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Review of rotational variables (scalar notation)Review of rotational variables (scalar notation)
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Relationships between linear and angular variablesRelationships between linear and angular variables

Position:Position: ( )in radianss rθ θ=
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Centripetal acceleration:Centripetal acceleration:
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Kinetic energy of rotationKinetic energy of rotation
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••If moment of inertia is known about If moment of inertia is known about 
an axis though the center of mass an axis though the center of mass 
((c.o.m.c.o.m.), then the moment of inertia ), then the moment of inertia 
about any parallel axis is:about any parallel axis is:

Parallel axis theoremParallel axis theorem

2
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••It is essential that these axes are It is essential that these axes are 
parallel; as you can see from table    parallel; as you can see from table    
1010--2, the moments of inertia can be 2, the moments of inertia can be 
different for different axes.different for different axes.



Some rotational inertiaSome rotational inertia



TorqueTorque
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••There are two ways to compute torque:There are two ways to compute torque:

••The direction of the force vector is The direction of the force vector is 
called the called the line of actionline of action, and , and rr⊥⊥ is called is called 
the the moment armmoment arm..

••The first equation shows that the The first equation shows that the 
torque is equivalently given by the torque is equivalently given by the 
component of force tangential to the component of force tangential to the 
line joining the axis and the point where line joining the axis and the point where 
the force acts.the force acts.
••In this case, In this case, rr is the moment arm of is the moment arm of FFtt..



Summarizing relations for translational and Summarizing relations for translational and 
rotational motionrotational motion

••Note: work obtained by multiplying torque by an angle Note: work obtained by multiplying torque by an angle -- a a 
dimensionless quantity. Thus, torque and work have the same dimensionless quantity. Thus, torque and work have the same 
dimensions, but you see that they are quite different.dimensions, but you see that they are quite different.



Rolling motion as rotation and translationRolling motion as rotation and translation

s Rθ=
The wheel moves with speed ds/dt
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Torque and angular momentumTorque and angular momentum
( )definitionr Fτ = ×

••Here, Here, pp is the linear momentum is the linear momentum mv mv of of 
the object.the object.
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••SI unit is Kg.mSI unit is Kg.m22/s./s.

( ) is defined as:l l r p m r v= × = ×Angular momentum 

••Torque was discussed in the previous chapter; cross products Torque was discussed in the previous chapter; cross products 
are discussed in chapter 3 (section 3are discussed in chapter 3 (section 3--7) and at the end of this 7) and at the end of this 
presentation; torque also discussed in this chapter (section 7).presentation; torque also discussed in this chapter (section 7).



Angular momentum of a rigid body about a fixed axisAngular momentum of a rigid body about a fixed axis
We are interested in the component of We are interested in the component of 
angular momentum parallel to the axis of angular momentum parallel to the axis of 
rotation:rotation:
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In fact:In fact: L Iω=



Conservation of angular momentumConservation of angular momentum

If the net external torque acting on a system is zero, the If the net external torque acting on a system is zero, the 
angular momentum of the system remains constant, no angular momentum of the system remains constant, no 
matter what changes take place within the system.matter what changes take place within the system.

It follows from Newton's second law that:It follows from Newton's second law that:

What happens to kinetic energy?What happens to kinetic energy?
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••Thus, if you increase Thus, if you increase ωω by reducing by reducing II, you end , you end 
up increasing up increasing KK..
••Therefore, you must be doing some work.Therefore, you must be doing some work.
••This is a very unusual form of work that you do This is a very unusual form of work that you do 
when you move mass radially in a rotating frame. when you move mass radially in a rotating frame. 
••The frame is accelerating, so Newton's laws do The frame is accelerating, so Newton's laws do 
not hold in this frame not hold in this frame 
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EquilibriumEquilibrium
A system of objects is said to be in equilibrium if:A system of objects is said to be in equilibrium if:

1.1. The linear momentum The linear momentum PP of its center of mass is constant.of its center of mass is constant.
2.2. Its angular momentum Its angular momentum LL about its center of mass, or about about its center of mass, or about 

any other point, is also constant.any other point, is also constant.

If, in addition, If, in addition, LL and and PP are zero, the system is said to are zero, the system is said to 
be in be in static equilibriumstatic equilibrium..

0net net
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τ τ= ⇒ =

1.1. The vector sum of all the external forces that act on a The vector sum of all the external forces that act on a 
body must be zero.body must be zero.

2.2. The vector sum of all the external torques that act on a The vector sum of all the external torques that act on a 
body, body, measured about any axismeasured about any axis, must also be zero., must also be zero.



The requirements of equilibriumThe requirements of equilibrium

1.1. The vector sum of all the external forces that act on a The vector sum of all the external forces that act on a 
body must be zero.body must be zero.

2.2. The vector sum of all the external torques that act on a The vector sum of all the external torques that act on a 
body, body, measured about any axismeasured about any axis, must also be zero., must also be zero.
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3.3. The linear momentum The linear momentum PP of the body must be zero.of the body must be zero.

One more requirement for static equilibrium:One more requirement for static equilibrium:



ElasticityElasticity

••A A stressstress, a force per unit area, produces a , a force per unit area, produces a strainstrain, or dimensionless , or dimensionless 
unit deformation.unit deformation.
••These various stresses and strains are related via a These various stresses and strains are related via a modulus of modulus of 
elasticityelasticity

Hydraulic stressTensile stress Shear stress

••All of these deformations have the following in common:All of these deformations have the following in common:

stress = modulus × strain



Tension and compressionTension and compression
••The figure left shows a graph of stress The figure left shows a graph of stress 
versus strain for a steel specimen.versus strain for a steel specimen.
••Stress = force per unit area (Stress = force per unit area (FF//AA))
••Strain = extension (Strain = extension (∆∆LL) / length () / length (LL))
••For a substantial range of applied For a substantial range of applied 
stress, the stressstress, the stress--strain relation is strain relation is 
linear.linear.
••Over this soOver this so--called called elasticelastic region, the, region, the, 
the specimen recovers its original the specimen recovers its original 
dimensions when the stress is removed.dimensions when the stress is removed.
••In this region, we can write:In this region, we can write:
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∆
=

This equation, This equation, stress = stress = EE × strain× strain, is known as , is known as Hooke's Hooke's lawlaw, and , and 
the modulus the modulus EE is called is called Young's modulusYoung's modulus. . The dimensions of The dimensions of EE are are 
the same as stress, the same as stress, i.e.i.e. force per unit area.force per unit area.
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V
∆
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••BB is called the is called the bulk modulusbulk modulus..
••VV is the volume of the specimen, and is the volume of the specimen, and ∆∆VV
its change in volume under a its change in volume under a hydrostatic hydrostatic 
pressure pressure pp..

Shear stressShear stress
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••GG is called the is called the shear modulusshear modulus..

Hydraulic stressHydraulic stress



Newton's law Newton's law 
of gravitationof gravitation

11 2 21 2
2 6.67 10 N m /kgm mF G G

r
−= = × ⋅

A uniform spherical shell of matter attracts a particle A uniform spherical shell of matter attracts a particle 
that is outside the shell as if the shell's mass were that is outside the shell as if the shell's mass were 
concentrated at its center.concentrated at its center.

A uniform spherical shell of matter exerts no net A uniform spherical shell of matter exerts no net 
gravitational force on a particle located inside itgravitational force on a particle located inside it

Shell theoremsShell theorems



Gravitational potential energyGravitational potential energy

••But, close to the Earth's surface,But, close to the Earth's surface,

••Further away from Earth, we must choose a Further away from Earth, we must choose a 
reference point against which we measure reference point against which we measure 
potential energy.potential energy.
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The natural place to chose as a reference point is The natural place to chose as a reference point is rr == ∞∞, since , since UU
must be zero there, must be zero there, i.e.i.e. we set we set rr11 == ∞∞ as our reference point. as our reference point. 

1 2
g

GmM GmM GmMU W
r r r

= − = − = −



1.1. THE LAW OF ORBITS: All planets move in elliptical THE LAW OF ORBITS: All planets move in elliptical 
orbits, with the sun at one focus.orbits, with the sun at one focus.

Planets and satellites: Planets and satellites: Kepler's Kepler's lawslaws

2.2. THE LAW OF AREAS: A line that connects a planet THE LAW OF AREAS: A line that connects a planet 
to the sun sweeps out equal areas in the plane of to the sun sweeps out equal areas in the plane of 
the planet's orbit in equal times; that is, the rate the planet's orbit in equal times; that is, the rate 
dAdA//dtdt at which it sweeps out area at which it sweeps out area AA is constant.is constant.
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3.3. THE LAW OF PERIODS: The square of the period THE LAW OF PERIODS: The square of the period 
of any planet is proportional to the cube of the of any planet is proportional to the cube of the 
semimajor semimajor axis of the orbit.axis of the orbit.
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Satellites: Orbits and EnergySatellites: Orbits and Energy
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••Again, we'll do the math for a Again, we'll do the math for a 
circular orbit, but it holds quite circular orbit, but it holds quite 
generally for all elliptical orbits.generally for all elliptical orbits.
••Applying Applying FF = = mama::
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Simple Harmonic MotionSimple Harmonic Motion
••The simplest possible version of harmonic motion is called The simplest possible version of harmonic motion is called Simple Simple 
Harmonic Motion (SHM)Harmonic Motion (SHM)..
••This term implies that the periodic motion is a This term implies that the periodic motion is a sinusoidalsinusoidal function function 
of time,of time,

••The positive constantThe positive constant xxmm is called the is called the amplitudeamplitude..
••The quantity The quantity ((ωωtt + + φφ)) is called the is called the phasephase of the motion.of the motion.
••The constant The constant φφ is called the is called the phase constantphase constant or or phase anglephase angle..
••The constant The constant ωω is called the is called the angular frequency angular frequency of the motion.of the motion.
••TT is the period of the oscillations, and is the period of the oscillations, and ff is the frequency.is the frequency.
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The velocity and acceleration of SHMThe velocity and acceleration of SHM

••The positive quantity The positive quantity ωωxxmm is called the velocity amplitude is called the velocity amplitude vvmm..
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Velocity:Velocity:
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Acceleration:Acceleration:

In SHM, the acceleration is proportional to the In SHM, the acceleration is proportional to the 
displacement but opposite in sign; the two quantities displacement but opposite in sign; the two quantities 
are related by the square of the angular frequencyare related by the square of the angular frequency



The force law for SHMThe force law for SHM
2 2( ) ( )F ma m x m xω ω= = − = −

••Note: SHM occurs in situations where the force is proportional tNote: SHM occurs in situations where the force is proportional to o 
the displacement, and the proportionality constant the displacement, and the proportionality constant ((−−mmωω22)) is is 
negative, negative, i.e.i.e. F kx= −
••This is very familiar This is very familiar -- it is it is Hooke's Hooke's law.law.

SHM is the motion executed by a particle of mass SHM is the motion executed by a particle of mass mm
subjected to a force that is proportional to the subjected to a force that is proportional to the 
displacement of the particle but of opposite sign.displacement of the particle but of opposite sign.
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Mechanical energy:Mechanical energy: 21
2 mE U K kx= + =

xxmm is the maximum displacement or amplitudeis the maximum displacement or amplitude



Waves I Waves I -- wavelength and frequencywavelength and frequency
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Review Review -- traveling waves on a stringtraveling waves on a string

v τ
µ

=

••The tension in the string is The tension in the string is ττ..
••The mass of the element The mass of the element dmdm isis µµdldl, where , where µµ is the mass per unit is the mass per unit 
length of the string.length of the string.
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