{v} / B A}{d t}=\vec{a}_{P B}
$$

