Chapter 15: Oscillations

Lecture 33
11/18/2009
Oscillations

Goals for this Lecture:

- Displacement, velocity and acceleration of a simple harmonic oscillator
- Energy of a simple harmonic oscillator
- Examples of simple harmonic oscillators: spring-mass system, simple pendulum, physical pendulum, torsion pendulum
- Damped harmonic oscillator
- Forced oscillations/Resonance
Oscillations

Oscillations are a periodic, repetitive motion (of any physical variable)

Examples:

- **Mechanical oscillations**: Heart beats, sound waves, earthquakes, swing set, rocking chair ...
- **Other oscillations**: Electro-magnetic, temperature stock market prices, # of students in this room, ...

![Graph showing oscillations of different variables over time: # student in room vs time, Heart beat EKG, Dow Jones Index.](image)
Simple Harmonic Motion (SHM) is a class of oscillations that is
- Periodic: repeats exactly with a period T (or a frequency $f = 1/T$)
- Described by a sinusoidal function:
 $$x(t) = x_m \cos(\omega t + \Phi)$$
Properties of SHM

- **Properties:**
 - **Period:** T [s] \Rightarrow x(t) = x(t+T)
 - **Frequency:** f [Hz] = $[s^{-1}]$ \Rightarrow f = 1/T
 - **Angular frequency:** ω [s$^{-1}$] \Rightarrow \omega = 2\pi f = 2\pi/T
 - **Amplitude:** x_m [m]
 - **Phase:** $(\omega t + \Phi)$ [rad]
 - **Phase constant:** Φ [rad]

Two different frequencies
Example

The displacement of a mass particle at \(t=0 \) is 5 m. If the maximum displacement is 10 m find the phase constant (\(\Phi \)) of this motion.

\[
x(t) = x_m \cos(\omega t + \Phi)
\]

\[
x(0) = 5m = 10m \cos(\Phi)
\]

\[
\cos(\Phi) = 0.5
\]

\[
\Phi = \cos^{-1} 0.5
\]
Velocity of a SHM

For a simple harmonic oscillator we have

- Position: \(x(t) = x_m \cos(\omega t + \Phi) \)
- Velocity: \(v(t) = \frac{dx}{dt} = -\omega x_m \sin(\omega t + \Phi) \)

 \[= -v_m \sin(\omega t + \Phi), \quad v_m = \omega x_m \]

 \[= v_m \cos(\omega t + \Phi + \pi/2) \]
Acceleration of a SHM

For a simple harmonic oscillator we have

- **Position:** \(x(t) = x_m \cos(\omega t + \Phi) \)
- **Velocity:** \(v(t) = \frac{dx}{dt} = -\omega x_m \sin(\omega t + \Phi) \)
- **Acceleration:** \(a(t) = \frac{d^2x}{dt^2} = -\omega^2 x_m \cos(\omega t + \Phi) \)
 \[= -a_m \cos(\omega t + \Phi), \quad a_m = \omega^2 x_m \]
 \[= a_m \cos(\omega t + \Phi + \pi) \]

[Graph showing time, position, and acceleration functions]
Comparing $x(t)$, $v(t)$, $a(t)$
The Force Law for SHM

Consider a mass undergoing simple harmonic motion:
- Position: $x(t) = x_m \cos(\omega t + \Phi)$
- Acceleration: $a(t) = -\omega^2 x_m \cos(\omega t + \Phi) = -\omega^2 x(t)$

The force acting on the mass is
- $F = ma(t) = -m\omega^2 x(t)$

The force is proportional to the displacement x
- Its direction is opposite to the displacement x

..... this sounds suspiciously familiar ...
The Simple Harmonic Oscillator

- The force F is proportional to the displacement x
- The frequency ω only depends on k and m
- It DOES NOT depend on:
 - the size of the initial displacement
 - the initial speed
 - the phase constant
- A stiff spring (large k) and a small mass (m) result in a high oscillation frequency ω

\[F_{\text{spring}} = -kx \]
\[F_{\text{SHM}} = -m\omega^2x \]
\[\Rightarrow k = m\omega^2 \]
\[\omega = \sqrt{\frac{k}{m}} \]
\[T = \frac{2\pi}{\omega} = 2\pi\sqrt{\frac{m}{k}} \]
Bouncy mattress

A 50 kg kid jumps up and down on his bed’s mattress, undergoing simple harmonic motion. The period of the motion is 2 s and the amplitude of oscillations are 10 cm.

a) What is the magnitude of the maximum force acting on the kid?

b) What is the spring constant k of the mattress springs?
Bouncy mattress

a) What is the magnitude of the maximum force acting on the kid?

\[x(t) = x_m \cos(\omega t + \Phi) \]
\[a(t) = -\omega^2 x_m \cos(\omega t + \Phi) \]
\[F(t) = ma(t) = -m\omega^2 x_m \cos(\omega t + \Phi) \]
\[F_{\text{max}} = m\omega^2 x_m \]
\[\omega = 2\pi/T = 2\pi/2s = 3.14 \text{ s}^{-1} \]
\[F_{\text{max}} = (50 \text{ kg})(\pi \text{ s}^{-1})^2 (0.1 \text{ m}) = 49.3 \text{ kg m/s}^2 = 49.3 \text{ N} \]

b) What is the spring constant \(k \) of the mattress springs?

\[F_{\text{spring}} = -kx, \ F_{\text{SHM}} = -m\omega^2 x \]
\[\Rightarrow k = m\omega^2 = (50 \text{ kg})(\pi \text{ s}^{-1})^2 = 493 \text{ kg/s}^2 = 493 \text{ N/m} \]