Review - Nov. 30th 2004

Chapters: 10, 11, 12, 13, 15, 16

Review of rotational variables (scalar notation)

Angular position: $\quad \theta=\frac{s}{r} \quad$ (in radians)
Angular displacement:

$$
\Delta \theta=\theta_{2}-\theta_{1}
$$

Average angular velocity: $\quad \omega_{\text {avg }}=\frac{\theta_{2}-\theta_{1}}{t_{2}-t_{1}}=\frac{\Delta \theta}{\Delta t}$
Instantaneous angular velocity: $\quad \omega=\operatorname{Lim}_{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t}=\frac{d \theta}{d t}$
Average angular acceleration:

$$
\alpha_{\text {avg }}=\frac{\omega_{2}-\omega_{1}}{t_{2}-t_{1}}=\frac{\Delta \omega}{\Delta t}
$$

Instantaneous angular acceleration: $\quad \alpha=\operatorname{Lim}_{\Delta t \rightarrow 0} \frac{\Delta \omega}{\Delta t}=\frac{d \omega}{d t}$

Relationships between linear and angular variables

TABLE 11-1 Equations of Motion for Constant Linear Acceleration and for Constant Angular Acceleration

Equation Number	Linear Equation	Missing Variable		Angular Equation
$(2-11)$	$v=v_{0}+a t$	$x-x_{0}$	$\theta-\theta_{0}$	$\omega=\omega_{0}+\alpha t$
$(2-15)$	$x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}$	v	ω	$\theta-\theta_{0}=\omega_{0} t+\frac{1}{2} \alpha t^{2}$
$(2-16)$	$v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$	t	t	$\omega^{2}=\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right)$
$(2-17)$	$x-x_{0}=\frac{1}{2}\left(v_{0}+v\right) t$	a	α	$\theta-\theta_{0}=\frac{1}{2}\left(\omega_{0}+\omega\right) t$
$(2-18)$	$x-x_{0}=v t-\frac{1}{2} a t^{2}$	v_{0}	ω_{0}	$\theta-\theta_{0}=\omega t-\frac{1}{2} \alpha t^{2}$

Position: $\quad s=\theta r \quad(\theta$ in radians $)$
Velocity: $\quad v=\frac{d \theta}{d t} r=\omega r$
Time period for rotation: $\quad T=\frac{\text { circumference }}{\text { velocity }}=\frac{2 \pi r}{v}=\frac{2 \pi}{\omega}$
Tangential acceleration: $\quad a_{t}=\alpha r$
Centripetal acceleration: $a_{r}=\frac{v^{2}}{r}=\omega^{2} r$

Kinetic energy of rotation

$$
K=\frac{1}{2} I \omega^{2} \quad I=\sum m_{i} r_{i}^{2}
$$

Therefore, for a continuous rigid object: $I=\int r^{2} d m=\int \rho r^{2} d V$

Parallel axis theorem

-If moment of inertia is known about an axis though the center of mass (c.o.m.), then the moment of inertia about any parallel axis is:

$$
I=I_{\text {com }}+M h^{2}
$$

- It is essential that these axes are parallel; as you can see from table 10-2, the moments of inertia can be different for different axes.

Some rotational inertia

Torque

-There are two ways to compute torque:

$$
\begin{aligned}
\tau & =(r)(F \sin \phi)=r F_{t} \\
& =(r \sin \phi)(F)=r_{\perp} F
\end{aligned}
$$

-The direction of the force vector is called the line of action, and r_{\perp} is called the moment arm.
-The first equation shows that the torque is equivalently given by the component of force tangential to the line joining the axis and the point where the force acts.

- In this case, r is the moment arm of F_{t}.

Summarizing relations for translational and rotational motion

Pure Translation (Fixed Direction)	Pure Rotation (Fixed Axis)		
Position	x	Angular position	θ
Velocity	$v=d x / d y$	Angular velocity	$\omega=d \theta / d t$
Acceleration	$a=d v / d t$	Angular acceleration	$\alpha=d \omega / d t$
Mass	m	Rotational inertia	I
Newton's second law	$F_{\text {net }}=m a$	Newton's second law	$\tau_{\text {net }}=I \alpha$
Work	$W=\int F d x$	Work	$W=\int \tau d \theta$
Kinetic energy	$K=\frac{1}{2} m v^{2}$	Kinetic energy	$K=\frac{1}{2} I \omega^{2}$
Power (constant force)	$P=F v$	Power (constant torque)	$P=\tau \omega$
Work-kinetic energy theorem	$W=\Delta K$	Work-kinetic energy theorem	$W=\Delta K$

-Note: work obtained by multiplying torque by an angle - a dimensionless quantity. Thus, torque and work have the same dimensions, but you see that they are quite different.

Rolling motion as rotation and translation

$s=\theta R$

The wheel moves with speed $d s / d t$

$$
\Rightarrow v_{c o m}=\frac{d \theta}{d t}=\omega R
$$

The kinetic energy of rolling

$$
\begin{aligned}
& K=\frac{1}{2} I_{P} \omega^{2} \quad I_{P}=I_{c o m}+M R^{2} \\
& K=\frac{1}{2} I_{c o m} \omega^{2}+\frac{1}{2} M R^{2} \omega^{2} \\
& K=\frac{1}{2} I_{c o m} \omega^{2}+\frac{1}{2} M v_{c o m}^{2}=K_{r}+K_{t}
\end{aligned}
$$

Rotation axis at P

Torque and angular momentum

$$
\vec{\tau}=\vec{r} \times \vec{F} \quad \text { (definition) }
$$

-Torque was discussed in the previous chapter; cross products are discussed in chapter 3 (section 3-7) and at the end of this presentation: torque also discussed in this chapter (section 7). Angular momentum \vec{l} is defined as: $\vec{l}=\vec{r} \times \vec{p}=m(\vec{r} \times \vec{v})$

- Here, p is the linear momentum $m v$ of the object.

$$
\begin{aligned}
l & =m v r \sin \phi \\
& =r p_{\perp}=r m v_{\perp} \\
& =r_{\perp} p=r_{\perp} m v
\end{aligned}
$$

- SI unit is $\mathrm{Kg} . \mathrm{m}^{2} / \mathrm{s}$.

Anaular momentum of a rigid body about a fixed axis

We are interested in the component of angular momentum parallel to the axis of rotation:

$$
\begin{aligned}
L_{z} & =\sum_{i=1}^{n} l_{i z}=\sum_{i=1}^{n} m_{i} v_{i} r_{\perp i}=\int v r_{\perp} d m \\
& =\int\left(r_{\perp} \omega\right) r_{\perp} d m=\omega \int r_{\perp}^{2} d m=I \omega
\end{aligned}
$$

In fact: $\quad \vec{L}=I \vec{\omega}$

Translational		Rotational	
Force	\vec{F}	Torque	$\vec{\tau}(=\vec{r} \times \vec{F})$
Linear momentum	\vec{p}	Angular momentum	$\vec{\ell}(=\vec{r} \times \vec{p})$
Linear momentum			
Linear momentum			
	$\vec{P}\left(=\Sigma \vec{p}_{i}\right)$	Angular momentum ${ }^{b}$	$\vec{L}\left(=\Sigma \vec{\ell}_{i}\right)$
Newton's second law ${ }^{b}$	$\vec{P}=M \vec{v}_{\text {com }}$	Angular momentum ${ }^{c}$	$L=I \omega$
Conservation law ${ }^{d}$	$\vec{F}=\frac{d \vec{P}}{d t}$	Newton's second law ${ }^{b}$	$\vec{\tau}_{\text {net }}=\frac{d \vec{L}}{d t}$

Conservation of angular momentum

It follows from Newton's second law that:
If the net external torque acting on a system is zero, the angular momentum of the system remains constant, no matter what changes take place within the system.

$$
\begin{array}{c|c}
\vec{L}=\text { a constant } & \text { What happens to kinetic energy? } \\
\vec{L}_{i}=\vec{L}_{f} & K_{f}=\frac{1}{2} I_{f} \omega_{f}^{2}=\frac{1}{2} I_{f}\left(\frac{I_{i}^{2} \omega_{i}^{2}}{I_{f}^{2}}\right)=\frac{I_{i}}{I_{f}} \frac{1}{2} I_{i} \omega_{i}^{2}=\frac{I_{i}}{I_{f}} K_{i}
\end{array}
$$

-Thus, if you increase ω by reducing I, you end

$$
I_{i} \omega_{i}=I_{f} \omega_{f}
$$ up increasing K.

-Therefore, you must be doing some work.

$$
\frac{\omega_{f}}{\omega_{i}}=\frac{I_{i}}{I_{f}}
$$

- This is a very unusual form of work that you do when you move mass radially in a rotating frame.
-The frame is accelerating, so Newton's laws do not hold in this frame

Equilibrium

A system of objects is said to be in equilibrium if:

1. The linear momentum \vec{P} of its center of mass is constant.
2. Its angular momentum \vec{L} about its center of mass, or about any other point, is also constant.
If, in addition, \vec{L} and \vec{P} are zero, the system is said to be in static equilibrium.

$$
\begin{array}{ll}
\hline \vec{F}_{\text {net }}=\frac{d \vec{P}}{d t} & \Rightarrow \vec{F}_{\text {net }}=0 \\
\hline \vec{\tau}_{\text {net }}=\frac{d \vec{L}}{d t} & \Rightarrow \vec{\tau}_{\text {net }}=0 \\
\hline
\end{array}
$$

1. The vector sum of all the external forces that act on a body must be zero.
2. The vector sum of all the external torques that act on a body, measured about any axis, must also be zero.

The requirements of equilibrium

1. The vector sum of all the external forces that act on a body must be zero.
2. The vector sum of all the external torques that act on a body, measured about any axis, must also be zero.

Balance of forces	Balance of torques
$\vec{F}_{n e t, x}=0$	$\vec{\tau}_{n e t, x}=0$
$\vec{F}_{n e t, y}=0$	$\vec{\tau}_{n e t, y}=0$
$\vec{F}_{n e t, z}=0$	$\vec{\tau}_{n e t, z}=0$

One more requirement for static equilibrium:
3. The linear momentum \vec{P} of the body must be zero.

Elasticity

- All of these deformations have the following in common:
- A stress, a force per unit area, produces a strain, or dimensionless unit deformation.
-These various stresses and strains are related via a modulus of elasticity

$$
\text { stress }=\text { modulus } \times \text { strain }
$$

Tensile stress

(b)

Shear stress
Hydraulic stress

Tension and compression

-The figure left shows a graph of stress versus strain for a steel specimen.
-Stress = force per unit area (F/A)

- Strain = extension $(\Delta L) /$ length (L)
- For a substantial range of applied stress, the stress-strain relation is linear.
- Over this so-called elastic region, the, the specimen recovers its original dimensions when the stress is removed.
-In this region, we can write:

$$
\frac{F}{A}=E \frac{\Delta L}{L}
$$

This equation, stress $=E \times$ strain, is known as Hooke's law, and the modulus E is called Young's modulus. The dimensions of Eare the same as stress, i.e. force per unit area.

Shear stress

$$
\frac{F}{A}=G \frac{\Delta x}{L}
$$

- G is called the shear modulus.

Hydraulic stress

$$
p=B \frac{\Delta V}{V}
$$

$\cdot B$ is called the bulk modulus.

- V is the volume of the specimen, and ΔV its change in volume under a hydrostatic pressure p.

Newton's law of gravitation

$$
F=G \frac{m_{1} m_{2}}{r^{2}} \quad G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}
$$

Shell theorems

> A uniform spherical shell of matter attracts a particle that is outside the shell as if the shell's mass were concentrated at its center.

A uniform spherical shell of matter exerts no net gravitational force on a particle located inside it

Gravitational potential energy

$$
W_{g}=G M m\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right)=\frac{G M}{r_{1} r_{2}} m\left(r_{1}-r_{2}\right)
$$

-But, close to the Earth's surface,

$$
\begin{array}{ll}
& \frac{G M}{r_{1} r_{2}} \approx \frac{G M}{\overline{r^{2}}} \approx g \\
\hline \text { i.e. } \quad \Delta U=-W_{g}=m g h \\
\hline
\end{array}
$$

- Further away from Earth, we must choose a reference point against which we measure potential energy.
The natural place to chose as a reference point is $r=\infty$, since U must be zero there, i.e. we set $r_{1}=\infty$ as our reference point.

$$
U=-W_{g}=\frac{G m M}{r_{1}}-\frac{G m M}{r_{2}}=-\frac{G m M}{r}
$$

Planets and satellites: Kepler's laws

1. THE LAW OF ORBITS: All planets move in elliptical orbits, with the sun at one focus.
2. THE LAW OF AREAS: A line that connects a planet to the sun sweeps out equal areas in the plane of the planet's orbit in equal times; that is, the rate $d A / d t$ at which it sweeps out area A is constant.

$$
\frac{d A}{d t} \approx \frac{1}{2} r^{2} \frac{d \theta}{d t}=\frac{1}{2} r^{2} \omega
$$

3. THE LAW OF PERIODS: The square of the period of any planet is proportional to the cube of the semimajor axis of the orbit.

$$
T^{2}=\frac{(2 \pi)^{2}}{\omega^{2}}=\frac{(2 \pi)^{2}}{G M} r^{3}
$$

Satellites: Orbits and Energy

- Again, we'll do the math for a circular orbit, but it holds quite generally for all elliptical orbits.
- Applying F=ma:

$$
\frac{G M m}{r^{2}}=(m)\left(\frac{v^{2}}{r}\right)
$$

-Thus,

$$
\begin{aligned}
& K=\frac{1}{2} m v^{2}=\frac{G M m}{2 r}=-\frac{U}{2} \\
& E_{\text {total }}=K+U=\frac{G M m}{2 r}-\frac{G M m}{r} \\
& = \\
& =-\frac{G M m}{2 r}=-K
\end{aligned}
$$

Simple Harmonic Motion

-The simplest possible version of harmonic motion is called Simple Harmonic Motion (SHM).
-This term implies that the periodic motion is a sinusoidal function
of time,

Displacemnt
at time t

Amplitude
Angular Phase
frequency

- The positive constant x_{m} is called the amplitude.
-The quantity $(\omega t+\phi)$ is called the phase of the motion. or phase angle
- The constant ϕ is called the phase constant or phase angle.
-The constant ω is called the angular frequency of the motion.
- T is the period of the oscillations, and f is the frequency.

The velocity and acceleration of SHM

Velocity:

$$
\begin{aligned}
& v(t)=\frac{d x(t)}{d t}=\frac{d}{d t}\left[x_{m} \cos (\omega t+\phi)\right] \\
& v(t)=-\omega x_{m} \sin (\omega t+\phi)
\end{aligned}
$$

- The positive quantity ωx_{m} is called the velocity amplitude v_{m}.

Acceleration:

$$
\begin{aligned}
& a(t)=\frac{d v(t)}{d t}=\frac{d}{d t}\left[-\omega x_{m} \sin (\omega t+\phi)\right] \\
& a(t)=-\omega^{2} x_{m} \cos (\omega t+\phi) \\
& a(t)=-\omega^{2} x(t)
\end{aligned}
$$

In SHM, the acceleration is proportional to the displacement but opposite in sign; the two quantities are related by the square of the angular frequency

The force law for SHM

$$
F=m a=m\left(-\omega^{2} x\right)=-\left(m \omega^{2}\right) x
$$

-Note: SHM occurs in situations where the force is proportional to the displacement, and the proportionality constant $\left(-m \omega^{2}\right)$ is negative, i.e.

$$
F=-k x
$$

-This is very familiar - it is Hooke's law.
SHM is the motion executed by a particle of mass m subjected to a force that is proportional to the displacement of the particle but of opposite sign.

$$
\omega=\sqrt{\frac{k}{m}} \quad T=2 \pi \sqrt{\frac{m}{k}}
$$

Mechanical energy: $\quad E=U+K=\frac{1}{2} k x_{m}^{2}$
x_{m} is the maximum displacement or amplitude

Waves I - wavelength and frequency

Review - traveling waves on a string

$$
\text { Velocity } \quad v=\sqrt{\frac{\tau}{\mu}}
$$

-The tension in the string is τ.
-The mass of the element $d m$ is $\mu d l$, where μ is the mass per unit length of the string.

Energy transfer rates

$$
\begin{aligned}
P_{\text {kinetic }} & =\frac{d K}{d t}=\frac{1}{2} \mu v \omega^{2} y_{m}^{2} \cos ^{2}(k x-\omega t) \\
P_{\text {elastic }} & =\frac{d U}{d t}=\frac{1}{2} \mu v \omega^{2} y_{m}^{2} \cos ^{2}(k x-\omega t) \\
P_{\text {avg }} & =2 \times \frac{1}{2} \mu v \omega^{2} y_{m}^{2}\left\langle\cos ^{2}(k x-\omega t)\right\rangle \\
& =2 \times \frac{1}{2} \mu v \omega^{2} y_{m}^{2} \times \frac{1}{2}=\frac{1}{2} \mu v \omega^{2} y_{m}^{2}
\end{aligned}
$$

